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EXTENDED ABSTRACT

We present a novel hybrid approach for leaf surface
fitting that combines Clough-Tocher (CT) and radial
basis function (RBF) methods to achieve a surface
with a continuously turning normal. The hybrid CT-
RBF method is shown to give good representations of
a Frangipani leaf and an Anthurium leaf, see figure 1.

The development of the algorithm has been made to
facilitate the understanding of leaf surface properties.
By identifying and quantifying the response of plants
to the inputs via their leaves information will be
obtained for application to practical and theoretical
issues of scientific and sociological importance. The
use of pesticides to assist agricultural production
has ecological effects; avoidance of the overuse of
water is of critical importance and a measured use of
resources is of economic importance.

An understanding of the mechanisms of the devel-
opment of a plant will, generally, include the an
understanding of the role played by its leaves. This
subject has attracted considerable interest over the last
decade as summarised in the introduction (Room et al
1996, Prusinkiewicz 1998) . Their shape, size, and
position are important in several ways. For example
energy uptake is assumed to be a function of light
interception. This influences plants both individually
and collectively, the latter through competition for
resources. Similarly, the amount of precipitation,
nutrients or pesticide can be better quantified if a
detailed model of a leaf is accessible. Thus important
aspects of leaf modelling can be facilitated with
accurate knowledge of the leaf surface. This can be
obtained from a surface fit to a set of measurements
made by a data collection device such as a laser
scanner or a sonic digitiser (Loch 2004).

This work will form the basis for a theoretical study
of pathways of water droplets on leaves. The initial
investigation will assume that the leaf is smooth and
the droplet experiences, at most, gravitational, surface
tension and viscous forces. It will be necessary to
produce a surface fit with a continuously varying
gradient. This is assured by interpolation of data

values and gradient values on a triangulation of the
data points using piecewise bivariate cubics (Clough
1965). Derivative values are obtained by computing
the gradient of an RBF which interpolates the data
values (Powell 1991).

The issues reported here include: The selection of
points from the data set The choice of a subset
of the data which avoids undesirably shaped triangles
was aided by the use of EasyMesh a software package
which generates Delaunay triangulations.
Choice of RBF and suitable width parameter c.
Hardy’s multiquadrics were selected in conjunction
with the use of Rippa’s algorithm to determine the
width parameter.
The use of local and global RBF interpolates
Numerical experiments investigated the use of local,
less costly RBF interpolates compared with global,
more expensive and more robust RBF counterparts.
The results favoured the former approach.
The method reported is generally applicable to
scattered data and has the potential for application to
the numerical solution of partial differential equations.

(a) (b)

(c) (d)

Figure 1. Photos of the scanned (a) Frangipani and (b)
Anthurium leaves and corresponding (c) Frangipani
and (d) Anthurium leaf surface models for these point
sets.
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1 INTRODUCTION

There are many situations in science for which
surface observations of a biological system are made.
Surface data can often be collected at a discrete set
of points and a key problem is to reconstruct the
surface, or perhaps capture important features of the
surface from a discrete set of measurements. The
modelling of plant architecture has been researched
extensively over the last decades (Room et al.
1996, Prusinkiewicz 1998) and models of leaf
surfaces have generally not been generated with
great accuracy or level of detail, until recently when
(Loch 2004) presented two methods to accurately
model leaf surfaces. Leaves play an important role
in the development of a plant, and therefore some
adequate representation of the leaf is required. This
representation may be used for visualization purposes
only (Loch 2004) or may be used to study biological
processes such as photosynthesis (Sinoquet et al.
1998) and canopy light environments (Espana et al.
1999).

Virtual plants are developmental plant models that
combine geometrical and topological information that
can be used to produce a visualization (Room et al.
1996). Few of the past leaf models were based on
accurate measurements until 3D digitizers and faster
computers with improved graphic capabilities became
available. Virtual leaf models may be displayed in
an abstract way, where the leaf is represented by a
disk (Smith 1984), polygons and texture maps (Foley
et al. 1982) or, more realistically, by a surface
model that captures the surface shape and boundary
(Prusinkiewicz et al. 1990). Hammel et al. (1992)
used branching skeletons for compound leaves and
boundary algorithms were applied by Mundermann et
al. (2003) for modelling lobed leaves. Maddonni et
al. (2001) used piecewise linear triangles to represent
the leaf surface, where vertices along the boundary
are estimated by allometric relationships. Espana et
al. (1999) modeled the undulations of the boundary.
Finally, (Frey 1987), based his approach on splines
and texture maps.

Two methods have been presented (Loch et al.
2005, Loch 2004) based on finite elements methods
(piecewise linear triangular and piecewise cubic
Clough-Tocher triangular) to model accurate leaf
surfaces in three dimensions. Here a large number
of data points sampled by a laser scanner extracted
from the real leaf surface were used in an incremental
algorithm to reduce the size of the set of data points.

The research presented in this paper introduces a new
surface fitting method based on hybrid strategies that
combine Clough-Tocher with radial basis techniques
for modelling the leaf surface, which is based on
a large number of three-dimensional data points

captured from the real leaf surface.

This paper consists of four sections. In this section we
briefly review surface fitting methods, including the
Clough-Tocher and the radial basis function method.
In section 2 a new surface fitting method is presented
that combines the CT and RBF methods for modelling
leaf surfaces. The application of the new method to
a Frangipani leaf and Anthurium leaf is presented in
section 3, where a processing methodology is detailed.
Future work and further applications of the model are
discussed in section 4.

1.1 Clough-Tocher finite element method

The Clough-Tocher method (CTM) is an interpolating
finite element method that was introduced originally
by Clough and Tocher (Clough 1965). This method
is used to minimize the degree of the polynomial
interpolant fitted across the triangular elements
without losing the continuity of the gradient over the
whole domain.

The CTM is a seamed element approach, whereby
each triangle is treated as a macro-element that
is split into subtriangles, which are called micro-
elements. The CTM, has the advantage that it results
in a smooth surface over the whole domain. It
approximates the surface as an interpolating cubic
polynomial constructed on each subtriangle which
enables a bivariate piecewise cubic interpolant to be
devised over the entire triangle that is continuously
differentiable. The key result is that only twelve
degrees of freedom are required for the CTM, namely
the function values and the gradient at each vertex, as
well as the normal derivative along the edges.

In the context of leaf surface fitting, the function
value is assigned at the triangle vertices. However,
the derivative information at the vertices and at the
midpoints of each side is unavailable and needs to be
estimated. The vertex gradient estimates are generated
from neighbouring data information and thereafter the
edge normal derivatives are determined as the mean
of the normal derivatives estimated at the two vertices
associated with the edge. This approximation is based
on the assumption that the normal slope along the
sides of the triangle changes linearly (Lancaster et al.
1986). A more detailed description of CTM including
the list of cardinal basis functions for the standard
triangular element can be found in (Lancaster et al.
1986, Loch et al. 2005, Ritchie 1978).401



1.2 Radial basis functions

A Radial Basis Function (RBF) approximation to f is
a function S of the form:

S(x) =
n∑

i=1

aiΦi(x) x ∈ R2 (1)

where Φi(x) = R (‖x− xi‖) , R(r) is a non-negative
real-valued function with non-negative argument r
and ‖.‖ denotes the Euclidean norm. The points
{xi} belonging to R2 are called the centres of the
RBF approximation. The expansion coefficients {ai}
are determined by satisfying some approximation
criterion; in this application by interpolation (see
equation 3).

In order to obtain a smooth surface representation
to estimate the function values at points other than
data points, radial basis function schemes have
found applications in areas such as geodesy (Junkins
et al. 1971) and medical imaging (Carr et al.
1997). A major problem of the radial basis function
method concerns large sets of data points where the
computational costs involved in fitting and evaluating
the RBF can become time-consuming. A review of
the theory of RBF approximation is given by Powell
(1991).

Well known examples of radial basis function
methods include Hardy’s multiquadric RBF which is
adopted in this paper:

R (‖x− xi‖) =
√

c2 + ‖x− xi‖2. (2)

The parameter c must be specified by the user; it is
related to the spread of the function around its centers.
The accuracy of the multiquadric interpolant depends
heavily on the choice of c (Franke 1982).

Thus, we face the problem of how to select a good
value for the parameter c. Many methods for selecting
c for the multiquadric interpolants in two-dimensions
have been introduced in the literature. Franke (1982)
used c = 1.25 D√

n
where D is the diameter of the

minimal circle enclosing all data points. Hardy (1971)
suggested a value of c = 0.815d where d =

Pn
j=1 dj

n
and dj is the distance between the jth data point and
its closest neighbour.

Rippa (1999) studied the influence of the parameter
c on the quality of the approximation of the
multiquadric interpolant and concluded that the
accuracy depends on the choice of the parameter c.
Rippa considered two sets of data points and nine
different test functions defined on the unit square. A
data vector f = (f1, f2, ..., fn)T was constructed by
evaluating each test function over the set of data points
so that

S(xj) = fj , j = 1, 2, ..., n. (3)

Rippa (1999) suggests an algorithm for selecting a
good value for the parameter c based on minimizing
a cost function that represents the error between the
interpolating radial basis function and the unknown
function (RMS), see equation 6. This cost function is
defined as follows:

Let the error vector E = (E1, ..., En)T where Ek =
fk − Sk(xk) = ak

x
[k]
k

, k = 1, ..., n and Sk(x) =∑n
i=1,i6=k ak

i R (‖x− xi‖) , and then

cgood = arg min
c∈R
‖E(c)‖1 . (4)

Here, Sk is the interpolant to a reduced data
set obtained by removing the point xk and the
corresponding data value fk from the original data set
and Ek is a function of c since it requires translates of
a basis function that depends on c. For more details
see (Rippa 1999).

2 HYBRID METHOD

We propose a new hybrid approach for surface fitting
based on the CTM that uses a multiquadric RBF to
estimate the gradient at the vertices and mid-points
of the Clough-Tocher triangle. The multiquadric RBF
interpolant S(x) is given by equation 1. The gradient
of S is then given by

∇S(x) =
n∑

i=1

ai∇Φi(x), (5)

where ∇Φi(x) = ∇R (‖x− xi‖) = x−xi

‖x−xi‖R
′
(‖x −

xi‖) (R
′

denotes the derivative of R(r)).

The hybrid method is essentially an interpolating
finite element method. We outline this procedure in
the following steps.

Step 1: Given n data points {xi, i = 1, ..., n} and a
data vector {fi, i = 1, ..., n}, choose a subset of m
data points from the n data points for the purpose of
a triangulation of the leaf surface.

Step 2: Find c using Rippa’s method (section 1.2).

Step 3: A global multiquadric RBF interpolant that
uses the triangulation points is then constructed and
used to estimate the gradients for all triangles.
OR
A local multiquadric RBF interpolant that uses a local
set of points constructed on each triangle is used to
estimate the gradients for a particular Clough-Tocher
triangle.

Step 4: In both methods, global and local RBF, the
truncated singular value decomposition TSVD (Tony402



et al. 1990) is applied to solve the linear system (3)
for the coefficients {ai}.

Step 5: The CTM is applied to construct the leaf
surface.

3 APPLICATION OF THE HYBRID METHOD
FOR THE FRANGIPANI AND ANTHURIUM
LEAVES

Reconstruction of the shape of a leaf using surface
fitting techniques requires a set of representative data
points sampled from the surface. The process of
sampling data points from the leaf surface using a
measuring device is called digitizing such that the
visible exterior data points of the leaf are enough to
capture the surface of the leaf. Loch et al. (2005)
collected data points for different types of leaves (such
as, Frangipani, Anthurium, Flame and Elephant’s Ear)
using a laser scanner. The boundary points were
selected by hand from the complete set of points using
the PointPicker, software written by McAleer (Hanan
et al. 2004).

3.1 Data from laser scanner

In this research the hybrid Clough-Tocher Radial basis
function interpolation method was applied to the laser
scanned Frangipani and Anthurium leaf data taken
from (Loch et al. 2005) to construct the surface
of those two leaves. The Frangipani leaf data set
contains two subsets of data. The first set consists
of 3,388 points, which represents the entire leaf
surface scanned points; while the second set consists
of 17 points representing the boundary points of the
Frangipani leaf surface. The Anthurium leaf data
set consists of a set containing 4,688 points, which
represent the entire leaf surface points and a second set
containing 79 points representing the boundary points
of the Anthurium leaf surface. These point sets are
displayed in Figures 1 (a) and (b).

3.2 Leaf reference plane

The coordinate system used by the scanner, which
returns the coordinates of points on the leaf, may not
be suitable for interpolation due to the possibility of
multivalued and vertical surfaces. A solution is to use
a reference plane that is a least squares fit to these
data points. We construct a reference plane by making
a linear least squares fit to the data and rotating the
coordinate system so that the reference plane becomes
the xy−plane. This rotation can be achieved by
rotating the normal vector of the reference plane about
the x−axis into the xz−plane and then about the
y−axis into the yz−plane (Oqielat et al. 2007).
This procedure is successful if the vertical height of

the data points is single valued in the transformed
coordinate system.

3.3 Triangulation method

In order to apply the hybrid method to the leaf
data sets a triangulation of the leaf surface needs
to be constructed. Since the number of data points
that represent the surface is large, the computational
expense is reduced by selecting only a subset of
this set to generate a triangulation of the leaf. In
this work the triangulation of the leaf is constructed
using the EasyMesh generator, software written in
the C language by Bojan Niceno (2002). EasyMesh
generates two-dimensional Delaunay and constrained
Delaunay triangulations in general domains. We
will explain the triangulation process for only the
Frangipani leaf because the process is the same for
the Anthurium leaf.

An input file that must be provided to EasyMesh is
one that contains the 17 boundary points (nodes) and
the desired length of the triangle sides. EasyMesh
returns a good triangulation if the domain is convex.
However, because the piecewise linear boundary
defined by the 17 chosen points do not enclose a
convex set, e.g see Figure 2 (a), EasyMesh was unable
to produce a triangulation with the required properties.
To overcome this problem, an algorithm was used
to generate a convex hull from the entire set of leaf
data points. This process provided a total of 27
points, and the next closest points to the given 17
boundary points from these points were found using
the Matlab command dsearch. This process resulted
in 11 boundary points being identified as defining the
convex domain exhibited in Figure 2 (c).

In the interior of the convex hull (leaf surface) we
can define either a horizontal, or vertical, line in
the domain to enable EasyMesh to produce fewer
and better shaped triangles. For the Frangipani and
Anthurium leaves (Oqielat et al. 2007) it appears that
the vertical line produces a more suitable triangulation
than the horizontal line, see for example Figure 2(c).

In summary, we applied the following steps to
construct the triangulation of the Frangipani leaf using
EasyMesh:

Step 1: EasyMesh was provided with an input file that
contains the 11 boundary points, the vertical line and
the desired triangle edge length. EasyMesh returned
the node file that contained the same boundary points,
together with additional boundary points (58 point)
and a set of points distributed inside the leaf (93
internal points). These represented the triangle
vertices of the mesh structure, see Figure 2 (d).

Step 2: Import the node file to Matlab and then locate403



the closest points in the leaf data set from the internal
points generated in Step 1 using dsearch. These
resulting points represent the triangle vertices of the
leaf surface mesh structure.

Step 3: To obtain the boundary points of the leaf
for which we do not have surface values, we find the
closest points from the leaf data set to the EasyMesh
boundary points and use their surface values.

Step 4: Use the Matlab command Delaunay to
triangulate the leaf points obtained from step 2 and
3.

This process gives the final triangulation for the leaf
surface illustrated in Figure 3 (a). After the
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Figure 2. (a) The 17 Frangipani leaf boundary points.
(b) The 27 points generated from the convex hull
algorithm. (c) The square points represent the final
11 boundary points. (d) The vertices of the mesh
structure generated using Easymesh. The square
points represent the 11 boundary points that are
given to Easymesh; the dot points represent the 58
extra points added by Easymesh, while the x points
represent the 93 internal points.

triangulation of the leaf surface is constructed the
hybrid Clough-Tocher Radial Basis Function method
is applied to construct the leaf surface. The local
hybrid approach applied here is based on choosing
the set of 5 nearest neighbours to each vertex and
to the center of the triangle. Next, a local radial
basis function is built from the 20 points for each
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Figure 3. (a) Triangulation of 151 points of
Frangipani leaf surface generated using EasyMesh.
(b) Triangulation of 141 points of Frangipani leaf
surface.

triangle, which is then used to estimate the directional
derivative at the triangle vertices and midpoints. A
global hybrid approach is also applied, which is
based on building one single global RBF from the
triangulation points and then using it to evaluate the
gradients at the vertices and midpoints of all triangles.
The parameter c in both cases was estimated globally
using the triangulation points following the Rippa
framework (Rippa 1999).

One problem that arose when applying the local
RBF method to the Frangipani leaf concerned the
poor interpolant values arising at the “tail” of the
leaf located near the stem. The reason for the
poor interpolant values occurred because there was
insufficient data to construct these interpolants. To
overcome this problem we needed to delete some
of the smaller triangles from the mesh at the leaf
tail (by deleting 10 points from the boundary points
added from EasyMesh at the tail) to form larger
triangles that contained enough data to proceed with
the hybrid method. Triangulations determined from
this construction process are illustrated in Figure 3 (b).
This problem did not arise for the Anthurium leaf.

3.4 Numerical experiments

In this section we present the results of applying the
hybrid method to the Frangipani and Anthurium leaf
data. After the triangulation points were selected, the
rest of the m data points (denoted by fk = f(xk), k =
1, ...,m) from the leaf data set were used to measure
the quality of the approximation of the hybrid method.
We noted that some of the m data points occurred
outside of the virtual leaf mesh and these points were
ignored in the quality analysis. We then applied
the hybrid method to estimate the surface values for
the data points occurring inside the triangulation to
construct the leaf surface, see Figure 1 (c) and (d).404



Table 1. RMS computed using hybrid local and global
RBF for the Frangipani leaf data points as well as the
maximum error associated with the surface fit.

Hybrid Local Hybrid global
RBF RBF

Scaled RMS 0.0086 0.0139
Scaled maximum error 0.0700 0.0655
boundary points 48 48
points tested 3155 3155
Triangulation points 141 141
outside points 104 104
No. of Triangles 257 257

The error metric we used was the root mean square
error RMS, given by:

RMS =

√∑k=m
k=1 [S(xk)− fk]2

m
. (6)

S(xk) represents the CT estimated value at the m
data points and fk represents the given function
values at the same data points. The second error
metric measured the quality in terms of the maximum
error associated with the surface fit in relation to the
maximum variation in f .

scaled max error =
max (|S(xk)− fk|)
max(fk)−min(fk)

,

with k = 1, 2, ...,m.

Tables 1 and 2 show the scaled maximum errors and
the scaled RMS = RMS

max(fk)−min(fk) for the Frangipani
and the Anthurium leaf data sets respectively using the
local and global hybrid method. For the Frangipani
leaf there were a total of 3,155 data points used to
assess the accuracy of the surface. Note the EasyMesh
triangulation comprised 141 vertices. There were
more than 100 points ignored in the analysis because
these points were deemed to lie outside the leaf mesh
structure.

One observes for the Frangipani leaf that using the
local hybrid RBF method produced slightly more
accurate RMS value than using the global hybrid RBF
method while it is the converse for the maximum error.
The trends depicted in Table 1 for the Frangipani leaf
appear consistent with observations from Table 2 for
the Anthurium leaf.

4 CONCLUSIONS AND FUTURE RESEARCH

The work presented in this paper describes a new
mathematical surface fitting technique for modelling
the leaf surface. It allows the user to construct an
accurate leaf surface based on three-dimensional data
points.It provides a basis on which future research
can be built. Surface representations can be extended
to generate not only realistic images of leaves but
also be applied to models determining a droplet path

Table 2. RMS computed using hybrid local and global
RBF for the Anthurium leaf data points as well as the
maximum error associated with the surface fit.

Hybrid Local Hybrid global
RBF RBF

Scaled RMS 0.0043 0.0068
Scaled maximum error 0.0537 0.0435
boundary points 66 66
points tested 4460 4460
Triangulation points 212 212
outside points 59 59
No. of Triangles 387 387

on the leaf surface. Knowing this path is important
for many application; for example, in the simulation
of a pesticide application to plant surfaces (Hanan
et al. 2003,Reichard et al. 1998 ) Knowledge
of this behaviour may be used to determine the
effectiveness of a treatment, and then to develop
certain pesticides that have the ability to protect leaves
for longer periods of time. Similar models may
treat moisture precipitation and energy uptake through
photosynthesis enabled by ray tracing techniques.

At present projections of the image boundaries in
the reference plane are piecewise linear. Work on
genuinely curved boundaries is in progress.

An advantage of the leaf models described in this
paper is that they may be used in different plant
modelling environments such as AMAP (Godin et al.
1997), xfrog (Lintermann et al. 1999) or LStudio
(Prusinkiewicz et al. 2000).
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