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EXTENDED ABSTRACT

The Efficient Market Hypothesis (EMH hereafter)
considers security markets as efficient mechanism
for immediate and unbiased incorporation of new
information into prices. Within the EMH, as argued
by Friedman [14] and Fama [11], the presence of
non-rational traders can be neglected, since their
idiosyncratic errors would be averaged out in the
aggregate so that they could not significantly affect
the market price. Rather, they would progressively
lose money in favor of arbitrageurs, betting against
them, so that the less rational agents would eventually
disappear at the end from the market.

Recent empirical and theoretical investigations have
attacked the EMH and its implications in various
ways. From a theoretical viewpoint, it has been
shown that arbitrageurs may have limited capacity
to drive the prices close enough to the fundamental
value, if they have a finite time horizon, or in the
presence of fundamental risks - see Figlewski [12]
and Shiller [24]. The seminal paper by De Long
et al. [10] has demonstrated that noise traders can
create “their own space” in the market and that they
might even earn higher returns than sophisticated
investors. From an empirical point of view, the most
relevant piece of evidence against the EMH is excess
volatility of prices when compared to the underlying
fundamentals, as pointed out by West [26] among
others. One might also ask whether it is plausible
that informationally efficient prices would give rise
to the long list of extremely robust statistical findings
such as the conditional structure of the volatility itself
- from the ARCH effect, to the multi-scaling of the
level of fluctuations of returns - or the fatness of the
tails of the distribution of returns (for an authoritative
survey see for instance Pagan [23]). The presence
of those complex empirical regularities embedded in
the time series of prices may also cast some doubts
on the simple one-to-one relationship between price
changes and information as implied by the EMH. If
we assume that the “relevant” information is made up
of a collection of non-correlated news, economical,
political and even meteorological, it is hard to
justify that such ‘a composite ‘assortment” of news
possesses the complex temporal structure observed for
volatility. Anyhow, a strict empirical validation of

such a relationship is practically impossible, since the
information arrival process is not directly observable.

From the viewpoint of agent-based models, these
empirical findings might alternatively be viewed
as the imprint of an endogenous dynamics of
the market which might be partially decoupled
from fundamental factors. Several authors have
attempted to model financial markets as a system
of heterogeneous interacting agents, whose activities
might be responsible for this intrinsic force. A
long, however partial, list of contributions in
this vein ranges from the (very) early papers of
Baumol [6] and Zeeman [27], to recent research on
noise traders, fundamentalist/chartist interaction and
‘artificial’ financial markets (Arthuret al. [5], De
Long et al. [10], Kirman [18] and Beja and Goldman
[7] being some prominent examples). Much of
this literature on financial markets from a dynamical
system perspective has developed in parallel with
the behavioral finance literature and choice-theoretical
works on financial ‘anomalies’, explaining the
rational behavioral roots of overcorrection, herding
behavior and other formerly puzzling observations (cf.
[8]). Despite many differences, available dynamic
market models can successfully replicate the key
stylized facts and explain their universality as an
emergent property of the interactions among traders.
The complexity of these interacting agent models has
largely constrained their analytical treatment, limiting
their analysis mainly to Monte Carlo simulations. In
order to overcome this limitation, we introduce a
‘minimalist’ model of an artificial financial market,
along the lines of our previous contributions ([3, 1,
2]), based on herding behavior among two types of
traders. The simplicity of the model allows for an
almost complete analytical characterization of both
conditional and unconditional statistical properties
of prices and returns. Moreover, the underlying
parameters of the model can be estimated directly,
which permits an assessment of its goodness-of-fit for
empirical data. While the performance of the model
for domestic stock markets has been the focus of a
previous contribution, in this paper we report results
for selected exchange rates against the US dollar.
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1. INTRODUCTION

Several agent-based models have been proposed in
the economic literature to explain the key stylized
facts of financial data: heteroscedasticity, fat tails
of returns and long-range dependence of volatility.
One of the main drawbacks of the agent-based
models is the complexity of their interactions, which
typically prevents an analytical solution, leaving only
the possibility for Monte Carlo simulations based
on a rough calibration of the underlying parameters
(see e.g. [20]). In addition, it is so far hardly
possible to directly compare different models, or to
asses their goodness-of-fit. As far as we know the
only exception is a recent contribution by Gilli and
Winker [15], who estimate some of the parameters
of Kirman’s seminal herding model [17, 18] via
an indirect simulated method of moments approach.
The main contribution of their exercise is that they
show that estimated parameters give rise to a bimodal
distribution of the population dynamics, i.e. majorities
would emerge in the herding process, instead of a
balanced distribution of agents on the two groups of
chartists and fundamentalists.

A direct estimation of the parameters of a related
agent-based model, based on a closed-form solution
of the unconditional distribution of returns, has been
proposed by Alfaranoet al. [3], who used a modified
and generalized version of the stochastic chartist-
fundamentalist approach proposed by Kirman. In
their approach, the pool of agents is also divided
into two distinct categories or types: fundamentalists
and noise traders. The traders interact via a similar
recruitment mechanism as in Kirman [18], but the
second group is assumed to follow changing fads and
moods rather than technical receipts. The interactions
among the agents is embedded in an extremely simple
market structure, characterized by two behavioral
rules for excess demand by the two groups the traders
belong to. The dynamics governing the switches
between the two groups - namely fundamentalists and
noise traders - detailed in section 2, together with the
market mechanism, described in section 3.1, allows
for an analytical characterization of both conditional
and unconditional properties of returns. This enables
us to provide a more thorough characterization of
the outcome of the model than purely numerical
approach of conducting Monte Carlo simulations. On
a theoretical level, we can investigate to which extent
the pairwise interaction among the traders gives rise to
a genuine Pareto behavior of the extreme returns and
hyperbolic decline of volatility autocorrelation, rather
than reproduce them as pseudo-scaling laws of the
synthetic data.1 Additionally, the theoretical results

1Alfarano and Lux [1] have shown that a related version of
this herding agent-based model can just ‘mimic’ the scaling laws
of extreme returns and temporal dependence in volatility -for a
description of the problem see [22] and references therein.

enable us to estimate the underlying parameters
and to evaluate the goodness-of-fit of the model.
In particular, the unconditional distribution of log-
returns can be derived in closed form, described in
section 3.2, which allows to estimate the equilibrium
parameters via Maximum Likelihood, as will be
shown in section 4. We provide an illustration of
this procedure for the exchange rates of the main
currencies against US dollar. Some final remarks
conclude the paper.

2. THE HERDING MECHANISM

In a long series of papers ([17, 18, 19] among others),
Kirman employed a simple model of information
transmission to describe the behavior of a multitude
of heterogeneous interacting agents in a foreign
exchange market. He draws his inspiration from
work on recruitment in ant colonies. Experimentally,
it had been observed that the majority of an ant
population, feeding from one of two identical sources,
eventually switched to the other. Kirman, adopted
this entomologic framework as a model of an artificial
foreign exchange market, replacing the ants by
financial agents and the two sources of food by two
different forecasting rules for exchange rate changes,
within the well-established framework of a monetary
model with fundamentalist-chartist interaction, as
developed by Frankel and Froot [13]. As it turned out,
the exchange rate would stay close to its underlying
fundamental value during periods of fundamentalists
dominance, while speculative bubbles would emerge
in this model if chartists take over. The foreign
exchange market would, therefore, be characterized
by repeated periods of price dynamics decoupled
from fundamentals (thus, explaining the ‘exchange
rate disconnected’ puzzle), which, however, come
to end when agents switch back to fundamentalist
behavior.

The core of his model is the pairwise interaction
governing the transition of the agents between the two
states, denoted as state1 and state2. The system can
be conveniently described by the integer number of
agentsn in the state1, wheren ∈ {1, 2, ..., N}. N
represents the total number of agents, assumed to be
constant over time2. To set the stage for the model,
we specify the conditional transition probabilities to
switch from one state to the other:

ρ(n + 1, t + ∆τ |n, t) = (N − n)(a1 + bn)∆τ ,

ρ(n− 1, t + ∆τ |n, t) = n
(
a2 + b(N − n)

)
∆τ .

(1)
wherea1, a2 andb are constant parameters3 and∆τ

2For a generalization to a variable number of agents see [4].
3In Kirman’s paper the two constantsa1 anda2 are assumed

to be equal, while, in the generalization introduced by Alfaranoet
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a unit micro-time step. The above probabilities define
a finite Markov chain, i.e. a Markovian stochastic
process defined on a finite set of states, with a discrete
time variable and stationary transition probabilities.
More precisely, the process belongs to the general
types of “birth-and-death” or “one-step” stochastic
processes, using the terminology of van Kampen
[25]. The conditional probabilityρ(n, t + ∆τ |n, t)
to remain in the same state follows from the
normalization condition

∑
n′ ρ(n′, t + ∆τ |n, t) = 1.

The transition probabilities, introduced in eq. (1),
consist of two terms: the first term, proportional
to a1 and a2, which is linear in n, formalizes
the idiosyncratic propensity to switch to the other
strategy; the second term, quadratic inn and
proportional tob, encapsulates the herding tendency,
since it is proportional to the product of the number of
agents in the two states,(N − n)n. The non-linearity
in the transition probabilities (1) constitutes a crucial
ingredient of the model: the presence of non-linear
terms, in fact, is the imprint of interactions among
agents, while the occurrence of linearity only would
imply independence of the behavior of individuals
(for more details see [25]).

From the transition probabilities (1) we can derive the
so-called Master equation for the probability4 ω̄n(t)
to findn agents in state1 at timet

∆ω̄n(t)
∆τ

=
∑
n′

(ω̄n′ π(n′ → n) − ω̄n π(n → n′)) ,

(2)
where π(n′ → n) are the transition probabilities
per unit-time. The Master equation governs the time
evolution of the probabilityω̄n(t) as a competition
between the outflow and inflow probabilities of the
agents from and to a particular state. For large
enoughN we can represent the group dynamics by
a continuous variablez = n/N . As derived in [3], the
Master equation (2) can be approximated by a Fokker-
Planck equation5:

∂ω(z, t)
∂t

= − ∂

∂z

(
A(z)ω(z, t)

)
+

1
2

∂2

∂z2

(
D(z)ω(z, t)

)
.

(3)
The functionA(z) represents the drift term, while
D(z) is the diffusion function, given by:

A(z) = a1−(a1+a2)z and D(z) = 2b(1−z)z .
(4)

Eq. (3) turns out to be analytically tractable, providing
us with closed-form solutions of a wide range

al.[3], they might take different values.
4We denote probabilities referring ton by ω̄ to distinguish them

from the probability densitiesω(z) for the continuous variablez
introduced below. Both are related byω(n/N) = Nω̄n.

5For all the details of the derivation and the underlying
approximations we refer the reader to [3].

of conditional and unconditional properties of the
system (equilibrium distribution and autocorrelation
functions, for instance). Focusing on the equilibrium
properties, it has been shown by Alfaranoet. al [3],
that the equilibrium distributionω0(z) depends only
on the ratiosε1 = a1

b andε2 = a2
b , but not on the size

of the constantsa1, a2 andb:

ω0(z) =
1

B(ε1, ε2)
zε1−1 (1− z)ε2−1

, (5)

where

B(ε1, ε2) =
Γ(ε1)Γ(ε2)
Γ(ε1 + ε2)

, (6)

with Γ(.) denoting the Gamma function. Despite the
dependence on just two parameters, eq. (5) is ex-
tremely flexible in describing different scenarios: both
uni- or bimodal asymmetric equilibrium distributions,
or monotonic increasing or deceasing distributions are
possible depending on the choice of the parametersε1

andε2.

To summarize, the Markov chain defined by the
transition probabilities (1), for large but finite system
size N , can be approximated by a continuous
diffusion process, governed by the Fokker-Plank
equation (3). The asymptotic approximation given
by eq. (3) provides an entire pool of analytical
results, which can be exploited for estimation of the
underlying parameters. What is more, the solutions
of the relatively general process of interactions of
individuals can be used to also arrive at analytical
insights into the dynamics of markets in which this
process is combined with behavioral relationships as
well as a standard price formation rule. We now
turn to this model of a simple artificial market and its
dynamical properties.

3. THE ARTIFICIAL MARKET

3.1. Description of the market structure

Our market is populated by a fixed number of traders
N , falling into two categories or types:

• NF fundamentalists, who buy or sell according
to the deviation between the actual pricep and
the fundamental valuepF ;

• NC noise traderswho are subject to “irrational”
fads or moods as introduced in the seminal
paper by De Longet al [10].

For simplicity, the fundamental valuepF is assumed
to be constant over time. The former state1
now stands for fundamentalist disposition, while the
second state stands for noise traders. The number of
agents in each group varies over time according to the
stochastic process detailed in section??. The trading
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attitudes of the agents translate into a changes of the
market price via two behavioral rules for demand and
supply. Fundamentalists’ excess demand is given by:

EDF = NF ln
pF

p
. (7)

We assume that each fundamentalist is characterized
by the same reaction to deviations from the
fundamental value, buying or selling whenever he
perceives an undervaluation or overvaluation of the
stock price. The aggregate excess demand of
this group is, then, the sum of the demand of a
‘representative’ fundamentalist times the number of
fundamentalists,NF . The noise traders’ aggregate
excess demand takes the form:

EDC = −r0NCξ , (8)

whereξ represents the actual average ‘mood’ of the
noise traders. The constantr0 is a scale factor for their
impact on the price formation, and the expression is
multiplied by −1 for notational convenience. It is
important to highlight that we model the aggregate
excess demand of the noise traders’ group without
accounting for specific technical trading rules,
typically found in the literature (moving average,
trend extrapolation or pattern recognition). We rather
model the aggregate impact of many heterogeneous
chartist techniques as a pure stochastic term of
random sign and magnitude, whose properties will be
described later.

Within a Walrasian scenario, we can compute the
equilibrium price by simply setting the total excess
demand equal to zero:

EDF + EDC = 0 . (9)

We, then, end up with the following formula for the
market price:

p = pF exp
(

r0
z

1− z
ξ

)
, (10)

wherez and1−z are the fractions of the noise traders
and fundamentalists among agents, respectively. The
returns over a time interval∆t are given by6:

r(t,∆t) = r0

[
z(t + ∆t)

1− z(t + ∆t)
ξ(t + ∆t) − z(t)

1− z(t)
ξ(t)

]
.

(11)
A full analytical solution for eq. (11) turns out
to be cumbersome, taking into account the positive
correlation of the variablez/(1 − z) over time and

6We define continuously compounded returns asr(t, ∆t) =
ln(pt+∆t/pt). Note that the time-unit∆t of the returns process is
different from the elementary time-unit of the population dynamics
∆τ . We, therefore, refer to the former as micro-time and the latter
as macro-time. Essentially, during a macro-time∆t, z is averaged
over the movement of many agents between the two states (see [2]
for more details).

the presence of two sources of randomness, namely
z andξ. However, we can approximate eq. (11) by
assuming a ‘faster’ dynamics forξ compared to that
of the variablez/(1 − z), which can be considered
to be constant during a small time interval∆t. This
approximation amounts to separating the time scales
governing the switching process among attitudes and
the underlying dynamics of the ‘mood’ of the noise
traders. Under this assumption, eq. (11) can be
approximated by:

r(t,∆t) = r0
z(t)

1− z(t)
η(t, ∆t) (12)

where we defineη(t, ∆t) ≡ ξ(t + ∆t) − ξ(t). Eq.
(12) can accordingly be rewritten as:

r(t,∆t) = σ(t) η(t,∆t) , (13)

where we assume thatη is iid with a given distribution
p(η), andσ(t) = r0z/(1 − z). Eq. (13) possesses a
so-calledstochastic volatilitystructure, i.e. is given
by the product of a white noise,η, and a conditional
volatility factor, σ, which describes the empirically
observed time-dependencies. The iid-ness of the
multiplicative noiseη guarantees the absence of linear
correlation of returns, in accordance with empirical
facts (see for example [23]). The positive correlations
of non-linear transformation of returns, squared or
absolute values, are then governed by the correlations
in the volatility σ(t), which originate from and are
related to the dynamical properties ofz(t).

The average noise traders’ mood is a random walk
process with increments given byη. Following the
set-up in the model by De Longet al. [10], the
stochastic variableξ, rather thanη, would be iid.
However their model is based on an overlapping
generation framework, so that the underlying time
horizon should be larger than in our approach, which
we rather consider as a model for high-frequency
data, i.e. daily or even intra-daily price movements.
Moreover, the random walk implementation avoids
the abrupt variations of the market price implied by
the formalism of De Longet al.

Figure 1 shows a typical price pattern from a
simulation of eq. (10). The market price fluctuates
around the fundamental valuepF = 1, with both
periods of positive and negative deviations from it,
which can be interpreted as bubbles, and subsequent
returns to the fundamental value. The corresponding
time series of returns exhibits volatility clusters,
which arise in close correspondence to deviations
from the fundamental value, see panel (b) in Figure
1. This intermittent behavior of the returns is
related to the change in the market attitude of the
traders. Periods of high volatility correspond to
time periods with a large fraction of noise traders.
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Figure 1. Panel (a) shows a simulation of the
price derived from equation (10) using a uniform
distribution for η. Panel (b) shows the returns
obtained by using eq. (12). Panel(c) shows the
autocorrelation function of raw, absolute and squared
returns. As parameters we have chosenpf = 1,
r0 = 0.1 and ∆t = 1. The herding parameters are
ε1 = 3, ε2 = 4 andb = 0.003.

Vice versa, only minor fluctuations occurs when
the market is dominated by fundamentalists. The
market as a whole exhibits excess volatility. In
our simulation, all the fluctuations of returns are, in
fact, generated by the speculative activities of traders,
and are disconnected from the fundamental price,
here assumed to be constant7. The herd behavior
among traders, then, provides the ultimate “engine”
for this complex market dynamics which shares the
basic stylized facts of high-frequency financial data.
The behavior of the autocorrelation of raw returns
and their simple non-linear transformations reflect
this particular intermittent dynamics; absence of
linear correlation in returns and positive significant
correlation in absolute and squared returns (as
measure of volatility) are robust features of the model,
as illustrated in the bottom panel of Figure 1.

3.2. Unconditional distribution of returns

The simple structure of eq. (13) allows to derive a
closed-form solution of the unconditional distribution
of returns. The equilibrium distribution of the variable
σ(t) has been derived in [3], and is given by:

p(σ) =
1
r0

1
B(ε1, ε2)

(
σ

r0

)ε1−1 (
r0

σ + r0

)ε1+ε2

.

(14)

7We could, of course, add stochastic changes of the fundamental
value without changing the overall appearance of the time series.

Interestingly, this distribution exhibits a power law
behavior in its outer part, with a decay parameter
µ = ε2 + 1. Under the condition thatE[|η|ε2 ] < ∞,
this power law decay also carries over the distribution
of r. Two important aspects of eq. (14) are worth
mentioning: the first is theendogenousgeneration
of power law behavior of extreme returns as a result
of the structural properties of our model, which is
compatible with empirical evidence; the second is
the characterization of its exponent by behavioral
parameters governing the speculative dynamics,
namely the ratio between the tendency of autonomous
switches from fundamentalist to noise trader behavior
a2, and the herding parameterb.

While the power law decay of the tail is very robust
with respect to the choice ofp(η) 8, a parametric
choice of this distribution is necessary in order to
end up with a closed-form solution for the returns
distribution. Sinceη is not directly observable, our
choice here is rather arbitrary: it is mainly driven
by the convenience of the explicit solution than
by economic or statistical justifications. Thus, we
assume a uniform distributed random variable over
the interval[−1, 1] for the distribution ofη. However
different specifications forp(η) could be tried and
their explanatory power compared.

One can show that, for this parametric choice ofp(η),
the unconditional distribution of absolute returns is
given by:

pu(v) =
1
r0

ε2

ε1 − 1

[
1− β

(
v

v + r0
; ε1 − 1, ε2 + 1

)]
,

(15)
where we have used the underlying symmetry around
the mean of eq. (13).β(·; ·, ·) is the incomplete beta
function. The subscriptu indicates that we have used
the uniform distributed multiplicative noise. For more
details we refer the reader again to [3].

4. ESTIMATION OF THE PARAMETERS

Equipped with the above results, we can proceed
to estimation of the three parameters of the model,
namely r0, ε1 and ε2, via Maximum Likelihood.
We should stress, however, that our likelihood,
based on eq. (15), is an approximation of the ‘true’
likelihood associated with the stochastic process (13).
We pretend, in fact, that the realizations from this
Markovian process are independent and identically
distributed, according to the common distribution
given by eq. (15), for more details see [3] and

8The only required condition for the emergence of power law
decay in returns is the boundedness of theε2-th absolute moment
of p(η). For a uniformly or normally distributed random variable,
for example, all the absolute moments are finite.
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Data Set ε̂1 ε̂2 − lnLε1,ε2 α̂H

CD 14± 5 5.9± 0.9 3291.0 4.1
(3.2, 4.9)

JY 5.2± 1.0 7.0± 1.0 3707.2 3.7
(3.0, 4.5)

DM 5.2± 0.9 14.0± 4.0 3517.4 4.5
(3.6, 5.5)

BP 4.9± 0.8 9.0± 3.0 3478.8 4.4
(3.5, 5.3)

SF 6.0± 1.0 12.0± 4.0 3336.3 4.5
(3.5, 5.5)

Table 1. Estimated parameters using the model from eq. (15). The last column shows the tail index estimates
computed with the method of Hill [16], for a 2.5% tail size, with their 95% asymptotic confidence interval.

references therein. The estimation is computed
under the normalizationE[v] = 1, which allows to
expressr0 as a function of the other two parameters:
r0 = 2 ε2−1

ε1
. Table 1 exhibits the results of the

estimation procedure for five time series of major
currencies against the US $. The following currencies
have been used: Canadian Dollar (CD), Japanese Yen
(JP), Deutsche Mark (DM), British Pound (BP) and
Swiss Franc (SF). The samples all consist of a total
of 3 913 daily observations, ranging from December
15, 1989. to December 15, 2004. As an illustrative
example, Figure 2 compares the theoretical and
empirical distributuion for the case of DM/USD,
which shows the good performance of the model
in describing both the probability density and the
cumulative distribution.

An important feature of the model is represented
by the relationship between the parameters that
govern the behavior of the traders,ε1 and ε2, and
the resulting equilibrium distribution of returns.
For example,ε2 > ε1 indicates that, most of the
time, the market is dominated by fundamentalists.
From Table 1, we may, thus, infer a predominance
of fundamentalist attitude of the traders sinceε2

is greater thanε1 in 4 out of 5 cases. A closer
look at Table 1, however, also shows a somewhat
disappointing behavior of the estimated values of the
parameterε2. This parameter represents the index
of the tail of the unconditional distribution, i.e. the
rate of the approximatively linear decay of the outer
part of the empirical distribution, see the inlet in
Figure 2. The last column of Table 1 exhibits the
estimated empirical tail indices computed using the
semi-parametric approach proposed by Hill [16],
which are in good agreement with the results found
in the empirical literature (see for instance [21]),
namely a narrow interval of variability, centered at
some value slightly higher than3 and ranging from
2.5 to 4.5. On the contrary, our parametric estimates
are very heterogeneous, from a minimum value of5.9

for the Canadian Dollar to a maximum value of14
for the Deutsche Mark, and far from the empirically
identified ‘typical’ value of3.

The two main results of the estimation procedure,
namely the dominance of the fundamentalists and
the discrepancy between the values of the parametric
estimation as compared to the Hill estimates, are
not in harmony with our previous results, reported
in [3]. In this earlier contribution, considering stock
market and precious metal data, we ended up with
rather different conclusions: strong evidence on the
dominance of noise traders was found for all the time
series, and the parametrically estimated values ofε2

were well aligned to those computed with the Hill
estimator.

What might be the reason for this contradictory
behavior? A simple comparison of the DM/USD
time series and the German stock market index
DAX, both shown in Figure 3, might give a hint at
qualitatively different behavior. We observe, in fact,
several alternating periods of large and small market
movements (volatility clustering) in the case of the
DAX, while, for the exchange rate DM/USD, the
volatility dynamics appears to exhibits less striking
fluctuations. Another noticeable dissimilarity is the
much wider interval of variability of the absolute
returns for the DAX. Those graphical differences
are systematically observed in all the analyzed time
series (details upon request). It seems plausible
that such different behavior of the two sets of time
series may generate the differences in the estimated
parametersε1 and ε2. A higher value ofε2, as
compared to the typical value of the tail index is the
necessary compromise that the ML procedure takes
in order to simultaneously fit the small interval of
variability of the data and the empirical value of the
distribution at the origin (i.e.pu(0) = 1

2
ε2

ε2−1
ε1−1

ε1
,

approximativelyp̂u(0) ≈ 0.7 for all the analyzed
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Figure 2. The empirical distribution of normalized
volatility vn = v/E[v] of DM against USD is
compared to the distribution (15), with estimated
parameters given in Table 1. The inlet shows the
complement of the cumulative distributionP (|r| >
vn) in a log-log plot. The graph also shows intervals
of ± one standard deviation, which are computed
assuming a Normal distribution for the entries in
every bin of the histogram.

time series).9 Such large values ofε2 generate a very
rapid decay of the distribution (15), which implies the
absence of extreme events and a diminishing interval
of variability of returns. For example, the probability
to observe a large price change, sayvn > 10, with a
parameter valueε2 = 10 is practically negligible.

Finally, these results suggest some words of caution.
It has been repeatedly claimed that security prices
and floating exchange rates share the same statistical
regularities (see [9]). However, for the currencies
listed in Table 1, we do not observed the strikingly
large daily movements that are regularly observed
in stock market indices. Therefore, further research
would be necessary to fully understand whether this
contradictory behavior of the model, when applied
to stock market data or FX rates, is an imprint
of real differences in the two markets, or simply
an artefact of the estimation procedure. A further

9To confirm our hypothesis, we have performed a numerical
experiment: we artificially eliminated from the time series of the
DAX all absolute returns larger than7, which approximatively is
the maximum absolute change of the USD/DM time series. The
estimated values of̂ε1,2 for this modified sample are in line with
those obtained for the FX time series, namelyε2 > ε1 and a large
value forε2.

Figure 3. The upper panel(a) shows the time series of
normalized absolute returns for DM/USD. The bottom
panel(b) shows normalized absolute returns for DAX
(1959 to 1969). Note that, due to the normalization,
the scales are equal for both time series, but the stock
market exhibits much larger daily fluctuation than the
foreign exchange market.

interesting addition to the research reported in this
paper, would consist in considering another important
category of traders in the FX markets, central banks,
whose role is not taken into account in the present
version of the model, and who might contribute to the
stronger fundamentalist tendency in foreign exchange
as compared to stock markets.
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