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EXTENDED ABSTRACT 
 
An observed  sample can exhibit correlation 
or dependence, that might be measured in 
relation to some index of spatial distance, in a 
geographic or economic sense. Disregarding 
spatial dependence can invalidate statistical 
methods for analyzing cross-sectional and 
panel data.  We discuss ongoing work on 
developing methods that allow for, test for, or 
estimate, spatial dependence.  In particular, 
we consider spatial autoregressive models, 
adaptive estimation, nonparametric 
estimation, and testing for spatial 
independence. Much of the stress is on 
nonparametric and semiparametric methods. 
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1. Introduction 
 
    Issues of spatial dependence have arisen in 
several areas of research, such as the 
environmental sciences, economics and 
sociology, but may be more generally relevant 
in circumstances in which cross-sectional or 
panel data are collected. Book-length 
descriptions of statistical methods of 
analyzing spatial data include Cliff and Ord 
(1981), Anselin (1988), Haining  (1990), 
Cressie (1993), Guyon (1995), Stein (1999), 
Arbia (2006).  The present paper discusses 
some recent and ongoing developments, 
mainly from a semiparametric or 
nonparametric viewpoint. 
    It is helpful for the purposes of this 
introductory section to fix ideas by discussing 
a conventional setting of scalar (for 
simplicity) observations y{i}, i=1,...,n, having 
representation 
 
 y{i}=f(x{i})+ ε{i},  i=1,...,n,   (1) 
 
where x{i} is a p×1 vector observation that 
can be deterministically or stochastically 
generated, f is a parametric, semiparametric 
or nonparametric function, and the 
unobservable zero-mean random variable ε{i} 
is uncorrelated with f(x{i}). Particular issues 
arise in connection with the regression 
component f(x{i}), but these are partly due to 
the properties of the error ε{i} and it is the 
modelling of the ε{i}, and its implications for 
rules of statistical inference, that are central 
from our perspective. 
    The estimation of f or parameters that 
describe it which incorrectly assume 
independence across the ε{i} are well 
understood in the wider statistical and 
econometric literatures, and have been 
discussed in a specifically spatial context by 
numerous authors. The index i can be 
thought of as ranging over a cross-section or 
a panel, or indeed a time series and/or 
geographical space. In a cross-sectional  
setting, independence of the ε{i} is often 
assumed, and can be extended to random-
effects models which introduce within-group 
correlation. The cross-section dimension of a 
panel data set is often treated similarly, with 
dependence structure across the time 
dimension typically described by a dynamic 
model such as an autoregression (AR) (see 
e.g. Hsiao, 2003). Here we are concerned 
with the possibility that data collected like a 
cross-section or panel, or across geographical 
space, may have widespread dependence, that 
varies with some notion of relative location 

of, or distance between, observations; this 
might be due to omission of variables. 
    A basic question is the modelling of the 
dependence in such a way as to enable 
justification of rules of large sample 
inference on aspects of interest. This requires 
that information accumulate as n→∞ - at a 
modest rate for consistency to be achieved, 
faster for the central limit theorem; neither 
property can hold if the ε{i} have a constant 
non-zero correlation. Sufficient conditions 
for such properties in case of time series 
observations, and observations on d-
dimensional space with d>1 (as random 
fields), have been developed. For stationary 
ε{i}, asymptotic theory for parameters 
describing f in (1), or the autocovariance 
structure of the ε{i}, is possible under a 
variety of weak dependence conditions, such 
as mixing with a suitable rate, or linear filters 
of independent innovations with summable 
coefficients, or even under long range 
dependence. To some degree the extension of 
theory for the time series case d=1 to d>1 is 
straightforward but particular features cause 
difficulty: for multilateral models, least 
squares (LS) tends to be inconsistent and use 
of a likelihood approximation is important, as 
first noted by Whittle (1954); the "edge-
effect" is a source of bias in the central limit 
theorem when d≥2, and methods of 
overcoming it are discussed in Guyon (1982), 
Dahlhaus and Künsch (1987), Robinson and 
Vidal Sanz (2004). Under long range 
dependence, limit distributional behaviour 
may be nonstandard, without weighting of a 
type used more generally to achieve efficiency 
(see e.g., Fox and Taqqu, 1986, Hidalgo and 
Robinson, 2002). 
    Such theory crucially regards the locations, 
s{i}, of the ε{i}, as diverging without bound as 
i→∞, so that, say, the distance between s{1}  
and s{n}  tends to infinity, as n→∞, and 
correspondingly ε{1}   and ε{n} approach 
independence. This kind of setup is 
commonly accepted in time series research. It 
can also seem plausible in some spatial 
applications in, say, environmental science or 
astronomy, or even field experiments, but less 
so when the domain of possible observation is 
bounded, for physical, historical or 
administrative reasons. This may not be of 
major concern in that the practitioner is 
typically faced with a given, fixed sample, 
useful asymptotic theory is motivated by 
approximation rather than extrapolation, and 
there is an element of artificiality in any 
regime that caters for an arbitrarily large 
sample size. 
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    In economics, geographical distance can 
also be relevant in modelling dependence, but 
a more general and relevant notion is 
"economic distance" (see e.g., Conley and 
Dupor, 2003). Here, unit (economic agent) i 
is endowed with a vector of characteristics 
z{i} (which may overlap with x{i} in (1)). The 
economic distance between agents i and j is 
defined by the distance between z{i} and z{j}, 
such as the Euclidean norm  (where there are 
advantages to parsimonious modelling in 
assuming isotropy). If z{i} has infinite 
support, so do such distances. Conley (1999) 
approximated the locations z{i} by regularly-
spaced (lattice) points and applied mixing 
conditions in deriving asymptotic theory for 
certain estimates in a random fields setting 
(see e.g. also Pinkse, Shen and Slade, 2004). 
Conley (1999), Conley and Molinari  (2004) 
also examined robustness to stationary point 
process errors in the lattice approximation. 
However this kind of assumption on the 
locations implies a degree of regularity that 
might not always be plausible. For example, 
if the z{i} are identically distributed the 
density will be small in tail regions so 
observations at remote locations will be 
insufficient to take advantage of weak 
dependence conditions on ε{i}. In spatio-
temporal settings where spatial size remains 
fixed while temporal length increases (for 
econometric examples see e.g., Chen and 
Conley, 2001, Giacomini and Granger, 2004) 
this is not a problem because weak 
dependence conditions over time do the work. 
However, the time series may be short or non-
existent. 
    In some of the spatial statistics literature, 
"infill asymptotics" has been developed, 
assuming increasingly fine observations over 
a bounded domain as n increases (see e.g. 
Stein, 1991, Cressie, 1993, Lahiri, 1996). 
Typically, a continuous model for dependence 
across the domain is assumed, but 
observations form a triangular array when, 
say, the observations are on a lattice whose 
mesh decreases as n increases. However, due 
to the fixed dependence, non-classical 
asymptotic properties tend to result, e.g. 
inconsistency due to convergence to a non-
degenerate random variable. While these sort 
of findings are interesting, they are not of 
much practical use. Useful, standard, 
asymptotic theory has resulted from analyses 
in many cross-sectional, panel data and time 
series problems, and we cannot see 
persuasive grounds for pursuing a theory 
under cross-sectional dependence in spatial 
data that loses this. It seems difficult in 
general to model the falling off of 

dependence as n→∞ in a way that will 
produce useful asymptotics without a 
triangular array prescription ε{i}=ε{i,n}, 
1≤i≤n, with ε{i} (even for small i), and thence 
all elements of the covariance matrix of 
ε{(n)}=(ε{1}′,,...,ε{n})′, changing subtly as n 
increases. Such devices aimed at producing 
useful distributional approximations are 
familiar, e.g. in Pitman efficiency theory, 
structural change modelling, fixed-design 
nonparametric regression, and local-to-unit 
roots. 
    Our discussion of recent and ongoing work 
on developing statistical methods that allow 
for, or estimate, spatial dependence, 
principally in a semiparametric setting, will 
avoid technical details.  Section 2 describes 
spatial autoregressive (SAR) models, that 
have become a major feature of spatial 
statistics and econometrics.  Section 3 
discusses adaptive estimation of such models, 
where efficient estimation is possible despite 
lack of knowledge of innovation 
distributional form.  Section 4 considers 
nonparametric regression, where f in (1) is of 
unknown form.  Section 5 discusses the 
testing of spatial independence in data or 
unobservable errors. 
     
 
2. Spatial autoregressive models 
 
    A very familiar parametric model for 
spatial data, due to Cliff and Ord (1968), and 
extensively applied since, is the SAR model. 
Introduce an n×n matrix W{n} with non-
negative elements, where diagonal ones are 
zero. Strategies for specifying W{n} have been 
discussed in the literature, e.g. its (i,j)-th 
element w{i,j} might be formed as  
 c{i,j }/∑ c{i,k } , where c{i,j} is inversely 
proportional to some measure of distance 
between s{i} and s{j} (perhaps depending on 
z{i} and z{j}), though W{n} need not be 
symmetric.  A consequence of the ratio 
specification just introduced is that rows of 
W{n} all sum to 1.  This has the advantage of 
securing a stability property, analogous to 
that familiar in stationary AR time series 
models, in the SAR model 
 
 ε{(n)}=ρW{n}ε{(n)}+ η{(n)},   (2) 
 
where ρ is an unknown scalar in (-1,1) and 
η{(n)}= (η{1}),...,η{n})′ is a vector of 
independent and identically distributed 
random variables. This has been considered 
in a linear regression setting, where (1) 
becomes 
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 y{(n)}=X{n}β+ε{(n)},             (3) 
 
with y{(n)}=(y{1}, ..,y{n})′, 
X{n}=(x{1},,...,x{n})′, and β an unknown p×1 
vector. A related model that has also been 
extensively studied, analogous to the dynamic 
regression model of time series econometrics, 
is 
 
  y{(n)}=λW{n}y{(n)}+X{n}β+η{(n)},   (4) 
 
for unknown scalar λ in (-1,1). 
    Asymptotic properties of various estimates 
of the parameters ρ, λ and β in (2)-(4) have 
been developed. In particular as noted by e.g. 
Anselin (1988), under some asymptotic (as 
n→∞) conditions on W{n}, least squares 
 (LS ) estimates of λ and β in (4) are 
inconsistent, for similar reasons as found by 
Whittle (1954) in the fixed lattice case. 
Kelejian and Prucha (1998, 1999) and Lee 
(2003) showed other estimates, such as 
instrumental variables,  to be consistent and 
asymptotically normal, under (2), (4) and a 
generalized model. On the other hand, under 
certain other asymptotic conditions on W{n}, 
Lee (2002) showed that LS can be consistent 
in (4). Panel data versions of these models 
have also been studied (e.g., Baltagi, Song 
and Koh, (2003, Case, Rosen and Hines, 
(1993). 
    Under Gaussianity, (2) can principally be 
viewed as a model for the covariance matrix 
of ε{(n)}. Viewed in this light, (2) appears 
very arbirary, because any number of 
alternative positive definite parametric 
matrices could serve as a model for the 
covariance matrix of ε{(n)}. On the other 
hand, the stress on (2) is understandable due 
to the intuitive appeal of a "lag" structure 
analogous to that in representions of time 
series. Stationary time series imply a Toeplitz 
matrix, whence standard asymptotics tend to 
result if the eigenvalues are bounded and 
bounded  away from zero and infinity for 
large n.  Though  the covariance matrix of 
ε{(n) }is not generally Toeplitz, it can share 
the same kind of eigenvalue property, and 
lead to similarly nice asymptotics.  Moreover 
(2) is very parsimonious, an advantage in 
smallish samples, and is a convenient basis 
for testing the null hypothesis of cross-
sectional independence (see e.g. Baltagi and 
Dong Li, (2001).  A major feature of (2) and 
(4) is the specification of W{n} , to which 
parameter estimates will of course be 
sensitive.  As an earlier remark implies, this 
rests upon a satisfactory determination of 
"distance" measures between each pair of 
locations.  One can consider related models to 

(2) and (4), such as a spatial moving average, 
or a multiparameter extension of (2), 
somewhat analogous to a higher-order time 
series autoregression).   
    An alternative approach to the introduction 
of weak dependence that leads to standard 
asymptotics is essentially nonparametric, 
involving mixing conditions, which have been 
popular in time series asymptotic theory for 
many years, and they have been employed in 
the random fields probabilistic literature, as 
well as in some spatial econometric settings.  
They desirably avoid parametric descriptions 
of dependence, and permit a degree of non-
trending heterogeneity, and can be imposed, 
say, on ε{(n)} in (3) in order to establish 
asymptotic normality of LS and other 
estimates of β.  In the time series literature, 
mixing conditions, which deliver asymptotic 
normality, have sometimes featured alongside 
consistent estimates of the limiting 
covariance matrix  (of parameter estimates, 
such as regression coefficients) which are 
analogous to smoothed nonparametrc 
estimates of the spectral density of a 
stationary process at frequency zero (see e.g. 
Hannan, 1957, Brillinger, 1979, and many 
subsequent econometric references).  
Analogous estimates have also been 
developed in spatial settings, see e.g. Kelejian 
and Prucha (2006).  However, mixing 
conditions require some sort of ordering of 
the data, and in moderate sample sizes the 
essentially nonparametric covariance matrix 
estimates can be imprecise, while 
heterogeneity can still cause a problem in 
finite samples because the inference rules 
used were originally developed for stationary 
data. 
      
3. Adaptive estimation 
 
         Most work on models such as (2)-(4) 
has been motivated by Gaussianity, not in the 
sense that it is really needed for basic 
asymptotic theory for estimates of ρ, λ, β, but 
in that estimates are based on second moment 
statistics and may be asymptotically efficient 
under Gaussianity. On the other hand they 
are not asymptotically efficient for non-
Gaussian populations, and if n is not very 
large it is desirable to try to improve 
precision. 
    The representations in (2) and (4) 
introduce a useful whitening of the data 
y{(n)}, and it is possible to establish the 
desirable properties of root-n-consistency and 
asymptotic normality) of ML estimates for 
some specified non-normal parametric 
distribution of the elements of η{(n)}. But if 
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this is misspecified the estimates might be less 
efficient than "Gaussian-based" ones, and 
may even be inconsistent. There is thus 
interest in "adaptive" semiparametric 
estimates, that achieve the same asymptotic 
efficiency as ML but without knowing the 
distribution, and also lead to more powerful 
tests, for example for the hypothesis of cross-
sectional independence. In other settings, the 
nonparametric method most often used to 
estimate the distribution (or more precisely its 
score function) has been kernels.  An 
attractive alternative is series estimates, 
which have definite advantages, in terms of 
the regularity conditions on the model for 
asymptotic theory that they entail.  They have 
been developed by Beran (1976), Newey 
(1988), Robinson (2005).  (Series estimation 
has also been used for different purposes in a 
spatial context by Chen and Conley, 2001, 
Pinkse, Slade and Brett, 2002.)   
    Robinson (2006a) developed series adaptive 
estimates of ρ and β in (4), and justified them 
under conditions on W{n} similar to those 
found by Lee (2002) to allow consistency and 
asymptotic normality of LS (where all w{i,j} 
at least tend to zero as n increases). A simple 
example satisfying such conditions (see Case, 
1992) considers r districts, each of which has 
s farmers (n=rs) and there is uniform 
weighting within districts and zero-weighting 
across; Lee (2002) lets r and s both diverge as 
n→∞.  (Robinson, (2006a, also established 
analogous results for the fully parametric 
case, where a parametric distribution of the 
elements of η{(n)} is correctly specified.) 
      
4. Nonparametric regression 
 
         Modern practice with cross-sectional 
and time series data leads us to question the 
standard linear regression setting of (3) or 
(4). If these are misspecified, invalid 
inferences are liable to result.   
Nonparametric regression has become a 
standard statistical tool, at least in large data 
sets, due to a recognition that there can be 
little confidence that the functional form is 
linear (as in (3) or (4)), or of a specific 
nonlinear type. Thus we revert to the model 
(1) with f a nonparametric, albeit smooth, 
function. 
    Estimates of the nonparametric regression 
function f are typically obtained at several 
fixed points by some method of smoothing. 
The most popular smoothed nonparametric 
regression estimate, when x{i} is 
stochastically generated, is perhaps still the 
Nadaraya-Watson kernel estimate. When the 
errors ε{i} and the regressors x{i} in (1) are 

independent and identically distributed, 
under additional conditions this estimate is 
consistent, and moreover under further 
conditions it is asymptotically normally 
distributed with asymptotic variance of simple 
form, and indeed estimates of f at distinct 
fixed points are desirably asymptotically 
independent.  Corresponding properties are 
enjoyed by the kernel estimate of the 
probability density of x{i} . 
    Kernel regression and density estimates 
were originally motivated by independent and 
identically distributed observations, but their 
asymptotic statistical behaviour has long been 
studied in the presence of stationary time 
series dependence. Predictably, they remain 
consistent in the presence of even quite 
strong forms of dependence.  More 
surprisingly, under forms of (mixing or 
linear) weak dependence, it has been found 
that not only do the kernel estimates retain 
their basic consistency property, but they 
have the same limit distributional properties 
as just referred to under independence (see, 
e.g. Roussas, 1969, Rosenblatt, 1971, 
Robinson, 1983). This finding contrasts with 
that in parametric forms of the regression 
model (1), where dependence in errors ε{i} 
generally changes the asymptotic variance, 
and causes a loss in efficiency of estimates 
such as least squares. 
    With long range dependence, however, 
asymptotic distributional properties of kernel 
estimates are liable to be affected.  For the 
kernel probability density estimate, Robinson 
(1991) found that while under some 
conditions asymptotic joint normality of a 
vector of estimates at distinct fixed points may 
still obtain, the asymptotic variance matrix, 
far from being diagonal as in the previous 
circumstances mentioned, is singular, of rank 
1. In other circumstances the limit 
distribution can be nonstandard.  In the 
fixed-design nonparametric regression form 
of (1), where the x{i} are nonstochastic and, 
for example, equally-spaced on the unit 
interval (so they get closer as n increases) 
Hall and Hart (1990), Robinson (1997) found 
that long range dependence in ε{i} affects the 
rate of convergence of estimates of f, though 
asymptotic normality can still hold. 
    Robinson (2007) establishes consistency 
and asymptotic distribution theory for the 
Nadaraya-Watson kernel regression estimate 
in a framework that applies to various kinds 
of spatial data.  This general triangular array 
setting covers, for example, stationary ε{i} on 
a lattice of arbitrary dimension, and ε{i} 
generated by a spatial autoregression.  Unlike 
in the bulk of the time series literature,  
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mixing conditions are not employed.  Instead, 
a linear (in independent random variables) 
process representation for ε{i} is assumed, 
covering both weak dependence and long 
range dependence. Moreover, the ε{i} can be 
conditionally (on x{i}) heteroscedastic.  A 
mild falling-off of dependence in the x{i} is 
imposed, but unusually for the kernel 
literature, they are not necessarily assumed 
identically distributed, but satisfy a milder 
kind of homogeneity condition.  Asymptotic 
normality of the Nadaraya-Watson kernel 
regression estimate is established, where the 
limit distribution is the same as under 
independence in case of weak dependence in 
ε{i}, and even under a degree of  long range 
dependence (depending also on the 
bandwidth), but otherwise the outcome can be 
similar to that found by Robinson (1991)  for 
density estimates, and described above. The 
implications of the conditions are examined 
in various spatial settings. A consistency 
result for the kernel probability density 
estimate is established, under different 
conditons from those previously employed by 
Hallin, Lu, and Tran (2004).  As always with 
smoothed nonparametric regression there is a 
curse-of-dimensionality problem if x{i} is 
vector-valued; a semiparametric approach is 
considered by Gao, Lu and Tjostheim (2006), 
is designed to alleviate this. 
      
5. Testing for spatial independence 
 
         Previous sections have heavily 
emphasized the influence of spatial 
dependence. Spatial dependence can 
invalidate inferences based on parametric 
models, and is likely to impair finite-sample 
properties in inference on nonparametric 
models. Moreover, developing procedures 
that take account of spatial dependence, in 
observations or disturbances, can be very 
complicated, the procedures can be 
computationally onerous, and derivation of 
asymptotic statistical properties of such 
procedures under comprehensible conditions 
can be problematic.  For example this is 
liable to be the case when observations are 
irregularly-spaced, as experience fom the 
time series literature suggests. 
    Cressie (1993) has suggested that much 
spatial data can often be satisfactorily 
modelled in terms of the conditional mean, in 
the sense that little correlation in errors will 
remain. This desirable outcome cannot be 
taken for granted, however, but it is often 
desirable to commence analysis of spatial 
data by a test for independence of 
observations or unobservable errors. If the 

evidence for independence is strong then 
simple rules of inference on the parameters 
of interest have validity. 
    Testing for independence has been a 
major, long-standing theme of the spatial 
literature.  By "independence" here we really 
mean "lack-of-correlation", though these 
concepts are generally identical only under 
Gaussianity.  A key early contribution is 
Moran (1950), which indeed preceded the 
bulk of the time series literature on 
independence testing. The literature has been 
further developed by Cliff and Ord (1968, 
1972), Anselin (2001), Baltagi and Dong Li 
(2001), Baltagi, Song and Koh (2003), Pinkse 
(2004), though settings have been fairly 
specific. 
    Robinson (2006b) presents a general 
approach which can be applied in a variety of 
spatial circumstances.  As with the earlier 
work of Moran (1950) and others, the tests 
are based on quadratic functions, in 
particular of least squares residuals in linear 
regeessions.  A general class of statistics is 
developed that has a chi-square limit 
distribution under the null hypothesis of 
independence of errors. It is found that 
special cases of the statistic can be interpreted 
as Lagrange multiplier statistics directed 
against specified alternatives, where they 
should have good power. Indeed the 
Lagrange multiplier tests maximize local 
power, as expected. Under Gaussianity, 
modified versions of the statistics are 
developed which exactly have the mean of the 
relevant chi-square distribution, and even 
both the mean and the variance, and should 
thus have better finite-sample properties.  The 
principal focus takes homoscedasticity of 
errors for granted, but the tests are also 
robustified to nonparametric 
heteroscedasticity, in the sense that a valid 
null asymptotic (chi-square) distribution 
.results. The conditions are illustrated in tests 
in specific spatial settings, including lattice, 
SAR and irregularly-spaced ones. With 
respect to pure, distrbution-free, 
independence, as distinct from "lack-of-
correlation", various existing tests can in 
principal be applied to spatial data, and Brett 
and Pinkse (1997) provided a specific test in a 
spatial context. 
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