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EXTENDED ABSTRACT  
 
The paper introduces the structure of 
parsimonious Portfolio Single Index (PSI) 
multivariate conditional and stochastic constant 
correlation volatility models, and methods for 
estimation of the underlying parameters. These 
multivariate estimates of volatility can be used 
for more accurate portfolio and risk 
management, to enable efficient forecasting of 
Value-at-Risk (VaR) thresholds, and to 
determine optimal Basel Accord capital charges. 
A parsimonious portfolio single index approach 
for modelling the conditional and stochastic 
covariance matrices of a portfolio of assets is 
developed, and estimation methods for the 
conditional and stochastic volatility models are 
discussed. 
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1    Introduction 
 
 

The paper introduces the structure of 
parsimonious Portfolio Single Index (PSI) 
multivariate conditional and stochastic constant 
correlation volatility models, and methods for 
estimation of the underlying parameters. These 
multivariate estimates of volatility can be used 
for purposes of more accurate portfolio and risk 
management, to enable efficient forecasting of 
Value-at-Risk (VaR) thresholds, and to 
determine optimal Basel Accord capital charges 
(a comprehensive discussion of alternative 
univariate and multivariate, conditional and 
stochastic, financial volatility models for 
calculating VaR is given in McAleer (2005)). 

 
The plan of the paper is as follows. 

Section 2 presents the portfolio single index 
approach to model the conditional and stochastic 
covariance matrices of a portfolio of assets 
parsimoniously. Estimation methods for the 
conditional and stochastic volatility models are 
discussed in Section 3.   

 
 

2    Portfolio Single Index Approach 
 
2.1 Portfolio Model 
 

Let the returns on ( )2m ≥  financial 
assets be given by 

, 1, , , 1, , ,it it ity i m t Tμ ε= + = =K K  
 
or 
 

t t ty μ ε= + , (1) 

 

where ty , tμ  and tε  are m  dimensional 
column vectors,   
 
 

( )1|t t tE yμ −= ℑ , 
 
 
and tℑ  is the past information available at time 
t . The return of the portfolio consisting of m  
assets is denoted as 
 
 

,P t t t ty w y w wμ ε′ ′ ′= = + , (2) 

 
where  
 

( )1, , mw w w ′= K   
 
denotes the portfolio weights, such that  
 
 

1
1m

ii
w

=
=∑ .  

For the returns to the portfolio, the conditional 
mean vector and disturbance of the portfolio are 
defined by  
 
 

( ), , 1|P t P t t tE y wμ μ− ′= ℑ =  
 
 
and  
 
 

, , ,P t P t P tyε μ= − , 
 
 
respectively. In order to consider the volatility of 
the portfolio, it is necessary to model the 
conditional and stochastic covariance matrices 

tQ  and tΣ , respectively. 
 
 
2.2 Conditional Volatility 
 
 
 Consider the conditional covariance 
matrix of ty , which is given as: 
 
 

( ) ( )1 1| |t t t t t tQ V y E ε ε− −′= ℑ = ℑ , (3) 

 
 
and the conditional volatility of the portfolio, 
which is given by  
 
 

( ), , 1|P t P t t th V y w Q w− ′= ℑ = . 
 
 
In the framework of multivariate GARCH 
models, the constant conditional correlation 
(CCC) model of Bollerslev (1990) abandons 
significant information as each component of ty  
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follows a univariate GARCH(1,1) process, and 
hence does not capture the effects of the 
remaining 1m −  assets. On the other hand, more 
general specifications, such as the VARMA-
GARCH model of Ling and McAleer (2003) and 
the BEKK (Baba, Engle, Kraft and Kroner) 
model of Engle and Kroner (1995) suffer from 
the fact that the number of parameters increases 
significantly as the number of variables 
increases. This can cause serious problems for 
convergence of the appropriate estimators, 
especially for a portfolio with a large number of 
assets.  
 

As an illustration, consider the 
VARMA-AGARCH model of Hoti, Chan and 
McAleer (2002). This model is an asymmetric 
extension of the VARMA-GARCH model of 
Ling and McAleer (2003), and is given by 

 
 

( ), 0,t t t tD iidε η η= Γ: , (4) 

 
 

t t tQ D D= Γ  (5) 

 
 

{ }

( )
1

1

diag

       

q

t k k t k
k

p

t k t k l t l
l

H A C d

B H

ω

ε ε

−
−

=

− − −
=

⎡ ⎤= + + ×⎣ ⎦

+

∑

∑o
 (6) 

 
 
where 
 
 

{ }diagt tD h= , 
 
 

( )1 , ,t t mtH h h ′= K ,  
 
 

{ }diag x  for any vector x  denotes a diagonal 
matrix with x  along the diagonal, and ‘ o’ 
denotes the Hadamard product of two 
identically-sized matrices or vectors, which is 
computed simply by element-by-element 
multiplication. 
 
 
The vector  given by 

 

( )1 , ,t t mtd d d− − − ′= K   
 
denotes a set of indicator variables, where itd −  

takes the value one if itε  is negative, and zero 
otherwise. For estimation of the parameters, Γ  
is the positive definite correlation matrix of tη , 
that is,  

( )t tE η η′ = Γ ,  
 

( )1, mω ω ω ′= K , 
 
 
and kA , lB  and kC  are m m×  matrices, with 
typical elements ,ij kα , ,ij lβ  and ,ij kγ , 
respectively.  
 

The model of Ling and McAleer (2003) 
assumes 0kC =  for all k  in equation (6). 
Another special case of the VARMA-AGARCH 
model is the CCC model of Bollerslev (1990), 
which is obtained by setting all the off-diagonal 
elements of kA  and lB , and all the elements of 

kC , to zero. Thus, when 1p q= = , 4m =  
implies that the number of parameters to be 
estimated in equation (6) is 52. The regularity 
conditions and asymptotic properties of the 
estimators for the various models given above 
are developed in Ling and McAleer (2003) and 
Hoti et al. (2002). These regularity conditions are 
extensions of the univariate results given in Ling 
and McAleer (2002a, b).  
 

There are other approaches for 
modelling tQ ,  such  as  the  dynamic  
conditional  correlation (DCC) model suggested 
by Engle (2002). However, this does not affect 
the ways in which a portfolio can be transformed 
to a single index using the methods described 
above. 

 
As an intermediate approach, namely 

one that incorporates volatility spillover effects 
parsimoniously, this paper proposes the portfolio 
single index model, which is given as follows: 
 
 

( ) ( )
1

q

t k k t k t k t k
k

H dω α γ ε ε−
− − −

=

= + +∑ o o o  
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       ( )2
, ,

1 1

p r

l t l s P t s s P t s
l s

H hβ δ ε λ− − −
= =

+ + +∑ ∑o , (7) 

 
 
where 
 
 

( )1, ,, ,k k m kα α α ′= K , 

( )1, ,, ,l l m lβ β β ′= K ,  
 

( )1, ,, ,k k m kγ γ γ ′= K ,  
 

( )1, ,, ,s s m sδ δ δ ′= K   
 
 
and  
 
 

( )1, ,, ,s s m sλ λ λ ′= K .  
 
 
It should be noted that, for the portfolio returns, 

,P t twε ε′=  and ,P t th w Q w′= . The model in 
equations (1)-(5) and (7) will be called the 
Portfolio Single Index GARCH (PSI-GARCH 
or, equivalently, Ψ-GARCH) model. In the Ψ-
GARCH model, the conditional volatility for 
each ity  may be considered as a combination of 
the GJR model and the portfolio spillover 
effects. When kγ , sδ  and sλ  are all equal to 
zero, the model reduces to CCC. The asymmetry 
arises when kγ  is not a null vector, while non-
zero sδ  and sλ  capture the portfolio spillover 
effects. When 1p q r= = =  and 4m = , the 
number of parameters to be estimated in equation 
(6) is 24. Compared with equation (6), this is a 
significant reduction in the number of 
parameters, while retaining spillover effects.  
 

Based on the concept of weak and 
strong GARCH processes, as defined in Drost 
and Nijman (1993), Nijman and Sentana (1996) 
show that a linear combination of variables 
generated by a multivariate GARCH process is 
also a weak GARCH process. Thus, the Ψ-
GARCH model developed in this paper is a weak 
GARCH process. 

 

 
2.3 Stochastic Volatility 
 
 
 Now we turn to the stochastic 
covariance matrix given by tΣ . For purposes of 
convenience and parsimony, we assume the 
presence of constant correlations in the model, 
such that: 

t t tD DΣ = Γ , (8) 

 
 
where 
 
 

( ){ }diag 0.5expt tD α= ,  
 

( )1 , ,t t mtα α α ′= K ,  
 
 
and ‘exp’ denotes the operator for vectors which 
performs element-by-element exponentiation. In 
the model, ( )exp itα  denotes the stochastic 

volatility for ity , while the volatility for the 
portfolio is defined as 
 
 

( )2
, ,expP t P tσ α= , (9) 

 
where 
 
 

,

2

1

log

log log log

log .

P t t t

t

m

it
i

w D D w

ww D

w w

α

α
=

′= Γ

′= + Γ +

′= Γ +∑

 (10) 

 
 
Hence, the log-volatility of the portfolio is 
defined as a constant term plus the sum of the 
log-volatility of each asset in the portfolio. 
 
 Before developing the new stochastic 
volatility model, consider the VAR(p)-ASV 
model, as follows: 
 
 

( ), 0,t t t tD Nε η η= Γ: , (11) 
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1 1
1

,
p

t l t l t
l

α ω α ξ+ + −
=

= + Φ +∑  (12) 

 
( )0, ,t N ξξ Σ:  

 
 

( ) { }1/ 2 1/ 2
1 ,11 ,, ,t t m mmE diag ξ ξξ η ρ σ ρ σ′ = K , (13) 

 
 
where { },ijξ ξσΣ = . For convenience, normality 
is assumed for the VAR(p)-ASV model. A 
multivariate t distribution is also assumed for tη , 
as in Harvey, Ruiz and Shephard (1994). Non-
zero values of 1, , mρ ρK  refers to the existence 
of leverage in the volatility of each asset. In the 
VAR(p)-ASV model, each log-volatility is 
affected by the  past  log-volatilities  of  the  
other  1m −  assets through lΦ , and also has a 
contemporaneous effect between the log-
volatilities via ξΣ .  
 

Assuming 1p = , 1 0mρ ρ= = =L , and 

1Φ  is the diagonal matrix,  we have the model 
proposed by Harvey et al. (1994). Based on the 
MSV model of Harvey et al. (1994), Asai and 
McAleer (2005b) considered non-zero values of 

1, , mρ ρK , as in equation (13), and proposed the 
MCL estimation procedure for an asymmetric 
multivariate stochastic volatility model with a 
constant correlation structure.  
 
 As a closed form expression for the 
likelihood function of SV models does not exist, 
estimation of the parameters in SV models is 
undertaken using numerical methods by 
evaluating the likelihood (through numerical 
integration) or by simulation methods. The 
Monte Carlo Likelihood (MCL) methods 
proposed by Durbin and Koopman (1997) and 
Sandmann and Koopman (1998) are based on 
importance sampling. Although the econometrics 
and statistics literature has tended to focus on the 
Bayesian Markov Chain Monte Carlo (MCMC) 
method, the MCL method has the advantage in 
being computationally fast (in comparison with 
most other simulation methods) and relatively 
easy to implement. 
 

A similar discussion about conditional 
volatility can be applied to equation (12). If we 
set all the off-diagonal elements of lΦ  and ξΣ  
to zero, then each ity  collapses to the simple 
ASV model of Harvey and Shephard (1996). On 
the other hand, the above VAR(p)-ASV model 
has many parameters to be estimated. When 

1p = , 4m =  implies that the number of 
parameters in equation (12) is 30. 

 
 For the Portfolio Single Index MSV 
(PSI-MSV or, equivalently, Ψ-MSV) model, the 
log-volatility is defined as follows: 
 
 

1 1
1

p

t l t l
l

α ω φ α+ + −
=

= +∑ o  

          ( ), 1 , 1
1

, ,
r

P t s P t s t
s

f ε α ξ+ − + −
=

+ +∑  (14) 

 
{ }( ),11 ,0, , , ,t mmN diag ξ ξξ σ σ: K   

 
where 
 
 

 ( )1, ,, ,l l m lφ φ φ ′= K   
 
 
and  
 
 

( ), ,,P t P tf y α  is a function of the information 

contained in the portfolio. Neglecting ,P tε , if we 
assume that 
 
 

( )1 , 1 ,P t s s P t sf α λ α+ − −= , (15) 

 
 
and p r= , where  
 

( )1, ,, ,s s m sλ λ λ ′= K ,  
 
 
then we can obtain the off-diagonal elements of  

lΦ  under appropriate restrictions, since the log-
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volatility of the portfolio is defined as equation 
(10). If we assume that  
 
 

( )2 , 1 1, , 2, ,P t s s P t s s P t sf ε δ ε δ ε+ − − −= + , (16) 

 
 
where  
 
 

( )1, 1,1, 1, ,, ,s s m sδ δ δ ′= K , 
 
 

 ( )2, 2,1, 2, ,, ,s s m sδ δ δ ′= K ,  
 
 
then we can capture the asymmetric effects from 
shocks in the portfolio. Asai and McAleer 
(2005a) developed and discussed this type of 
asymmetry in detail. Other specifications, 
including a combination of (15) and (16), can be 
considered. However, returning to the purpose of 
the PSI approach, we concentrate on equation 
(16). In this case, the number of parameters in 
equations (14) and (16) reduces dramatically to 
20 when 1p r= =  and 4m = . 
 
 Next, consider the model that ,P tε  in 
(16) is replaced by the returns of the market 
portfolio, say ,M ty . For this model, each element 
of volatility is determined by using the 
information of the market portfolio instead of the 
portfolio discussed in the paper. Although this 
idea has intuitive appeal, we will consider them 
separately.  

It should be stressed that the Ψ-MSV 
model in (11), (13), (14) and (16) has been 
developed as an intermediate approach for 
incorporating the information from the other 
assets in the portfolio. It is a separate matter 
altogether whether to use the information from 
market returns to supplement the information 
that is contained in the portfolio. 
 
 
3 Estimation 
 
 
3.1 Conditional Volatility Model 
 
 

Under the assumption of normality of 
the conditional distribution of the standardized 
residuals, we can obtain the parameters by 
maximum likelihood (ML) estimation, as 
follows: 
 
 

1

ˆ arg max
T

t
t

lθ
=

= ∑ , 

 
where  
 
 

2
,

,
,

1 log
2 2

P t
t P t

P t

l h
h

ε
= − − , (17) 

 
 
and θ  denotes the vector of parameters to be 
estimated in the conditional log-likelihood 
function. If the assumption of normality does not 
hold for the standardized residuals, equation (17) 
is defined as the Quasi-maximum likelihood 
estimator (QMLE). 
 
 
3.2 Stochastic Volatility Model 
 
 
        We focus on the Ψ-MSV model in (11), 
(13), (14) and (16). Estimation of the parameters 
in MSV models is computationally demanding, 
even for 2m = . As the PSI approach presented 
in the paper concentrates information contained 
in the other assets into a single index, it enables 
the use of a computationally efficient method, as 
described below. Importantly, given the structure 
of the model, we can estimate the parameters for 
each asset, namely iω , ,i lφ , ,iiξσ , iρ , 1, ,i sδ , 

2, ,i sδ  and the parameters for itμ , neglecting the 
remaining assets. There are numerous ways in 
which MSV models can be estimated, such as 
Monte Carlo Likelihood (MCL) method, or the 
Bayesian Markov Chain Monte Carlo (MCMC) 
method proposed by Jacquier, Polson and Rossi 
(1994). On the basis of Monte Carlo 
experiments, Sandmann and Koopman (1998) 
showed that the finite sample properties of the 
two estimators were very similar. McAleer 
(2005) discusses these and other methods for 
estimating univariate and multivariate SV 
models. 
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The recommended two step estimation method is 
as follows: 
 

(1) For each financial asset, ity , obtain 
a consistent estimate of itε , îtε , to 
calculate the portfolio shocks, ,ˆP tε ; 

(2) For each financial asset, estimate 
the parameters for each volatility 
by using ,ˆP tε  to calculate an 
estimate of itα , ˆitα ; 

 
(3) he standardized residuals, 

( )ˆ ˆ ˆexp 0.5t t tη ε α= − , can be used to 
obtain an estimate of the 
correlation matrix, Γ . 

 
 
After obtaining the two step estimates using the 
approach given above, we can obtain the 
estimate of ,P tα  based on equation (10).  
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