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EXTENDED ABSTRACT 

The onset of tetany, when dairy cattle have 
insufficient magnesium, has a huge impact both 
economically and on animal welfare.  We have 
previously adapted a model of magnesium 
dynamics in sheep (Robson et al. 1997) for use 
with dairy cattle  as an aid to understanding 
aspects of magnesium metabolism which influence 
the risk of animals contracting tetany (Bell et al. 
2005). To estimate this risk in a dairy herd, we 
carried out Monte-Carlo simulations in which 
model parameters for individual animals in the 
herd were varied randomly according to their 
statistical distributions (McKinnon et al. 2003). In 
this approach the choice of parameter distributions 
can significantly influence the risk estimates. In 
some cases the distributions are available from the 
literature, but in other cases they must be obtained 
using some sort of parameter refinement process to 
estimate the parameter distributions from 
measured data corresponding to a model output 
(Figure 1).  

 
Figure 1.  The parameter refinement process 

In this paper we present an overview of a 
generalised algorithm which was developed to 
improve the accuracy of a priori parameter 
distribution estimates obtained from literature data 
using an iterative refinement process. At each 
iteration a response distribution for the current 
parameter distribution estimate is evaluated using 
the Monte-Carlo method and compared with a 
corresponding experimental sample response 
distribution. A parameter filter is constructed using 

the iterative parameter estimates and response 
distributions so that the filter entries form an 
approximate solution space of the desired refined 
state. This permits estimates of the parameter 
distributions to be calculated from the parameter 
filter. 

The requirement for a parameter refinement 
algorithm is that in the magnesium model, a priori 
estimates of parameters for the flux equations 
which represent physiological processes of 
magnesium transport, may have a low accuracy. 
The reasons for this include; low numbers of 
experimental observations, the application of 
parameters derived from in-vitro studies which 
may not represent in-vivo conditions, and the use 
of parameters derived from experimental studies in 
other species.  In biological models a particular 
concern is that the repeatable phenotypic variation 
in a subpopulation, such as a dairy herd, is 
expected to be less than the phenotypic variation 
across the full population and should be 
accommodated. 

A single parameter example was used to develop 
the algorithm equations, which were then extended 
to permit simultaneous refinement of multiple 
parameter distributions.  We use the algorithm to 
estimate parameter distributions of renal Mg 
handling which determine urinary magnesium 
excretion. The estimated parameter distributions 
were found to repeatably predict urinary Mg 
excretion in an experimental dataset.  The 
refinement process was then applied in the full 
dairy cattle magnesium model to refine parameter 
distributions associated with magnesium 
absorption and secretion along the gastrointestinal 
tract. The parameterised model was used to 
simulate an experimental trial of induced 
hypomagnesaemia, and was found to accurately 
estimate plasma Mg concentrations on which the 
tetany risk estimates are based.  
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1. NOTATION AND UNITS 

Standard notation and units have been defined for 
the magnesium models in the work of Robson 
(1991) and extended by Bell (2005). Key symbol 
definitions used in this paper are; U for flux 
equations with units mol-1d-1, C for concentrations 
with units mol/l. To simplify comparison with 
experimental data in this paper, we convert model 
data presented for the daily urinary excretion flux 
UHlUr to units of g/d, and the plasma magnesium 
concentration CPl, and cerebrospinal fluid 
magnesium concentration CCs, to units of mmol/l.  

a priori  is used as an adjective applied to  
distributions with the meaning “previous best 
estimate, from  any source“.  

2. INTRODUCTION 

In our work a dairy cattle model of magnesium 
metabolism (Bell et al. 2005), has been developed 
from an existing magnesium metabolism model for 
sheep (Robson et al. 1997). Hypomagnesaemic 
tetany occurs when the cerebrospinal fluid (CSF) 
magnesium concentration falls below 
approximately 0.66 mmol/L (Meyer and Scholz 
1972). CSF Mg concentrations are related to 
plasma magnesium concentration and are 
described by the model of Robson et al. (2004). 
These models are systems of non-linear differential 
equations, evaluated using numerical integration. 
We have represented biological variation between 
animals by implementing model parameters as 
distributions. The Monte-Carlo method is then 
used to generate distributions of model response 
variables by repeatedly evaluating the model 
(McKinnon et al. 2003).  A simplified schematic 
diagram of the dairy cow model showing the 
model configuration and Mg fluxes relevant to this 
paper is shown in Figure 2.  

Parameter refinement is performed in two separate 
steps.  

2.1. Urinary magnesium excretion. 

Using the magnesium model notation, daily 
urinary magnesium excretion UHlUr is described 
(Bell, 2005) in general terms by the function  

 ),,,,( ___ dUrcUraUrPlHlUr kkkBWCU ,  (1) 

derived from the inverted form of (2) developed by 
Robson  and Vlieg  (2000): 

 cxd/x)a(y ++= 1   (2) 

The parameter distributions  kUr_a, kUr_c, and kUr_d 
are refined in step 1, using (1) in the Monte-Carlo 

simulation. Results of this refinement are used to 
verify the refinement process.   Examining (2) it is 
evident (1) and (2) are highly nonlinear. A large 
variation component in the relationship between 
UHlUr and CPl is apparent in the data Thielen et al. 
(2001). These two factors present a substantial 
problem for the design of the refinement 
algorithm.  

2.2. Gastrointestinal magnesium transport. 

In this step we refine parameters determining 
gastrointestinal magnesium transport using the full 
dairy cattle model.  Bell et al. (2005) have 
redefined the fluxes UPlHg and UHgPl recognising 
the importance of magnesium absorption and 
secretion processes operating in the small and 
large intestines. Experiments used to estimate 
parameters of UPlHg,  and UHgPl have been carried 
out largely using sheep as an experimental model. 
Consequently the a priori estimates of parameters 
controlling these fluxes have low accuracy. 

The general functions;  

 ),,,,( LqPlSiHgHwDiHlUr vSSSCU  , (3) 

 ),,,,( LqPlSiHgHwDiPl vSSSCC  ,  (4) 

and ),,,,( LqPlSiHgHwDiCs vSSSCC   (5) 

describe the calculation of model outputs; daily 
urinary magnesium excretion (3), plasma 
magnesium concentration (4), and cerebrospinal 
fluid magnesium concentration (5).  

We use (5) to estimate tetany risk. Parameter 
refinement may be performed using (3) and (4), 
however, since sample data of UHlUr is more 
readily obtained in practical farm situations, we 
use (3) for parameter refinement in this paper as a 
test of the procedure.  

 
Figure 2. Schematic diagram of dairy cattle 
magnesium model, showing Mg transport fluxes to 
which parameter refinement was applied  

1204



The model parameter CDi is used to generate the 
flux UDiRu, vLqPl is a parameter of the flux UPlLq, 
and the parameters SHg, SHw and SSi are 
dimensionless parameters used to represent both 
the variation, and relative differences between 
sheep and cattle, of the fluxes UHgPl and UPlHg. 

SHw (hindgut water) alters the hindgut magnesium 
concentration, SHg (hindgut) alters flux UHgPl 
independent of the magnesium concentration 
gradient, and SSi alters flux UPlHg. 

2.3. Parameter variance. 

In designing the algorithm, refinement of 
parameter variance was considered important since  
genetic variation of Mg absorption has been 
demonstrated in experiments using monozygotic 
twin cattle by Field (1961), and repeatable 
phenotypic variability of milk Mg concentration is 
demonstrated by Thielen et al. (2001) implying a 
genetic component. Since phenotypic variation 
within a subpopulation is expected to be less than 
in the full population, a means of refining the 
variance component of parameter distributions is 
necessary.  In biological data the coefficient of 
variation is often large, with values up to 30% 
being common. The presence of substantial 
variance and the non-linearity of (1) and (2) 
require simultaneous refinement of the parameter 
distributions. 

The parameter distribution variance and standard 
error of the mean (SEM), contribute to the SEM 
and variance of simulated responses.  The effects 
are determined by the model equations, so the 
accumulated effect of multiple parameters may 
lead to large errors in simulated responses.    

3. DEVELOPMENT OF THE ALGORITHM 

The approach taken to the parameter refinement 
problem was to simultaneously refine the mean 
and variance components of several parameter 
distributions. It uses a gradient search method 
based on a linear approximation to the solution 
space of the distribution refinement objective 
constructed using a filter, in conjunction with a 
random search of the parameter distribution error 
space. The a priori error range of each parameter 
distribution mean and variance are used as 
constraints. 

3.1. Single parameter case. 

We use the notation of capital letters to represent 
distributions, with X an input distribution, Y a 
model response, and P a parameter distribution to 

be refined.   The individual model evaluations may 
be represented using  the equation  

 f(x,p)y = .  (6) 

The Monte-Carlo based generation of the response 
distribution Y is  

 F(X,P)Y = ,  (7) 

where Y is a sample distribution of a model output 
variable, such as the plasma magnesium 
concentration CPl at the end of a simulated 10 day 
trial. Since X is constant for a given simulation 
scenario, (7) reduces to 

 F(P)Y = .  (8) 

The parameter distribution P can be obtained using 
the inverse of (8): 

 U(Y)P =   (9) 

The parameter distributions were separated into 
components of mean and variance. This approach 
has been carried through to the final algorithm for 
all response and parameter distributions.  Using 
this concept (9) becomes 

 ),σU(μP YY= . (10) 

For which we also consider the related function 

 ),σ(μUμ YYP ′= .  (11) 

Taking Ye to be an independent experimentally 
derived sample distribution corresponding to Y, 
and Yi  the simulated distribution, the error of each 
response distribution component at iteration i is 
defined as: 

• error of the response distribution mean 

 eYiYi μμΔy −=  , (12) 

• response distribution variance error 

 iα−1  , (13) 

where, 

 
2

2

Ye

Y
i

i

σ

σ
α = . (14) 

Numerical approximations of (10) and (11) require 
several estimates of ,μP  ,Yμ  and Yσ , and 
therefore several iterations of the Monte-Carlo 
model evaluations of Y. A filtering method uses 
data collected from several iterations to generate 
the iterative parameter distribution estimates.  At 
this point it is useful to develop the equations used 
to constrain the parameter distributions within 
their a priori error range before developing the 
parameter filter concept further. 
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3.2. Parameter constraints. 

The error range of the parameter variance is 
specified as an estimate of the upper limit 

0Pσ , 

and constant k to set the lower limit 
0Pk σ⋅ . 

Adjustment of σP is restricted using the constraint   

 
00 PPPk σσσ ≤≤⋅ . (15) 

The normalised error of the parameter distribution 
mean 

iPμ  from the a priori mean 
0Pμ  , using the 

a priori standard error of the mean, SEM(
0Pμ ) as 

the unit error is defined as: 

 
)(

ˆ
0

0

p

pp
p SEM

i

i μ
μμ

μ
−

=Δ   (16) 

The constraint function c(μp), is defined to 
generate parameter constraint values based on the 
normalised error of the mean. An example is 
shown in Figure 3, for 05.0)(,1

00
== PP SEM μμ .  

Further details of the function which has a 
piecewise construction, may be obtained from Bell 
(2005).  

 
Figure 3.  Parameter constraint function c(μp) for 

05.0)(,1
00

== PP SEM μμ   

For completeness the multi parameter constraint Ci   
is defined for parameter distributions P1…Pn  by 

 )(...)()(
21 niii PPPi cccC μμμ ⋅⋅⋅= .  (17) 

3.3. Parameter filtering. 

The term parameter filter refers to a stored data list 
where each entry contains the iterative parameter 
distribution estimate Pi, the response distribution 
Yi,   and the constraint value Ci. 

As the refinement procedure progresses, the filter 
entries are selected to minimise the error terms 

yΔ , |1| α− , and the constraint Ci. Under these 
conditions the filter entries form an approximate 
solution space for the parameter refinement 
process.  This property of the filter provides an 

alternative to (11) for estimating iterative updates 
of Pμ  using 

 ),,(P Cyg αμ Δ= , (18) 

where the filter function (18) may be approximated 
by the general linear model (GLM)  

 εαμ +++Δ+= Caayaa 3210P   (19) 

after evaluating a0,..,a3 using the least squares 
method of multiple linear regression.  
 
In the single parameter case, the parameter 
variance component is adjusted independently 
using the equation 

 
α
νσσ

ii PP =
+1

,  (20) 

where ν  is a control parameter set to a small value 
(0.005) so that only limited variance adjustments 
are possible in any one iteration.  

The parameter filter is constrained to a maximum 
size. As new entries are added a selection 
algorithm ranks multiple refinement objectives, 
and removes the lowest ranking entries. Ordinal 
ranking functions r() are defined, for each of the 
objective characteristics; ,yΔ  |,1| α−  ,C  

),( ysign Δ  ),1( α−sign  and shape.  The shape 
constraint is calculated when an experimental 
sample of the response distribution is available, 
using the methods of Siegel (1988). Matched pair 
data points are obtained by sorting the 
experimental and simulated distributions into 
ascending order, each point in the simulated 
distribution being paired with the equivalent 
ranked point in the experimental distribution. The 
shape constraint is defined as the sum of squares 
error term; 

 ( )∑
=

−=
YiNl

emil yyshape
..1

2    (21) 

where subscripts l and m represent equivalent 
ranked position. 

 Including the sign characteristics permits selection 
of parameter distribution entries, which both over 
and underestimate the response mean μY and α  
creating a desirable bisection property of the filter.   

Filter entries are ranked for selection using 

),())1((
))(()(

|)1(|)((

6655

4433

2211

shaperwsignrw
ysignrwCrw

rwyrw
Rank

⋅+−⋅+
Δ⋅+⋅+

−⋅+Δ⋅
=

α

α
(22) 

where w1..6  are constant weighting factors. 
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3.4. Multiple parameters. 
 

The extension to multiple (n) parameters has two 
main parts.  First, (10) is extended using 

 ),P,σ(μUP n
YYjj

1−= ,   for j=1..n.  (23) 

Where Pn is the set of n parameters P1,..,Pn, and  
Pn-1 is the set Pn with Pj removed.  

The filter function (18), may be replaced by n 
functions, described by the equation 

 )Cy,(gμ n
PjiPji

1,, −Δ=′ μα  . (24) 

Defining jiψ  as a sample from a Gaussian noise 

distribution with )(4 jiPSEM
ji

⋅=ψσ , a random 

search is included by:  

 ).()1(
1 jiPPP jijiji

ψμνμνμ μμ +′+′−=
+

  (25) 

Where μν  controls the random search around the 
parameter error space. 

The second part defines a series of equations 
which replace (20) used to update the parameter 
variance component.  

Defining the variance adjustment 

 eYiYiY σσσ −=Δ , (26) 

the significance of iYσΔ  is tested using the 
parameter α  from (14), and the percentage points 

..2 fdχ  distribution (Beyer, 1968). For 
significant values of iYσΔ  the updated parameter 
variance is calculated using the equations 

 ( )
i

ji

ijiji
Y

P
YPP nk

k
σ
σ

σ
γ

σσ
σ

σ Δ
+

+=′
)1(

2

1 ,  (27) 

and ))(1(
1 jiPPP Ψ

jijiji
+−+′=

+
σνσνσ σσ .  (28) 

Where jiΨ  is a Gaussian noise distribution with 

  entries) σthe filter( s.d. of .=σ
jji P10Ψ .  (29) 

Adaptive adjustment of σν   is used to improve the 
rate of convergence, and stability of the process. 
An overview of the adjustment is that  σν  ranges 
between 0.5-0.99 depending on a measure of the 
quality of Yσ  entries in the filter. As quality 
improves 99.0→σν , which reduces the 
magnitude of the noise term in (28).   

1σk  is set to 

0.1, and used in conjunction with γ  and 
001.0

2
=σk  to decrease the second term of (27) as 

the convergence rate slows.  Since the SEM of Yi is 
proportional to 

iYN , the refinement process 

computational requirement is proportional to 2
eYN .  

As a means of reducing the numerical intensity of 
the algorithm we initialise the algorithm with 
N=10, and progressively increase this to a final 
value determined by the desired tolerance for 
testing  ei YY =  . Due to the random methods 
employed by the algorithm, we use statistical 
testing to terminate the process when we reach 

 ei YY =  at 98% confidence level. (30) 

Evaluation of equations (25) and (28) forms the 
method of iteratively updating the parameter 
distribution estimates.  A full description of the 
adaptive processes is provided in Bell (2005). 

4. PARAMETER REFINEMENT AND 
SIMULATIONS.  

4.1. Urinary magnesium excretion. 

The a priori parameter distribution estimates of (1) 
shown in Table 1, were derived by manual 
inspection of the scalar function (2) overlayed on 
plotted experimental data shown in Figure 4. 

Table 1.  a priori parameter distributions of the 
daily urinary magnesium excretion flux UHlUr  

Parameter mean s.d. k SEM
kUr_a 2.35 0.22 0.5 0.3
kUr_c 0.065 0.02 0 0.05
kUr_d 0.16 0.3 0.5 0.15  
 

 
Figure 4.  Relationship between plasma Mg 
concentration and; (○) Experimental,  and 
(+) simulated  urinary magnesium excretion flux 
(UHlUr). Experimental data is from Phillips (2005)1 

                                                           
1  Data points removed by random selection to improve clarity 
of figure  
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The procedure was run several times to produce 
refined parameter distributions shown in Table 2, 
which also demonstrates the procedure produces 
non-unique solutions. 

Table 2.  Refined parameter distributions of the 
daily urinary magnesium excretion flux UHlUr 

μ s.d. μ s.d. μ s.d.
2.246 0.134 0.062 0.0067 0.079 0.177
2.246 0.177 0.072 0.0078 0.077 0.241

kUr_a kUr_c kUr_d 

   

The Monte-Carlo method was used to generate 
simulated UHlUr distributions for the a priori and 
the refined parameter distributions in Table 2. The 
simulated UHlUr distributions are shown in Table 3. 

Table 3.  UHlUr  response distributions of; (a) 
experimental sample (using data of Phillips, 2005),  
(b) simulation of a priori parameter set, and (c) 
repeated simulation using refined parameters.  
95% confidence intervals in italics  
N=188 (a)Sample (b)a priori (c)sim 1 (c)sim 2

2.27 2.56 2.25 2.35

(2.13-2.6) (2.24-2.74) (2.07-2.53) (2.16-2.65)

(2.67-2.67)

s.d. 2.34 2.47 2.28 2.38

mean
(1.94-2.61) (2.2-2.91) (1.93-2.58)

 

Comparison of the refined parameter distributions 
(Table 2) with Table 1, confirms they fall within 
the a priori distribution range.  Confirmation that 
the UHlUr response distribution is accurately 
reproduced in subsequent simulation is by Table 3 
and Figure 5, which was obtained by plotting the 
matched pair data points obtained from the sorting 
and ranking method used in the calculation of (21). 

 
Figure 5.  Matched pair comparison of simulated 
UHlUr distributions with an experimental UHlUr 
sample distribution (data from Phillips, 2005) 

4.2. Gastrointestinal magnesium transport. 

Distributions from row 1 of Table 2 were used to 
refine gastrointestinal Mg transport parameter 
distributions using (3).  

A detailed description of the parameter distribution 
estimates and findings of this process is provided 
by Bell (2005).  It is reported here that for each 
parameter, distributions were obtained consistent 
with; the a priori distribution range, and 
supporting our view that the differences in water 
content of the hindgut between sheep and cattle 
(Hecker and Grovum, 1975) may be an important 
factor for accurately modelling magnesium 
transport in this location. 

4.3. Tetany risk evaluation. 

Using the refined parameter distributions we ran a 
simulation of the experiment of McCoy et al. 
(2001), as an independent means of verifying the 
complete process. Distributions of plasma and 
cerebrospinal fluid magnesium concentrations 
were generated by Monte-Carlo simulation of (4) 
and (5).  The results of this simulation are 
presented in Table 4. 
 

Table 4. Plasma Mg and CSF Mg concentrations 
(mmol/l) of induced hypomagnesaemic tetany in 
cattle fed magnesium deficient diets over a 16 day 
period;  a) experimental study of McCoy et al. 
(2001), b) simulation.  (tetanic – developed  tetany 
symptoms; non-tetanic – no symptoms) 

 

5. DISCUSSION  

The parameter refinement algorithm must produce 
parameters which, when used in subsequent 
Monte-Carlo simulations with the model, can 
generate response distributions within the expected 
distribution range, and variance confidence 
interval limits. The numerical intensity of this task 
requires the efficient estimation of parameters if it 
is to be successful. The adaptive search strategy 
combining the gradient search methods of (24) and 
(27) with random searches (25) and (28) of the 
parameter error space, appears to be a useful 
method to achieve this. Computational intensity is 
also reduced by incremental adjustment of N.  The 
use of the Monte-Carlo method provides an 
opportunity for parallel computation, allowing 
larger tasks to be tackled.   

tetanic non-tetanic control
0.14(0.05) 0.20(0.02) 0.87(0.05)

0-0.29 0.14-0.26 0.75-0.99
0.41 0.57 0.72

0.28-0.54 0.5-0.64 0.62-0.81
N 4 6 6

Risk 35.2% (2.5)

(b)

(a)

Risk 40%

0.14(0.00) 0.29(0.01) 0.81(0.01)

0.61(0.0) 0.76(0.01) 0.95(0.0)

CSF

plasma

plasma

CSF
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A high degree of replication of the shape of the 
response distribution is apparent in the simulated 
data (Figure 5), largely resulting from the 
transformation of the input and parameter 
distributions by the model equations, with (21) 
considered to be largely a non-essential constraint 
included to improve the rate of convergence.  

The accuracy of the predicted plasma Mg 
concentrations and risk estimates in Table 4 is 
perhaps surprising given the number of parameters 
to which the refinement procedure has yet to be 
applied.  However the CSF Mg concentrations are 
over estimated by the model and tetany risk 
estimates would be expected to be higher as 
modelling of the CSF Mg is improved.  This 
suggests it will be necessary to revise our method 
of evaluating tetany risk, which currently uses a 
threshold value of CCs.  A possible approach to this 
would be to estimate risk using a joint probability 
of risk over a range of CCs threshold values. 

6. CONCLUSIONS 

The parameter refinement algorithm is able to 
estimate parameter distributions with reduced 
variance components consistent with stated 
a priori error ranges. Subsequent Monte-Carlo 
simulations using the refined parameters in the 
model are able to predict simulated response 
distributions of the required accuracy in the test 
case. 

The method of modelling biological variance by 
implementing model parameters as distributions 
and using the Monte-Carlo simulation method is a 
valuable modelling technique, and good accuracy 
is achieved by refining a small number of the most 
sensitive parameters. 
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