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EXTENDED ABSTRACT 
 
Myelodysplastic syndrome (MDS), sometimes 
referred  to as pre-leukemia or smoldering 
leukemia, is a group  of diseases usually 
characterized by failure of the bone 
marrow to produce enough normal blood cells. 
In about one-third of patients, the disease 
transforms into acute leukemia. In high-risk 
MDS, the bone marrow contains 
too many immature blood cells known as blasts. 
Patients with high-risk MDS survive for an 
average of six to 12 months. We have taken data 
from a large clinical trial and re-examined it 
considering the pre-leukemia as 
a random event in a Weibull distribution model. 
We have taken the intercept, stress effect and 
shape parameter of the  distribution to be random 
effects as well with realistic prior distributions 
based on previous shapes  of the survival 
experience of subjects with this disease. We 
demonstrate how the model performs under 
relevant clinical conditions. The conditions are 
all tested using a Bayesian statistical approach 
allowing for the robust testing 
of the model parameters under various stress 
conditions which we introduce into the 
model. The convergence of the parameters to 
stable values are seen in trace plots which 
follow the convergence patterns This allows 
for precise estimation for determining clinical 
conditions under which the survival pattern 
will change. We give a numerical example of 
our results. 
 

The major platform for the theoretical 
development follows the Bayesian methodology 
and the multiple parameter Weibull model with 
random effects having carefully chosen hyper 
parameters. Wew have done the basic 
infrastructure for the analysis using the 
commercially available WinBugs software 
employing the Markov Chain Monte Carlo 
(MCMC) methodology. The BUGS language 
allows a concise expression of the model to 
denote stochastic (probabilistic) relationships 
and to denote deterministic(logical) 
relationships. The stochastic parameters , 
however specified, may be given proper but 
minimally informative prior distributions, while 
the logical expression for  the variance in the 
model allows the standard deviation (of the 
random effects distribution) to be estimated. 
Fixed effect model approaches are also handled 
rather well with the software. As seen in the 
WinBugs manual by Spiegelhalter et. al (2003) 
also at www.mrc.bsu.cam.ac.uk/bugs/winbugs/ 
manual14.pdf, the WinBUGS software uses 
compound documents, which comprise various 
different types of information (formatted text, 
tables, formulae, plots, graphs, etc.) displayed in 
a single window and stored in a single file for 
application to the  problem at hand. This manual 
describes the WinBugs software an interactive 
Windows version of the BUGS program for 
Bayesian analysis of complex statistical models 
using MCMC techniques. We have been careful 
to apply only the models that WinBugs handles 
thus avoiding possibly spurious results with 
untested models as one is so warned.  
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INTRODUCTION 
 

High speed computations with user friendly 
software has facilitated ease in the computations 
of complex models. This has been the case with 
Bayesian solutions to problems involving 
cumbersome analytic calculations in the prior to 
posterior framework which are often stalled at 
some point as  closed form analytic solutions do 
not exist. Thus numeric solutions are called for. 
This is especially the case in introducing several 
parameters with random effects having their own 
hierarchical modeling pattern as is seen in 
Gelman et al (2004). One makes use of this 
capability in the present application to a random 
effects model in a clinical setting. We now 
describe the clinical setting for our approach.  A 
randomized clinical trial was undertaken  
to compare the therapeutic effectiveness of two 
regimens in acute myelogenous 
leukemic (AML) patients. See Vogler et al 
(1992).  From December 1985 to January 1989, 
230 patients were registered from 16 institutions 
in the multi center trial. The survival for all 
patients who were assessable for evaluation on 
the two treatment arms was compared. There 
was no statistically significant difference 
between the groups. The entire sample was 
considered as homogeneous and one pursues the 
question as to whether one can model the overall 
survival taking into account the Myelodysplastic 
syndrome (MDS). This is sometimes referred  to 
as pre-leukemia or smoldering leukemia, and is a 
group  of diseases usually characterized by 
failure of the bone marrow to produce enough 
normal blood cells. One is especially interested 
in determining how this variable and its history 
impacts on predicted survival once one takes into 
account the stress of the actual onset white blood 
count (WBC) at the start of the medical 
intervention. In addition  the Pre leukemia or 
MDS  is incorporated as a random effect in the 
model. In our case it will range from 1 (mild 
syndrome) to 5 (severe syndrome). The Weibull 
reliability model of Meeker and Escobar (1998) 
and the random effects approach of Ashby et al 
(2003) are considered. Ashby et al (2003) have 
also listed a Web guide to the WinBugs 
computational approach to this challenge  at 
stat.bus.utk.edu/techrpts/2003/2003-01.pdf. 
 
 
 

THE MODEL 
 
In the past the MDS was considered a fixed 
effect in the survival model as seen in Vogler et 
al (1992). The MDS is assumed as a random 
effect for our purposes. We will show how it, as 
well as other clinical parameters, fit into the 
model. The model cumulative distribution 
function (CDF) is  
 
F(t)=1-exp[-(t/η)β] , t>=0, β>0 and η>0,    (1) 
 
where 
 
log(η)=β0  +  β1log(s) + ϕk , k=1,..5. 
 
 ϕk ~  Normal(0, 1/σ2 ), k=1,...,5. 
 
In equation (1)  t is the survival time in months, s 
is the stress or white cell count  and  ϕk   is the 
random MDS effect with k=1 to 5 as the five 
levels of severity. In this case the vague priors by 
Ashby et al (2003) will suffice for this purpose, 
except for a slight modification of the hyper 
shape parameter of the sample shape parameter,  
β. They are: 
 
β0 ~ Normal(0,0.001),    β1~Normal(0,0.001)       

   
β ~ Gamma(1,0.3) and      (2) 
 
τ=(1/σ2)~Gamma(0.001,0.001). 
 
Our goal will be to apply this model with 
parameter estimates to our data and then to 
model the predicted survival based on various 
stress or onset WBC considerations. 
Some sensitivity was applied to test the 
robustness of these priors especially for the 
variance parameters of the Gamma and normal 
from 0.001 to 0.01, but is not presented here. 
 
THE DATA 
 
As mentioned above, we have a sample from 230 
AML patients upon which to build our model. 
The primary endpoint was survival with fixed 
effect variable onset WBC and random effect 
MDS for each subject. The objectives of the 
study were (1) to compare the efficacy and 
toxicity of two treatments and to make 
comparisons of survival and remission or 
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response induction in previously untreated AML. 
The focus is on the survival question. Previously 
untreated patients older than 14 years with 
diagnoses  AML were eligible. The diagnosis 
was confirmed by morphology and 
histochemic stains and reviewed by one of the 
investigators. Patients were required to have a 
normal cardiac ejection fraction as 
determined by the normal value at each of the 17 
participating institutions or medical centers in 
the United States.  The randomization plan was 
generated prospectively and was restricted to 
incorporate stratification parameters including 
age and performance status which is an 
abbreviated activity of daily living scale. The 
overall survival comparison of the two therapies 
yielded a p-value of 0.5342. Thus by traditional 
statistical standards treatment had no effect on 
the survival comparisons. The data is thus pooled 
with a median survival of about 9.5 months and a 
range of 0.03 months to 67.75 months. The onset 
WBC median was 8400 with a range of 1100 to 
424,200. We want to proceed with building a 
predicted survival model based on the Weibull 
model in (1) to determine how stress or onset  
WBC effects the survival duration for subjects 
with this disease. 
 
BUILDING THE MODEL 
 
Based on our data set described above, 
we now detail applying the WinBugs software to 
solving for equation (1) with standard graphics 
and summary statistics. 
Two chains of initial values were incorporated 
into the data to attempt the conversion to the four 
estimates in our model. The names in 
parentheses are the names of the variables in the 
WinBugs program for ease of interpretation and 
differentiation from each other when we examine 
the output and present graphical results. For the 
first chain we had β0 (intercept)=18.1, β1  

(beta.stress)=-23.1, β (r=shape)=1.21 and τ 
(taub)= 1.0. For the second chain we had a 
simpler set of initial estimates set at β0 
(intercept)=15, β1  (beta.stress)=-1.0, β 
(r=shape)=1.0 and τ (taub)= 1.0. The trace plots 
which map the conversion through the iterations 
give the pattern for both sets of starting values 
for each chain. The intercept trace is seen in 
Figure 1 

 
 

intercept chains 2:1

iteration
339503390033850

    2.0
    4.0
    6.0
    8.0

 
Figure1. Trace plot for the intercept .  
          
Note the conversion at about  34000 iterations 
(not seen very well at the end of the plot).  
Figures 2 to 4 below give similar results for the 
beta.stress, r and taub variables. 
 

beta.stress chains 2:1

iteration
339503390033850

  -0.75
   -0.5
  -0.25
    0.0
   0.25

 
 

   Figure 2. Trace plot for beta.stress 
 

r chains 2:1

iteration
339503390033850

    1.0
    2.0
    3.0
    4.0

 
    Figure 3. Trace plot for r (shape  
    parameter)                               
 
 
Note that for the next, parameter in Figure 4, the 
taub parameter, yields what appears to be a very 
close correspondence of the two chains in their 
convergence patterns.   This is due primarily to 
the scale of the plot. Also as with the shape 
parameter above the two chains were able to 
follow a very close convergence. It appears that 
all the parameters were fairly stable in the 
iteration  process. 
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taub chains 2:1

iteration
339503390033850

    0.0
  500.0

1.00E+3
 1500.0

 
       Figure 4. Trace plot for τ ( taub) 
 
 

intercept chains 1:2 sample: 60000

    0.0     5.0    10.0

    0.0
    0.2
    0.4
    0.6
    0.8

 
beta.stress chains 1:2 sample: 60000

   -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0
    4.0

 
r chains 1:2 sample: 60000

    1.0     2.0     3.0

    0.0
    0.5
    1.0
    1.5

 
taub chains 1:2 sample: 60000

    0.0 2.00E+3 4.00E+3

    0.0
   0.02
   0.04
   0.06
   0.08

 
Figure 5. Densities for intercept, beta.stress, r and 
taub. 
 
One can see from Figure 5 that the parameter 
densities are given for 60000 simulated samples. 

The actual mean parameter values with their 
confidence limits (CL) are seen in Table 1. 
 

Parameter    Mean 95%  CL 
Intercept   5.001 3.49, 11.52 
beta.stress  -0.3285  -0.61, -0.05 
r (shape)   2.148  1.57,  2.81 
taub   12.94 0.014, 46.98 

 
Table 1. Parameters and 95% confidence limits 
 
Note in Table 1 that these values pretty much 
approximate the modes of the parameter densities in 
Figure 5. Also note the width of the confidence 
limit for taub or the parameter, τ, in equation 1 
indicating a good amount of variation in the random 
component, MDS, in this investigation.  
 
THE PREDICTIVE MODEL 
 
The task now is to take the parameter estimates 
from Table 1 and insert them into the model of 
equation (1) to determine the survival prediction at 
various values of stress. We will also examine how 
the median of the predictive survival varies for 
differing values of the stress or onset WBC. This is 
seen in the next Table 2. 
 
 
 
 
 
 
 
 
 
 

Quantile 
or Mode 
of Stress 

  Stress 
or WBC 
 Count 

Median 
Survival 
(Months) 

    Mode    1100   12.65 
    0.25    2500     9.65 
    0.50    8400     6.50 

 
Table 2.  Association of stress with survival in the 
random effects model. 
 
One thus sees from Table 2 the consistency of the 
association between the stress and median survival. 
As one increases the stress or WBC, which 
generally is a reasonable prognosis for survival, 
then we see the decreasing median survival in the 
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sample from the random effects model. In the actual 
data set the correlation of WBC with survival was -
0.1171, p=0.079. If one ignores the stress factor 
then the Weibull model here yields a predicted 
median survival of 10.25 months, which is close to 
the actual empirical median of 9.5 months. The 
actual predictive survival curves for a stress of 8400 
and 1100 are seen in Figures 6 and 7. 
 
1.0 
 
0.8 
 
0.6 
 
0.4 
 
0.2 
 
0.0 
     0 10 30 40 50  
      Months 
        Proportion Surviving in Months 
  
Figure 6.  Predicted survival for stress factor 
=8400. Median=6.5 months. 
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Figure 7.  Predicted survival for stress factor 
=1100. Median=12.65 months. 
 
 
CONCLUSIONS 
 
We have attempted to show that one can assume an 
underlying random effects model with a parametric 
distribution such as the Weibull and apply this 
methodology  in a clinical or biological setting. We 
really set out to do this with the added caveat that 
assuming  vague prior information one can then 
further extend the methodologic application to the 
Bayesian  framework. Thus there is a lot to consider 
when attempting this approach. The data comes 
from an actual database. That’s a given. The next 
step was to assume a reasonable model for the data. 
The Weibull fits many time to event or lifetime data 
applications. The parametric estimation using the 
random effects was enhanced by the available 
software, WinBugs, which is specific to Bayesian 
applications and easy to handle in the random 
effects environment since random effects 
automatically assumes some underlying probability 
distribution. Thus this fits naturally into the 
Bayesian mindset. Also one is not overly committed 
to assigning subjective priors which some may 
consider as unrealistic as we were cautious to place 
rather largely dispersed vague priors on the 
parameters of interest. The WinBugs software 
allows one to break away from the temptation of 
assigning just normal models to parameters of 
interest as the use of other distributions such as the 
Gamma in our case can be easily applied as well. 
0ne also has the flexibility of simulating results as 
one is likely to do in a numerical environment. 
Being provided with visuals of the convergence 
patterns and the underlying density structure of the 
parameters of interests allows one to logically 
determine if the convergence is following a logical 
pattern and not deviating wildly as one goes through 
the iterations. Having to conduct this exercise for 
different initial values or chains in our case is yet a 
further enhancement of the tools available and 
another check on the consistency of the functional 
patterns of the variables over the iterative domain. 
 
We note our results were consistent with the science 
in that when accounting for the randomness of the 
MDS the stress or onset WBC is inversely related to 
survival prognosis in this group of subjects. After 
having done all this analysis one wants to be 
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assured that outcomes are consistent with common 
knowledge of the discipline one is involved in. 
 
A word on the ease of the use of this software may 
be in order. One has to know the underlying model 
one would attempt in the analysis, provide the data 
and then the initial values for the parameters of 
interest. That is all that is required. However, not to 
be lulled into a false sense of security, it is wise 
with larger data sets to take a random sample of the 
observations as a split test sample and check for the 
consistency of that result with the remainder of the 
data set. Jackknifing and bootstrapping samples are 
also suggested as well. We in fact took a subset of 
our data here to check for its consistency with not 
only the previous analysis in 1992 but with our 
current analysis as well. Also one should do a 
sensitivity analysis for logical ranges of the hyper 
parameters in the Bayesian model to check for the 
robustness of the results. Although it was done on a 
limited basis here, it was done throughout the 
course of this analysis. We hope that the reader(s) 
find these last few words of recommendation 
helpful and we look forward to applying more 
complex Bayesian models to past and future 
biological and environmental problems of interest. 
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