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EXTENDED ABSTRACT 

A fundamental network design problem is that of 
designing “efficient” routes for moving products, 
resources and information through a network. 
Usually the route must satisfy a variety of 
constraints. The efficiency of a network can be 
measured in terms of cost, reliability, throughput 
or length of path used. The constraints of a 
network can consist of delivery/pickup time 
deadlines, network availability, the need to visit 
specific nodes of the network, or resource 
restrictions such as vehicle capacity, fleet size or 
transmission rates to name a few.  

We consider a class of path design problems 
which arise when an object needs to traverse 
between two points through a specified region, 
the Transit Path Problem being one such problem. 
The Transit Path Problem is to determine an 
optimal path, in terms of minimizing risk or cost 
or maximizing reliability, for an object, such as a 
robot or vehicle, that needs to traverse a specified 
region between two points. This problem arises in 
many areas of real life. For example, the routing 
of military vehicles through a detection field or 
the routing of a new highway in a given terrain. 
Other applications include motion planning for 
robot manipulators through a field of obstacles 
and the generation of optimal trajectories for air, 
space, naval and land vehicles. We specifically 
look at the problem of determining an optimal 
transit path for a submarine moving through a 
field of sonar sensors, subject to a total time 
constraint.  

The strategy presented involves a two stage 
approach. The first stage is a discretization of the 
problem and the development of a network 
heuristic method, based upon a parameterisation 
using a convex combination, to solve the resulting 
network. The second stage involves the use of an 
optimal control model, the application of the 
CPET technique, and a solution procedure that 
utilizes the solution obtained in the first stage as a 
starting point. 

In the proposed model each of the sensors can 
detect the presence of the submarine with a 

probability which is a given function depending on 
the distance between the two and on the speed of 
the submarine. This function is not a simple 
analytical expression, but depends upon a range of 
factors, including the characteristics of the ocean 
floor and ocean surface, depths of the sensor and 
the submarine, and the temperature and salinity of 
the water.  

In this paper, we use probability of detection 
functions reported in (Hallam 1997). These were 
constructed under the assumptions that the 
geographic location and environmental conditions 
are known and that the submarine remains at a 
constant depth. Furthermore, each of the given 
functions is constructed for a particular constant 
vessel speed. While there are still further factors 
influencing the probability of detection (such as 
machinery states, frequency of the sensor, alertness 
of sensor operators or quality of the automatic 
detection, the relative aspect of the submarine and 
the sensor, the effect of sudden changes in travel 
direction or speed), the functions from (Hallam 
1997) contain sufficient detail to test the feasibility 
of the proposed method. The overall probability of 
detection at any point in time can then be calculated 
as an appropriate combination of these individual 
probabilities of detection. Here, we make the 
assumption that the probability of detection for any 
one sensor is independent of the probabilities of 
detection for the other sensors. The objective then 
is to find a transit path between two fixed positions 
in the sensor field which will minimize the overall 
probability of detection while still satisfying a 
maximum travel time constraint. The difficulty is 
due to the fact that the transit time must satisfy an 
upper bound constraint. 

Computational results support the use of our 
methodology. They show the heuristic we use to be 
both efficient and satisfactory. The heuristic 
generates a good quality initial solution for the 
discretized network problem. This starting path is 
then refined by means of an optimal control 
approach. In this phase of our procedure we make 
use of the optimal control software package 
MISER3. Improvements can be made in the range 
of 9 to 34% by employing the optimal control 
approach.

1751



1. INTRODUCTION 

The Transit Path Problem is to determine an 
optimal path, in terms of minimizing risk or cost or 
maximizing reliability, for an object, such as a 
robot or vehicle, that needs to traverse a specified 
region, discrete or continuous, between two points. 
Our specific application is in the context of a 
submarine moving through a field of sonar 
sensors. This paper is organized as follows. In 
Section 2 we describe the general optimal control 
formulation. The CPET technique is explained in 
Section 3. Section 4 presents the computational 
strategy we used to solve the problem. In Section 5 
we give numerical results. Finally we summarize 
our conclusions in Section 6.  

2. OPTIMAL CONTROL FORMULATION 

The optimal control formulation follows the 
treatment given in (Rehbock et al 2000). A sonar 
field is positioned in the Cartesian plane with 
coordinates (x, y) indicating the latitudinal and 
longitudinal distance (in kms) from the origin. 
Letting (x(t), y(t)) represent the location of the 
submarine at time t, the system’s dynamics is 
described by:  
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where )(tθ  represents the heading angle of the 
vessel in radians and s(t) is the speed of the vessel 
in km/h. Note that θ  and s are control functions 
satisfying: 
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Suppose that a total of sn  sensors are located at 

positions ( ix , iy ), sni ...,,2,1= , in the field. We 
assume for simplicity that these positions remain 
fixed during the journey and that the sonars are all 
of the same type with the same detection 
capabilities. At any instant of time, the distance of 
the submarine from each sensor is given by 
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For a vessel speed s, a probability of detection 
profile, p(r, s) can be constructed as a function of 
the physical distance r(t). Assuming that the 
sensors operate independently, the instantaneous 
probability of the vessel being detected is then 
given by: 
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Our aim is to minimize the cumulative probability 
of being detected over the entire journey. This is 
equivalent to minimizing the objective functional 
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For the submarine to arrive at its intended 
destination within a prescribed total time, we have 
constraints: 
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Note that the terminal time, T, is variable in this 
problem. In summary, then, the optimal control 
model of the submarine transit path problem can 
be stated as: Find a terminal time T (satisfying 
(1.7)), and control functions )(tθ  (satisfying (1.2)) 
and s(t) (satisfying 1.3)) such that the objective 
functional (1.5) is minimized subject to the vessel 
dynamics (1.1) and the constraints (1.6). 

The fact that the control s is restricted to a discrete 
set of values places this problem into a general 
class of discrete valued optimal control problems. 
Examples of these problems are studied in Howlett 
et al (1992) and Jennings et al (1997). The main 
difficulty with these problems is to determine the 
exact time points where the discrete valued control 
should switch between its allowed values. Since 
the gradients with respect to these switching time 
parameters are discontinuous, ordinary gradient 
based solution methods perform poorly. An 
additional difficulty is to determine exactly how 
many such switching times are involved in an 
optimal solution. The first of these difficulties has 
been successfully overcome by the Control 
Parameterization Enhancing Transform (CPET), 
which was initially applied to a similar class of 
time optimal control problems in (Lee et al 1997) 
and later directly to discrete valued optimal control 
problems in (Lee et al 1999). The second difficulty 
can be partially addressed by solving a sequence of 
problems which are transformed via CPET, but 
this remains an active area of research.  
Essentially, CPET involves a scaling of the time 
horizon, [0, T], via an auxiliary control function 
known as the enhancing control. This transforms 
the original problem into an equivalent canonical 
form which can then be solved by ordinary 
gradient based methods such as control 
parameterization described in (Teo et al 1991) and 
incorporated into the optimal control software 
MISER3 (Jennings et al 1991). 
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3. CPET TECHNIQUE 

We briefly explain CPET through its application to 
the example at hand. For a more thorough review 
and discussion of these techniques, see Rehbock et 
al (1999). Our first task is to set a limit to the 
number of course/speed switchings to be allowed 
and the allowable speeds s. Note that the heading 
angle control function, )(tθ , is modelled as a 
piecewise constant function, which is natural, 
given that the heading angle ought to remain 
constant between course changes. Furthermore, for 
the sake of simplicity, we assume that the 
switching times for the course changes coincide 
with switching times for the speed changes. This 
may appear to be restrictive, but note that this 
formulation does allow for only one of the controls 
to change value at a particular switching time, so 
full generality of the control structure is actually 
preserved.  

In our computations, the submarine is restricted to 
two speeds, 8 km/h and 14 km/h. The control 
constraint (1.3), therefore, becomes:  
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The detection profiles are given in the form of a set 
of data points and cubic splines are used to 
interpolate this data to generate smooth p(r, s) 
curves (Caccetta et al 2005).  

In this application, we have a practical limitation 
on the number of course/speed changes during the 
time horizon, because course and speed changes 
physically require a minimum period of time to be 
implemented. Furthermore, a submarine 
commander is unlikely to implement a solution 
which involves an excessive number of 
course/speed changes. Hence, we assume that the 
maximum number of switchings allowed is N - 1. 
The CPET technique may then be applied as 
follows. 

We define a new time horizon [0, N] and partition 
it into the subintervals )1,0[1 =I , )2,1[2 =I , 

)3,2[3 =I , …, ),1[ NNI N −= . We then define 

),0[),(1 Nu ∈ττ  to be a piecewise constant 
function on [0, N) that is consistent with this 
partition. 1u  is essentially the heading angle of the 
submarine in the transformed time scale and we 
still require the control constraints  
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This (fixed) control function takes on the role of 
s(t) in the transformed problem. Note that it is 
consistent with the constraint (2.1). Furthermore, 
we define the enhancing control, )(

3
τu  , to be a 

piecewise constant function consistent with the 
above partition and subject to the following 
constraints  
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The constraint (2.4) arises due to the total time 
constraint (1.7), but, by itself, will not be sufficient 
to replace (1.7) entirely. The main feature of the 
CPET method is the scaling, via the enhancing 
control, which relates the original time horizon [0, 
T] to the new time horizon [0, N]. This is done 
through the following differential equation:  
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Note that integration of (2.5) over [0, N) will allow 
us to recover the original time horizon [0, T], 
where T = t(N). To standardize notation, we set 

xx =1 , yx =2  and tx =3 . The transformed 
problem may then be stated as follows. Find 
control functions )(

1
τu  and )(

3
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and the constraints  
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Note that the third constraint in (2.8) arises directly 
from (1.7). 

The transformed problem now simply involves 
piecewise constant control functions defined on a 
regular fixed partition of the fixed time horizon [0, 
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N]. As such, it can be solved directly by the 
optimal control software MISER3 (Jennings et al 
1997). Note that the optimal solution of the 
original problem can be recovered easily from the 
solution of the transformed problem, as the 
original time scale is given by )(

3
τx . 

4. COMPUTATIONAL STRATEGY 

The Transit Path Problem is likely to have a 
unique optimal solution. However, in the solution 
region there are typically a large number of peaks 
and troughs representative of local maxima and 
minima solutions. While a locally optimal solution 
may be easily calculated, past numerical 
experiences (Rehbock et al 2000) suggests it is 
very much dependent on the initial guess one 
provides. It is unlikely that, given an arbitrary 
initial guess, a direct optimal control solution of 
the problem will generate a path which is globally 
optimal. To generate a good initial path we solve a 
discretized approximation of the problem by first 
constructing a grid-like network over the sensor 
field, then solve the resulting Constrained Shortest 
Path Problem (CSPP). We regard the knot points 
of the grid as nodes and the grid lines as edges, 
and thus think of the grid as a graph. We allow 
movement along edges only and with each edge 
we can associate a cost value.  The cost depends 
on the location of the edge in the sensor field and 
speed at which the vessel travels along the edge. It 
is calculated in the same manner as for the optimal 
control model. Furthermore, since the distance 
along each edge and the travel speed are known, 
we can calculate the time it takes the vessel to 
traverse each edge. 

In the optimal control formulation, we noted that 
the speed s of the submarine can come from a 
finite discrete set (1.3). Therefore, for each of the 
speeds in the discrete set, we need to have a 
corresponding edge between the node i and j in the 
graph to represent each of the speeds 1s , 2s , 3s , 
… . Assuming that the speeds in the set (1.3) are 
arranged in increasing order, 1s < 2s < 3s < … , it is 
possible to perform some elementary 
preprocessing. Letting the cost along the edge 
associated with speed ns  be denoted by n

ijc , we 
can clearly eliminate the edge (i, j) if 

{ } nmcc m
ij

n
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After the preprocessing stage we introduce dummy 
nodes and edges so as to avoid multiple edges. Of 
those possible speeds that remain after 
preprocessing, we can leave the edge (i, j) joining 
the slowest speed from node i to j. For each of the 

remaining speeds we need a dummy node j′  and a 
dummy edge ( j′ , j), which has a zero cost and a 
zero transit time. 

With respect to the simple graph G = (N, A), where 
N = { }n...,,2,1  is the set of nodes, |N| = n, and A is 
the set of edges, each edge (i, j) has a 
corresponding cost ijc  and a transit time ijt . For 
convenience, we denote the start (origin) node by 
‘O’ and the destination node by ‘D’. Also, let 

MAXT  be the time limit. The CSPP can be 
expressed as an Integer Programming Problem 
(Ahuja et al 1993). The CSPP has been studied by 
a number of authors and both exact algorithms and 
heuristics have been proposed. Methods used to 
solve CSPP include: k-shortest path ideas, cost 
scaling and rounding, Dynamic Programming 
formulations, and label setting approaches. By 
using the Integer Programming Formulation, 
solution strategies are: Lagrangian relaxation 
methods, branch and bound algorithms, and 
Branch and Cut methods.  Further details are 
discussed in Caccetta et al (2005). 

The CSPP is a computationally difficult problem 
to solve, because it is NP-complete. For the 
purpose of evaluating our strategy we generate a 
feasible path using a simple heuristic that finds a 
solution which is near optimal or optimal with 
minimal computational time. Basically, each edge 
(i, j) in our graph has two weights associated with 
it: cost ijc  and traverse time ijt . The idea is to 
parameterize these two weights into one label on 
the edge using the convex combination 

ijij tcijw )1( αα −+= , where ∈α  [0, 1]. Then, we 

solve the resulting SPP, using Dijkstra’s algorithm 
(Dijkstra 1959), while incrementing α  until a time 
feasible path, t(P) ≤ MAXT , is found. This path 
forms our initial guess for the optimal control 
phase of our approach. It is envisaged that this path 
is reasonably close to the global optimal solution 
for the continuous optimal control problem and, 
therefore, should be sufficient for our purpose. 

5. COMPUTATIONAL RESULTS 

All the computational tests were carried out on a 
Sun Netra X1 with a 500MHz 64-bit Ultra SPRAC 
Processor and 256MB of RAM.  

Our approach uses the solutions obtained from our 
heuristic as initial starting points for the 
corresponding optimal control model. The 
MISER3 software was used in conjunction with 
several different nonlinear programming solvers 
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(NLPQL (Schittkowski 1985/86), FFSQP (Zhou 
and Tits 1995), & NPSOL (Gill et al 1986)) to 
refine these initial solutions. FFSQP is based on 
the concept of feasible sequential quadratic 
programming. Starting with a feasible point 
(provided by the user or generated automatically), 
the algorithm produces successive iterates that all 
satisfy the constraints. The objective function can 
be decreased either after each iteration with an 
Armijo-type arc search or after at most three 
iterations with a nonmonotone line search. The 
user has the option to choose one of the two 
searches. The merit function used in both searches 
is the objective function itself. NLPQL is also 
based on a sequential quadratic programming 
method. Working with a quadratic approximation 
of the Lagrangian function and a linearization of 
the constraints, a quadratic subproblem is 
formulated and solved by the dual code QL. 
Following this, a line search is performed with 
respect to two alternative merit functions and the 
Hessian approximation is updated by the modified 
BFGS-formula. Unlike FFSQP, a feasibilty 
requirement is not imposed on the iterates. Like 
NLPQL, NPSOL is also a sequential quadratic 
programming method incorporating an augmented 
Lagrangian merit function and a BFGS quasi-
Newton approximation to the Hessian of the 
Lagrangian. 

To test our methodology, we ran two sets of test 
problems. Our first set of problems allows us to 
not only test our approach but also compare the 
different nonlinear solvers within MISER3. We 
generated our second set of problems so as to 
measure the sensitivity of the optimal control 
phase subject to the initial grid size employed. We 
tested our proposed method and the three different 
nonlinear solvers on 480 problems that were 
generated as follows. 

We imposed 4 different grid sizes over the region 
for the network phase, these being of dimension 
20× 20, 40× 40, 60× 60 and 80× 80, which are all 
equally spaced rectangular grids. We have 
restricted our test problems to sonar fields with sn  
= 4 sensors, though any number can be easily 
incorporated. Furthermore, we chose to look at a 
region of 80 km by 80 km. In addition, 0x  = 0, 

0y = 0, Tx = 80 and Ty  = 80, that is the starting 
point is (0, 0) km and the destination is at the point 
(80, 80) km. We then constructed 30 different sets 
of sensor locations. The locations of the sensors 
were determined by randomly generating 240 
integer values, { }24021 ..,,, xxx , between 0 and 80. 

We then paired these together, ( 1x , 2x ), ( 3x , 4x ), 

…, ( 239x , 240x ), to give the coordinates, in 
kilometres, of the sensors in relation to the starting 
point of the journey. The first four pairs give the 
sensor locations for the first set, the next four pairs 
represent the sensor locations for the second set, 
and so on. We use the probability of detection 
curves given in Hallam (1997).   

For each grid dimension and set of sensor 
locations, we imposed four different time 
constraints MAXT , ranging from a low or “tight” 
time constraint to a high or “loose” time constraint. 
For each problem, we determined its minimum 
time path, denoted by LT , and the time 
corresponding to the minimum unconstrained 
shortest path, denoted as HT . The four time 

constraints are then found using the formulae αT  

= (1 -α ) LT  + HTα  for α  = 0.2, 0.4, 0.6 and 0.8. 

2.0T  represents the “tightest” constraint and 8.0T  
the “loosest” constraint. 

Recall that the optimal control model does not 
require the path to move along the grid lines. 
Instead, virtually any concatenation of straight line 
sections with any direction and one of the two 
possible speeds is allowed. Clearly, the optimal 
control model is less constrained than the network 
approximation, so we expect to see an 
improvement in the optimal cost obtained.  

From the first set of test problems, we were able to 
establish that each of the three optimisation 
routines has its own advantage. NPSOL gives the 
best average percentage improvement, NLPQL has 
the quickest CPU time and FFSQP is the most 
“accurate” in terms of meeting the optimal control 
constraints. It appears that there is a three way 
trade-off between objective function value, CPU 
time and accuracy. It is up to the user to use the 
optimisation routine that is most suited to his or 
her needs. For a thorough presentation and 
discussion of these results refer to Caccetta et al  
(2005). 

To test the effect that the grid size has on the final 
solution, we generated 120 problems. To do this, 
we used the same set of sensor locations as in our 
previous computational tests. The four different 
“degrees” of tightness were also generated in the 
same manner. However, we imposed the time 
constraint associated with the 20× 20 network to 
the other three grid dimensions. In addition, we 
only used the NPSOL nonlinear programming 
solver for these test problems. By maintaining the 
same time constraint for all the grid sizes, we are 
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able to directly compare the effect that the initial 
starting solutions generated via the different sizes 
has on the final path obtained in the optimal 
control phase. We employed the NPSOL solver for 
this because it has the greatest average percentage 
improvement, its CPU time is reasonable and its 
“accuracy” is comparable to the FFSQP solver.  

In Table 1, we present the results for all the grid 
sizes. Each table displays the average 
computational results for all 120 problems broken 
up into the cases α  = 0.2, 0.4, 0.6, 0.8 as well as 
the total average over all of the cases. We present 
the percentage improvement achieved by use of 
the optimisation routine NPSOL, when compared 
to the initial starting path. Also shown is the 
average computational time, in minutes, taken to 
generate the solution by the NPSOL optimisation 
routine. 

As we observed with our earlier results (Caccetta 
et al 2005), Table 1 shows us that the percentage 
improvement that is made over the initial solution 
decreases as the grid size increases, while the CPU 
time, in minutes, increases as the grid dimension 
becomes larger. 

For both the heuristic and optimal control solution 
we measured the average percentage of the results 
obtained were from the corresponding best 
solution. In other words, for the heuristic phase, 
after determining the solution for each grid size 
using the same time constraint, we compared the 
costs of the paths C(P) against the best C(P*) of 
the four solutions using the equation [(C(P)-
C(P*))/C(P*)]*100. Similarly, this was also done 
for the optimal control solutions. This tells us how 
far, in terms of percentage above the best solution, 
the path was from the best solution obtained. 

From Table 2, we see that, as the grid size 
increases from 20× 20 to 80× 80, the quality of the 
Heuristic solution generated improves from 3.14% 
to 1.15% on average above the best solution. 
However, when we look at Table 3 the reverse is 
true. We note that the best solution obtained via 
the optimal control phase comes from the starting 
solution generated using the 20× 20 grid. It is on  

Table 2 Heuristic: average % above best solution. 

 20 × 20 40 × 40 60 × 60 80 × 80 

0.2 2.83 2.25 1.87 1.57 

0.4 3.02 2.39 1.43 1.40 

0.6 2.68 2.33 1.92 1.42 

0.8 4.04 2.09 0.83 0.20 

All 3.14 2.27 1.51 1.15 

Table 3 Optimal Control: average % above best 
solution. 

 20 × 20 40 × 40 60 × 60 80 × 80 

0.2 3.31 5.05 4.41 6.72 

0.4 4.89 5.61 5.64 8.63 

0.6 4.71 2.55 5.77 8.12 

0.8 3.37 3.21 3.69 4.60 

All 4.05 4.09 4.95 7.04 

average 4.05% above the best solution. The worst 
solution, on  average, was found when using the 
80× 80 path which was 7.04% greater than the best 
solution.  

This shows us that despite using a “better” path 
from the larger grid dimension as an initial guess 
the resulting optimal control path is worse. This 
contradicts our belief that the best optimal control 
solution would be found by using a feasible path 
which has the lowest cost. These results and 
observations are a direct consequence of the 
different number of switching points used within 
the optimal control phase. The lesser the number 
of switching points the better the solution. We 
used 100, 175, 243 and 325 switches for the 
20× 20, 40× 40, 60× 60 and 80× 80 optimal 
control phase respectively. The number of 
switches increases as the grid size increases so as 
to incorporate the heuristic solution into the 
MISER software package. We still believe that the 
final optimal control solution is dependent on a 
good initial solution. However, the number of 
switching points also has a large bearing on the 
quality of result obtained.  
 

Table 1 Computational results for the comparison of different grid sizes  

 20 × 20 40 × 40 60 × 60 80 × 80 

α  % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time 

0.2 33.80 30.90 32.38 67.72 32.39 128.83 30.87 200.77 

0.4 26.41 36.01 25.21 62.77 24.69 114.13 22.86 180.84 

0.6 18.64 53.45 20.01 78.53 17.18 103.63 15.03 291.06 

0.8 14.86 43.68 13.44 76.39 11.90 144.89 9.35 223.75 

All 23.43 41.01 22.76 71.35 21.54 122.87 19.53 224.11 
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6. CONCLUSIONS 

We have considered the Transit Path Problem, and 
in particular, the problem of finding an optimal 
submarine transit path through a field of sonar 
sensors. Our approach to solving the problem was 
to use two phases. First, we generate a good 
quality solution for the discretized network 
problem, using a simple efficient heuristic. Then, 
we refine it by means of an optimal control 
approach. Our work seems to suggest that the 
number of switches employed is as an important 
factor in determining a good solution as is the 
quality of the initial solution used for the optimal 
control phase. However, this is still an active area 
of research that we are exploring.  
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