
Modelling Transit Paths for Military Vehicles
1L. Caccetta, 1I. Loosen and 1V. Rehbock

1Western Australian Centre of Excellence in Industrial Optimisation, Department of Mathematics and
Statistics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia,

E-Mail: ian.loosen@student.curtin.edu.au

Keywords: Constrained transit path problem; Discretization; Optimal control; Combinatorial optimisation.

EXTENDED ABSTRACT

A fundamental network design problem is that of
designing “efficient” routes for moving products,
resources and information through a network.
Usually the route must satisfy a variety of
constraints. The efficiency of a network can be
measured in terms of cost, reliability, throughput
or length of path used. The constraints of a
network can consist of delivery/pickup time
deadlines, network availability, the need to visit
specific nodes of the network, or resource
restrictions such as vehicle capacity, fleet size or
transmission rates to name a few.

We consider a class of path design problems
which arise when an object needs to traverse
between two points through a specified region,
the Transit Path Problem being one such problem.
The Transit Path Problem is to determine an
optimal path, in terms of minimizing risk or cost
or maximizing reliability, for an object, such as a
robot or vehicle, that needs to traverse a specified
region between two points. This problem arises in
many areas of real life. For example, the routing
of military vehicles through a detection field or
the routing of a new highway in a given terrain.
Other applications include motion planning for
robot manipulators through a field of obstacles
and the generation of optimal trajectories for air,
space, naval and land vehicles. We specifically
look at the problem of determining an optimal
transit path for a submarine moving through a
field of sonar sensors, subject to a total time
constraint.

The strategy presented involves a two stage
approach. The first stage is a discretization of the
problem and the development of a network
heuristic method, based upon a parameterisation
using a convex combination, to solve the resulting
network. The second stage involves the use of an
optimal control model, the application of the
CPET technique, and a solution procedure that
utilizes the solution obtained in the first stage as a
starting point.

In the proposed model each of the sensors can
detect the presence of the submarine with a

probability which is a given function depending on
the distance between the two and on the speed of
the submarine. This function is not a simple
analytical expression, but depends upon a range of
factors, including the characteristics of the ocean
floor and ocean surface, depths of the sensor and
the submarine, and the temperature and salinity of
the water.

In this paper, we use probability of detection
functions reported in (Hallam 1997). These were
constructed under the assumptions that the
geographic location and environmental conditions
are known and that the submarine remains at a
constant depth. Furthermore, each of the given
functions is constructed for a particular constant
vessel speed. While there are still further factors
influencing the probability of detection (such as
machinery states, frequency of the sensor, alertness
of sensor operators or quality of the automatic
detection, the relative aspect of the submarine and
the sensor, the effect of sudden changes in travel
direction or speed), the functions from (Hallam
1997) contain sufficient detail to test the feasibility
of the proposed method. The overall probability of
detection at any point in time can then be calculated
as an appropriate combination of these individual
probabilities of detection. Here, we make the
assumption that the probability of detection for any
one sensor is independent of the probabilities of
detection for the other sensors. The objective then
is to find a transit path between two fixed positions
in the sensor field which will minimize the overall
probability of detection while still satisfying a
maximum travel time constraint. The difficulty is
due to the fact that the transit time must satisfy an
upper bound constraint.

Computational results support the use of our
methodology. They show the heuristic we use to be
both efficient and satisfactory. The heuristic
generates a good quality initial solution for the
discretized network problem. This starting path is
then refined by means of an optimal control
approach. In this phase of our procedure we make
use of the optimal control software package
MISER3. Improvements can be made in the range
of 9 to 34% by employing the optimal control
approach.

1751

1. INTRODUCTION

The Transit Path Problem is to determine an
optimal path, in terms of minimizing risk or cost or
maximizing reliability, for an object, such as a
robot or vehicle, that needs to traverse a specified
region, discrete or continuous, between two points.
Our specific application is in the context of a
submarine moving through a field of sonar
sensors. This paper is organized as follows. In
Section 2 we describe the general optimal control
formulation. The CPET technique is explained in
Section 3. Section 4 presents the computational
strategy we used to solve the problem. In Section 5
we give numerical results. Finally we summarize
our conclusions in Section 6.

2. OPTIMAL CONTROL FORMULATION

The optimal control formulation follows the
treatment given in (Rehbock et al 2000). A sonar
field is positioned in the Cartesian plane with
coordinates (x, y) indicating the latitudinal and
longitudinal distance (in kms) from the origin.
Letting (x(t), y(t)) represent the location of the
submarine at time t, the system’s dynamics is
described by:

)1.1(,0)0()),(sin()()(

,0)0()),(cos()()(

==
•

==
•

yttsty

xttstx

θ

θ

where)(tθ represents the heading angle of the
vessel in radians and s(t) is the speed of the vessel
in km/h. Note that θ and s are control functions
satisfying:

{ })3.1().,0[,...,,,)(

)2.1(and),,0[,2)(0

321 Ttsssts

Ttt

∈∀∈

∈∀≤≤ πθ

Suppose that a total of sn sensors are located at

positions (ix , iy), sni ...,,2,1= , in the field. We
assume for simplicity that these positions remain
fixed during the journey and that the sonars are all
of the same type with the same detection
capabilities. At any instant of time, the distance of
the submarine from each sensor is given by

() ()() ()()22
iytyixtxtir −+−= , i = 1, … , sn .

For a vessel speed s, a probability of detection
profile, p(r, s) can be constructed as a function of
the physical distance r(t). Assuming that the
sensors operate independently, the instantaneous
probability of the vessel being detected is then
given by:

)4.1(.1)))(),((1(1

))(),(),(((

∏ = −−

=

sn
i tstirip

tstytxP

Our aim is to minimize the cumulative probability
of being detected over the entire journey. This is
equivalent to minimizing the objective functional

)5.1(.0))(),(),(((),,(∫= T dttstytxPTsg θ

For the submarine to arrive at its intended
destination within a prescribed total time, we have
constraints:

)7.1(

)6.1(.)(,)(

MAX
TT

TyTyTxTx

≤

==

Note that the terminal time, T, is variable in this
problem. In summary, then, the optimal control
model of the submarine transit path problem can
be stated as: Find a terminal time T (satisfying
(1.7)), and control functions)(tθ (satisfying (1.2))
and s(t) (satisfying 1.3)) such that the objective
functional (1.5) is minimized subject to the vessel
dynamics (1.1) and the constraints (1.6).

The fact that the control s is restricted to a discrete
set of values places this problem into a general
class of discrete valued optimal control problems.
Examples of these problems are studied in Howlett
et al (1992) and Jennings et al (1997). The main
difficulty with these problems is to determine the
exact time points where the discrete valued control
should switch between its allowed values. Since
the gradients with respect to these switching time
parameters are discontinuous, ordinary gradient
based solution methods perform poorly. An
additional difficulty is to determine exactly how
many such switching times are involved in an
optimal solution. The first of these difficulties has
been successfully overcome by the Control
Parameterization Enhancing Transform (CPET),
which was initially applied to a similar class of
time optimal control problems in (Lee et al 1997)
and later directly to discrete valued optimal control
problems in (Lee et al 1999). The second difficulty
can be partially addressed by solving a sequence of
problems which are transformed via CPET, but
this remains an active area of research.
Essentially, CPET involves a scaling of the time
horizon, [0, T], via an auxiliary control function
known as the enhancing control. This transforms
the original problem into an equivalent canonical
form which can then be solved by ordinary
gradient based methods such as control
parameterization described in (Teo et al 1991) and
incorporated into the optimal control software
MISER3 (Jennings et al 1991).

1752

3. CPET TECHNIQUE

We briefly explain CPET through its application to
the example at hand. For a more thorough review
and discussion of these techniques, see Rehbock et
al (1999). Our first task is to set a limit to the
number of course/speed switchings to be allowed
and the allowable speeds s. Note that the heading
angle control function,)(tθ , is modelled as a
piecewise constant function, which is natural,
given that the heading angle ought to remain
constant between course changes. Furthermore, for
the sake of simplicity, we assume that the
switching times for the course changes coincide
with switching times for the speed changes. This
may appear to be restrictive, but note that this
formulation does allow for only one of the controls
to change value at a particular switching time, so
full generality of the control structure is actually
preserved.

In our computations, the submarine is restricted to
two speeds, 8 km/h and 14 km/h. The control
constraint (1.3), therefore, becomes:

{ })1.2().,0[,14,8)(Ttts ∈∀∈

The detection profiles are given in the form of a set
of data points and cubic splines are used to
interpolate this data to generate smooth p(r, s)
curves (Caccetta et al 2005).

In this application, we have a practical limitation
on the number of course/speed changes during the
time horizon, because course and speed changes
physically require a minimum period of time to be
implemented. Furthermore, a submarine
commander is unlikely to implement a solution
which involves an excessive number of
course/speed changes. Hence, we assume that the
maximum number of switchings allowed is N - 1.
The CPET technique may then be applied as
follows.

We define a new time horizon [0, N] and partition
it into the subintervals)1,0[1 =I ,)2,1[2 =I ,

)3,2[3 =I , …,),1[NNI N −= . We then define

),0[),(1 Nu ∈ττ to be a piecewise constant
function on [0, N) that is consistent with this
partition. 1u is essentially the heading angle of the
submarine in the transformed time scale and we
still require the control constraints

)2.2().,0[,2)(10 Nu ∈∀≤≤ τπτ

Furthermore, we define

)3.2(
.even, if 8,

odd,,if,14
)(2 ⎪⎩

⎪
⎨
⎧

∈

∈
=

kkI

kkI
u

τ

τ
τ

This (fixed) control function takes on the role of
s(t) in the transformed problem. Note that it is
consistent with the constraint (2.1). Furthermore,
we define the enhancing control,)(

3
τu , to be a

piecewise constant function consistent with the
above partition and subject to the following
constraints

)4.2(,)(
3

0
MAX

Tu ≤≤ τ

The constraint (2.4) arises due to the total time
constraint (1.7), but, by itself, will not be sufficient
to replace (1.7) entirely. The main feature of the
CPET method is the scaling, via the enhancing
control, which relates the original time horizon [0,
T] to the new time horizon [0, N]. This is done
through the following differential equation:

)5.2(.0)0(),,0[),(
3

=∈= tNu
d
dt ττ
τ

Note that integration of (2.5) over [0, N) will allow
us to recover the original time horizon [0, T],
where T = t(N). To standardize notation, we set

xx =1 , yx =2 and tx =3 . The transformed
problem may then be stated as follows. Find
control functions)(

1
τu and)(

3
τu such that:

∫
N

duuxxP
0 3221

)6.2(.)())(),(),((τττττ

is minimized subject to the dynamics

,0)0(),()(

)7.2(,0)0()),(sin()()()(

,0)0()),(cos()()()(

333

21232

11231

==
•

==
•

==
•

xux

xuuux

xuuux

ττ

ττττ

ττττ

and the constraints

.)(

)8.2(,)(

,)(

3

2

1

MAX

T

T

TNx

yNx

xNx

≤

=

=

Note that the third constraint in (2.8) arises directly
from (1.7).

The transformed problem now simply involves
piecewise constant control functions defined on a
regular fixed partition of the fixed time horizon [0,

1753

N]. As such, it can be solved directly by the
optimal control software MISER3 (Jennings et al
1997). Note that the optimal solution of the
original problem can be recovered easily from the
solution of the transformed problem, as the
original time scale is given by)(

3
τx .

4. COMPUTATIONAL STRATEGY

The Transit Path Problem is likely to have a
unique optimal solution. However, in the solution
region there are typically a large number of peaks
and troughs representative of local maxima and
minima solutions. While a locally optimal solution
may be easily calculated, past numerical
experiences (Rehbock et al 2000) suggests it is
very much dependent on the initial guess one
provides. It is unlikely that, given an arbitrary
initial guess, a direct optimal control solution of
the problem will generate a path which is globally
optimal. To generate a good initial path we solve a
discretized approximation of the problem by first
constructing a grid-like network over the sensor
field, then solve the resulting Constrained Shortest
Path Problem (CSPP). We regard the knot points
of the grid as nodes and the grid lines as edges,
and thus think of the grid as a graph. We allow
movement along edges only and with each edge
we can associate a cost value. The cost depends
on the location of the edge in the sensor field and
speed at which the vessel travels along the edge. It
is calculated in the same manner as for the optimal
control model. Furthermore, since the distance
along each edge and the travel speed are known,
we can calculate the time it takes the vessel to
traverse each edge.

In the optimal control formulation, we noted that
the speed s of the submarine can come from a
finite discrete set (1.3). Therefore, for each of the
speeds in the discrete set, we need to have a
corresponding edge between the node i and j in the
graph to represent each of the speeds 1s , 2s , 3s ,
… . Assuming that the speeds in the set (1.3) are
arranged in increasing order, 1s < 2s < 3s < … , it is
possible to perform some elementary
preprocessing. Letting the cost along the edge
associated with speed ns be denoted by n

ijc , we
can clearly eliminate the edge (i, j) if

{ } nmcc m
ij

n
ij >∀≥ min .

After the preprocessing stage we introduce dummy
nodes and edges so as to avoid multiple edges. Of
those possible speeds that remain after
preprocessing, we can leave the edge (i, j) joining
the slowest speed from node i to j. For each of the

remaining speeds we need a dummy node j′ and a
dummy edge (j′ , j), which has a zero cost and a
zero transit time.

With respect to the simple graph G = (N, A), where
N = { }n...,,2,1 is the set of nodes, |N| = n, and A is
the set of edges, each edge (i, j) has a
corresponding cost ijc and a transit time ijt . For
convenience, we denote the start (origin) node by
‘O’ and the destination node by ‘D’. Also, let

MAXT be the time limit. The CSPP can be
expressed as an Integer Programming Problem
(Ahuja et al 1993). The CSPP has been studied by
a number of authors and both exact algorithms and
heuristics have been proposed. Methods used to
solve CSPP include: k-shortest path ideas, cost
scaling and rounding, Dynamic Programming
formulations, and label setting approaches. By
using the Integer Programming Formulation,
solution strategies are: Lagrangian relaxation
methods, branch and bound algorithms, and
Branch and Cut methods. Further details are
discussed in Caccetta et al (2005).

The CSPP is a computationally difficult problem
to solve, because it is NP-complete. For the
purpose of evaluating our strategy we generate a
feasible path using a simple heuristic that finds a
solution which is near optimal or optimal with
minimal computational time. Basically, each edge
(i, j) in our graph has two weights associated with
it: cost ijc and traverse time ijt . The idea is to
parameterize these two weights into one label on
the edge using the convex combination

ijij tcijw)1(αα −+= , where ∈α [0, 1]. Then, we

solve the resulting SPP, using Dijkstra’s algorithm
(Dijkstra 1959), while incrementing α until a time
feasible path, t(P) ≤ MAXT , is found. This path
forms our initial guess for the optimal control
phase of our approach. It is envisaged that this path
is reasonably close to the global optimal solution
for the continuous optimal control problem and,
therefore, should be sufficient for our purpose.

5. COMPUTATIONAL RESULTS

All the computational tests were carried out on a
Sun Netra X1 with a 500MHz 64-bit Ultra SPRAC
Processor and 256MB of RAM.

Our approach uses the solutions obtained from our
heuristic as initial starting points for the
corresponding optimal control model. The
MISER3 software was used in conjunction with
several different nonlinear programming solvers

1754

(NLPQL (Schittkowski 1985/86), FFSQP (Zhou
and Tits 1995), & NPSOL (Gill et al 1986)) to
refine these initial solutions. FFSQP is based on
the concept of feasible sequential quadratic
programming. Starting with a feasible point
(provided by the user or generated automatically),
the algorithm produces successive iterates that all
satisfy the constraints. The objective function can
be decreased either after each iteration with an
Armijo-type arc search or after at most three
iterations with a nonmonotone line search. The
user has the option to choose one of the two
searches. The merit function used in both searches
is the objective function itself. NLPQL is also
based on a sequential quadratic programming
method. Working with a quadratic approximation
of the Lagrangian function and a linearization of
the constraints, a quadratic subproblem is
formulated and solved by the dual code QL.
Following this, a line search is performed with
respect to two alternative merit functions and the
Hessian approximation is updated by the modified
BFGS-formula. Unlike FFSQP, a feasibilty
requirement is not imposed on the iterates. Like
NLPQL, NPSOL is also a sequential quadratic
programming method incorporating an augmented
Lagrangian merit function and a BFGS quasi-
Newton approximation to the Hessian of the
Lagrangian.

To test our methodology, we ran two sets of test
problems. Our first set of problems allows us to
not only test our approach but also compare the
different nonlinear solvers within MISER3. We
generated our second set of problems so as to
measure the sensitivity of the optimal control
phase subject to the initial grid size employed. We
tested our proposed method and the three different
nonlinear solvers on 480 problems that were
generated as follows.

We imposed 4 different grid sizes over the region
for the network phase, these being of dimension
20× 20, 40× 40, 60× 60 and 80× 80, which are all
equally spaced rectangular grids. We have
restricted our test problems to sonar fields with sn
= 4 sensors, though any number can be easily
incorporated. Furthermore, we chose to look at a
region of 80 km by 80 km. In addition, 0x = 0,

0y = 0, Tx = 80 and Ty = 80, that is the starting
point is (0, 0) km and the destination is at the point
(80, 80) km. We then constructed 30 different sets
of sensor locations. The locations of the sensors
were determined by randomly generating 240
integer values, { }24021 ..,,, xxx , between 0 and 80.

We then paired these together, (1x , 2x), (3x , 4x),

…, (239x , 240x), to give the coordinates, in
kilometres, of the sensors in relation to the starting
point of the journey. The first four pairs give the
sensor locations for the first set, the next four pairs
represent the sensor locations for the second set,
and so on. We use the probability of detection
curves given in Hallam (1997).

For each grid dimension and set of sensor
locations, we imposed four different time
constraints MAXT , ranging from a low or “tight”
time constraint to a high or “loose” time constraint.
For each problem, we determined its minimum
time path, denoted by LT , and the time
corresponding to the minimum unconstrained
shortest path, denoted as HT . The four time

constraints are then found using the formulae αT

= (1 -α) LT + HTα for α = 0.2, 0.4, 0.6 and 0.8.

2.0T represents the “tightest” constraint and 8.0T
the “loosest” constraint.

Recall that the optimal control model does not
require the path to move along the grid lines.
Instead, virtually any concatenation of straight line
sections with any direction and one of the two
possible speeds is allowed. Clearly, the optimal
control model is less constrained than the network
approximation, so we expect to see an
improvement in the optimal cost obtained.

From the first set of test problems, we were able to
establish that each of the three optimisation
routines has its own advantage. NPSOL gives the
best average percentage improvement, NLPQL has
the quickest CPU time and FFSQP is the most
“accurate” in terms of meeting the optimal control
constraints. It appears that there is a three way
trade-off between objective function value, CPU
time and accuracy. It is up to the user to use the
optimisation routine that is most suited to his or
her needs. For a thorough presentation and
discussion of these results refer to Caccetta et al
(2005).

To test the effect that the grid size has on the final
solution, we generated 120 problems. To do this,
we used the same set of sensor locations as in our
previous computational tests. The four different
“degrees” of tightness were also generated in the
same manner. However, we imposed the time
constraint associated with the 20× 20 network to
the other three grid dimensions. In addition, we
only used the NPSOL nonlinear programming
solver for these test problems. By maintaining the
same time constraint for all the grid sizes, we are

1755

able to directly compare the effect that the initial
starting solutions generated via the different sizes
has on the final path obtained in the optimal
control phase. We employed the NPSOL solver for
this because it has the greatest average percentage
improvement, its CPU time is reasonable and its
“accuracy” is comparable to the FFSQP solver.

In Table 1, we present the results for all the grid
sizes. Each table displays the average
computational results for all 120 problems broken
up into the cases α = 0.2, 0.4, 0.6, 0.8 as well as
the total average over all of the cases. We present
the percentage improvement achieved by use of
the optimisation routine NPSOL, when compared
to the initial starting path. Also shown is the
average computational time, in minutes, taken to
generate the solution by the NPSOL optimisation
routine.

As we observed with our earlier results (Caccetta
et al 2005), Table 1 shows us that the percentage
improvement that is made over the initial solution
decreases as the grid size increases, while the CPU
time, in minutes, increases as the grid dimension
becomes larger.

For both the heuristic and optimal control solution
we measured the average percentage of the results
obtained were from the corresponding best
solution. In other words, for the heuristic phase,
after determining the solution for each grid size
using the same time constraint, we compared the
costs of the paths C(P) against the best C(P*) of
the four solutions using the equation [(C(P)-
C(P*))/C(P*)]*100. Similarly, this was also done
for the optimal control solutions. This tells us how
far, in terms of percentage above the best solution,
the path was from the best solution obtained.

From Table 2, we see that, as the grid size
increases from 20× 20 to 80× 80, the quality of the
Heuristic solution generated improves from 3.14%
to 1.15% on average above the best solution.
However, when we look at Table 3 the reverse is
true. We note that the best solution obtained via
the optimal control phase comes from the starting
solution generated using the 20× 20 grid. It is on

Table 2 Heuristic: average % above best solution.

 20 × 20 40 × 40 60 × 60 80 × 80

0.2 2.83 2.25 1.87 1.57

0.4 3.02 2.39 1.43 1.40

0.6 2.68 2.33 1.92 1.42

0.8 4.04 2.09 0.83 0.20

All 3.14 2.27 1.51 1.15

Table 3 Optimal Control: average % above best
solution.

 20 × 20 40 × 40 60 × 60 80 × 80

0.2 3.31 5.05 4.41 6.72

0.4 4.89 5.61 5.64 8.63

0.6 4.71 2.55 5.77 8.12

0.8 3.37 3.21 3.69 4.60

All 4.05 4.09 4.95 7.04

average 4.05% above the best solution. The worst
solution, on average, was found when using the
80× 80 path which was 7.04% greater than the best
solution.

This shows us that despite using a “better” path
from the larger grid dimension as an initial guess
the resulting optimal control path is worse. This
contradicts our belief that the best optimal control
solution would be found by using a feasible path
which has the lowest cost. These results and
observations are a direct consequence of the
different number of switching points used within
the optimal control phase. The lesser the number
of switching points the better the solution. We
used 100, 175, 243 and 325 switches for the
20× 20, 40× 40, 60× 60 and 80× 80 optimal
control phase respectively. The number of
switches increases as the grid size increases so as
to incorporate the heuristic solution into the
MISER software package. We still believe that the
final optimal control solution is dependent on a
good initial solution. However, the number of
switching points also has a large bearing on the
quality of result obtained.

Table 1 Computational results for the comparison of different grid sizes

 20 × 20 40 × 40 60 × 60 80 × 80

α % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time

0.2 33.80 30.90 32.38 67.72 32.39 128.83 30.87 200.77

0.4 26.41 36.01 25.21 62.77 24.69 114.13 22.86 180.84

0.6 18.64 53.45 20.01 78.53 17.18 103.63 15.03 291.06

0.8 14.86 43.68 13.44 76.39 11.90 144.89 9.35 223.75

All 23.43 41.01 22.76 71.35 21.54 122.87 19.53 224.11

1756

6. CONCLUSIONS

We have considered the Transit Path Problem, and
in particular, the problem of finding an optimal
submarine transit path through a field of sonar
sensors. Our approach to solving the problem was
to use two phases. First, we generate a good
quality solution for the discretized network
problem, using a simple efficient heuristic. Then,
we refine it by means of an optimal control
approach. Our work seems to suggest that the
number of switches employed is as an important
factor in determining a good solution as is the
quality of the initial solution used for the optimal
control phase. However, this is still an active area
of research that we are exploring.

7. ACKNOWLEDGMENTS

This work was supported by an Australian
Research Council Grant (No: DP0346396). The
authors would like to also thank Robert O’Dowd
and Christina Hallam from the Maritime
Operations Division in the Defence Science and
Technology Organisation for their input through
discussions and the provision of test data.

8. REFERENCES

Ahuja, R.K., J.L. Magnanti, and J.B. Orlin (1993),
Network Flows: Theory, Algorithms and
Applications, Prentice-Hall, Englewood Cliff,
New Jersey.

Caccetta, L., I. Loosen, and V. Rehbock (2005),
Optimal transit path problem for submarines,
In proceedings of the 4th International
Conference on Engineering Applications and
Computational Algorithms, DCDIS, Guelph,
Canada, July 27-29.

Dijkstra, E.W. (1959), A note of two problems in
connection with graphs, Numerische
Mathematik, 1, 269-271.

Gill, P.E., W. Murray, M.A. Saunders, and M.H.
Wright (1986), User’s Guide for NPSOL
(Version 4.0): A Fortran package for nonlinear
programming, Technical Report SOL, 86-2,
Systems Optimization Laboratory, Stanford
University.

Hallam C.L. (1997), Hierarchical Path
Generation: An Application to Submarine
Transit Paths, Honours Dissertation, Murdoch
University, Western Australia.

Howlett, P., P. Pudney and B. Benjamin (1992),
Determination of optimal driving strategies for
the control of a train, (in B.J. Noye, B.R.
Benjamin and L.H. Colgan (Eds)), Proc.

Computational Techniques and applications,
CTAC 91, 241-248, Computational
Mathematical Group, Australian Mathematical
Society.

Jennings, L.S., M.E. Fisher, K.L. Teo and C.J. Goh
(1991), MISER3: Solving Optimal Control
Problems – An Update, Advanced
Engineering Software, 13, 190-196.

Jennings, L.S., K.L. Teo, M.E. Fisher and C.J. Goh
(1997), MISER3 version 2, Optimal Control
Software, Theory and User Manual,
http://cado.maths.uwa.edu.au/miser/manual.ht
ml, Department of Mathematics, University of
Western Australia.

Lee, H.W.J., K.L. Teo, L.S. Jennings and V.
Rehbock (1997), Control Parametrization
Enhancing Technique for Time Optimal
Control Problems, Dynamic Systems and
Applications, 6(2), 243-262.

Lee, H.W.J., K.L. Teo, V. Rehbock and L.S.
Jennings (1999), Control Parametrization
Enchancing Technique for Discrete-Valued
Control Problems, Automatica, 35(8), 1401-
1407.

Rehbock, V., K.L. Teo, L.S. Jennings and H.W.J.
Lee (1999), A Survey of the Control
Parametrization and Control Parametrization
Enhancing Methods for Constrained Optimal
Control Problems, Progress in Optimization:
Contributions from Australasia, Kluwer
Academic Press, 247-275.

Rehbock, V., L. Caccetta, C.L. Hallam and R.
O’Dowd (2000), Optimal Submarine Transit
Paths Through Sonar Fields, Research Report,
Department of Mathematics and Statistics,
Curtin University of Technology.

Schittkowski, K. (1985/86), NLPQL: A Fortran
subroutine for solving constrained nonlinear
programming problems, Annals of Operations
Research, 5, 485-500.

Teo, K.L., C.J. Goh and K.H. Wong (1991), A
Unified Computational Approach to Optimal
Control Problems, Longman Scientific and
Technical, London.

Zhou, J.L., and A.L. Tits (1995), User’s Guide for
FFSQP Version 3.5 --- A FORTRAN Code for
Solving Constrained Nonlinear (Minimax)
Optimization Problems, Generating Iterates
Satisfying All Inequality Constraints, Institute
for Systems Research, University of
Maryland.

1757

