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EXTENDED ABSTRACT 

In this paper we propose a computationally 
effective approach to detect multiple structural 
breaks in the mean occurring at unknown dates. 
We propose a non-parametric approach that 
exploits, in the framework of least squares 
regression trees, the contiguity property of the 
Fisher grouping method (1958) proposed for 
grouping a single real variable. The proposed 
approach is applied to study the possibility of 
using the series of anomalous observation C17 
provided by the seasonal adjustment procedure 
implemented in X12-ARIMA. 
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1. INTRODUCTION 

 
The detection of structural breaks is challenging 
and lot of effort has been devoted to this task both 
in the statistic and econometric literature (for a 
review see Hansen, 2001). In this paper we focus 
on the problem of detecting multiple breaks in the 
mean occurring at unknown dates. To this aim we 
propose a nonparametric approach based on 
regression trees. Given a continuous response 
variable Y and a set of p predictors 

}{,},1{ pXX Κ , regression trees model the 
relationship between the response and the 
covariates employing a recursive partitioning 
approach that results into a partition of Y based 
upon the values of the predictor variables. Our 
procedure makes use of an artificial covariate (so 
that p=1) that is an arbitrary strictly ascending (or 
descending) sequence of numbers thus we call it 
Atheorethical Regression Trees (so forth denoted 
by ART) (Cappelli and Reale, 2005) because it is 
theory-free being the covariate not a predictor 
variable but rather a counter. In what follows we 
will show that the use of such covariate in least 
square regression trees (Breiman et al., 1984) 
resorts to a sequential use of the Fisher's method of 
exact optimization (1958) proposed for grouping n 
elements into g mutually exclusive and exhaustive 
subsets having maximum homogeneity i.e., 
minimizing the within-groups sum of squares. 
Fisher's algorithm is designed for situations in 
which the data points are ordered and groups 
consist of intervals of data. Two subclass of 
problems are considered: the unrestricted case 
when the observations can be ordered according to 
their numerical values, and the restricted one when 
an a priori ordering is given. Time series data 
belong to the second case as the ordering is 
provided by the time and observations are not  

 

exchangeable. In this case seeking the minimum 
within sum of square partition corresponds to 
segment the series into homogeneous subperiods 
that contrast with each other i.e., it corresponds to 
detect breaks in the mean. A drawback of the 
Fisher's method is that it can deal with moderate-
sized values of n and g while ART overcomes 
these limitations because it corresponds to a 
sequential application of the Fisher's algorithm to a 
problem of g=2 subperiods. Furthermore, whereas 
Fisher's method produces a single partition and it 
is advisable to create several partitions by varying 
g, ART produces a hierarchical structure. The final 
partition and the corresponding set of break dates 
can result either from automatic procedure such as 
pruning along with popular model selection criteria 

or from subjective choice of the applied scientist 
based on a priori knowledge.     

2. ATHEORETHICAL REGRESSION 
TREES 

In least square regression trees (LSRT) a node t is 
split into the left and right descendants 1t  and rt  
to reduce the deviance of the response variable. 
Thus the algorithm selects the split s for which 

[ ])()()( 1 rtSStSStSS +−  is maximum, where 

∑
∈

=−=
ty

i
i

nityytSS ,,1))(()( Κ      (1) 

is the sum of squares for node t, and )( 1tSS and 

)( rtSS are the sums of squares for the left and 
right descendants, respectively. The splitting 
criterion is equivalent to maximize the between-
groups sum of squares BSS(t) that can be written  
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Thus, in LSRT the splitting criterion searches for 
the child nodes consisting of subsets of y values 
whose means are as far as possible. Once the 
binary partition of a node is found, the splitting 
process is applied separately to each subgroup, and 
so on recursively until the subgroups either reach a 
minimum size or no improvement of the criterion 
can be achieved. The resultant tree usually is 
overly large so that a pruning method is applied to 
trim it back. Minimizing the within-group sum of 
squares is a natural criterion for partitioning a 
single real variable. This is the case in the Fisher's 
algorithm of exact optimization (1958) whose key 
aspect it's the concepts of contiguous partitions. 
Let i, e and h be three data points that have order 
i≤e≤h; a partition is said to be contiguous if it 
consists of groups that satisfy the following 
condition: if i and h are assigned to the same class 
then e must be also assigned to that class. For 
ordered data only contiguous partitions require to 
be considered to detect the optimal one minimizing 
the within-group sum of squares. In the restricted 
case of time series data the contiguity applies to 
time i.e., only subsequent intervals in terms of the 
ordering specified by time are admissible.  The 
number of possible contiguous partitions of n 
(whatever) ordered objects into g groups makes it 
is unfeasible a global search but Fisher shows that 
the  number of computations can be substantially 
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reduced by exploiting  the additivity property of 
the sum of squares criterion by means a dynamic 
programming approach that allows to deal with the 
problem of finding the optimal partition into g 
groups making use of the results obtained while 
dealing with the problem of g-1 groups.  

Despite the saving, Fisher bounders the capacity of 
the algorithm in n≤200 and g≤6 and even with 
today's computers a complete enumeration and 
search it is possible only for g=2. The concept of 
contiguous partitions can be naturally exploited in 
the framework of least square regression trees.  At 
this aim let k be an arbitrary ascending (or 
descending) sequence of completely ordered 
numbers, for sake of simplicity take 
k=1,2,…,i,…,n. The use of such sequence as 
covariate into least square regression trees resorts 
to create and check at any node t all the admissible 
binary partitions of the tyi ∈  whose number is 
n(t)-1 and thus it is treatable. Indeed, the contiguity 
property ensures that at any node t the best split for 
the given order lays in k and it will be identified by 
the splitting criterion. Note that in the original 
Fisher's method optimal partitions for different 
values of g need not to be hierarchically nested. In 
the ART method as splitting goes on, the previous 
partitions are fixed, but for many sets of data this 
is represents a reasonable approximation providing 
good partitions at a much less expensive 
computational cost. Indeed, the Fisher's method 
requires )( 2 gnO  steps, whereas ART, at any tree 
node requires O(n(t)) steps to identify the best 
split. Hartigan (1975) provides an excellent 
justification in favor of the binary division 
algorithm in the case of time series data: suppose 
that the time interval consists of g intervals within 
each of which the values are constant. Then there 
is a partition into g segments for which the within 
sum of squares is zero and it will be identified by 
the tree algorithm. ART generates a hierarchical 
structure and a nested sequence of partitions 
corresponding to candidates sets of break dates can 
be identified by means of pruning, that is the 
process of discarding terminal nodes whose 
contribute to reduction in deviance is negligible. In 
order to find the subtree whose terminal nodes 
provide the optimal partition corresponding to the 
actual number of break dates and distinct 
subperiods present in the data, we use classical 
model selection criteria (for discussion on the use 
of these criteria in tree methods see Su et al., 
2003).  We also consider atheoretical regression 
trees in the in the context of Smooth Transition 
Regression Trees (Correa da Rosa et al., 2005) 
with a splitting criterion based on a Lagrange 
multiplier stopping rule which is better suited for 
time series than cross-validation.  

3. APPLICATION TO OFFICAL 
STATISTICS 

National Statistical Offices (NSO) collect, collate 
and publish data for the use of researchers, policy 
analysts and the general public. The main concern 
of NSOs is to release data that reflect the social or 
economic concept that they are meant to represent, 
within the budget allocated for this work and, 
crucially, with little or no revisions after release. 
As an NSO is supplying time series for a range of 
users with varying needs and knowledge of 
statistical analysis much of its output will be 
descriptive, rather than analytical. The core 
descriptive output will be the time series collated 
from the data collected.  

As the Chief Statistician of the Canadian NSO 
noted “Credibility plays a basic role in determining 
the value to users of the special commodity called 
statistical information. Indeed, few users can 
validate directly the data released by statistical 
offices.” (Fellegi, 1996, p. 169). To enable users to 
use the data supplied by an NSO with confidence 
considerable work inside the NSO is done to check 
and report on the quality of the data produced. A 
key issue is to ensure that the series is a consistent 
throughout its length. By doing this the NSO can 
assure users that the series is a result of the data 
generating process, and not the way the NSO has 
collected, collated and published the data. 

Much of the reporting on NSO outputs focuses on 
the movements in the time series, rather than the 
values. For any series that is seasonal often the 
largest part of the movement is caused by changes 
in the seasonal component. For this reason most 
statistical agencies provide the measured figure 
along with the seasonally adjusted value (where 
appropriate) and, increasingly, the trend estimates, 
and direct users to the latter series rather than the 
unadjusted figures. 

To seasonally adjust series Statistics New Zealand 
estimates the unobserved seasonal (S), calendar 
(TD), trend (C) and irregular (I) components of the 
time series it releases. While state space modelling 
will provide estimates of these components many 
NSO, including Statistics New Zealand, use 
variants of the Census II Method of the U.S. 
Bureau of the Census (Shiskin et.al. 1967). 
Statistics New Zealand currently uses Census 
Method II Variant X-12, commonly called X-12 
(Findley et.al. 1998). X-12 uses Henderson 
moving averages to decompose the original series 
into the set of unobserved components. As outliers 
can cause problems in time series analysis X-12 
identifies outliers and records this information in a 
table, termed the C17 table. For complete details 
see Ladiray & Quenneville (2001). 
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An NSO is particularly interested in identifying 
any atypical changes in the behaviour of the series. 
These changes in the series can indicate changes in 
the data generating mechanism, but may arise 
through unforeseen effects in the data collection 
and collation process used by the NSO. Any 
method for identifying the breakpoints usually is 
applied to the original series, or some stationary 
series produced by differencing. Given the 
estimates of the unobserved components produced 
by X-12, as well as the information on outlier 
identification we have investigated the 
applicability of the method to these. 

Is the C17 component a useful indicator for 
possible structural changes of the data generating 
process? 

Our strategy to answer this question is to identify 
breakpoints in a time series using atheoretical 
regression trees and verifying if they were 
indicated as anomalous by the C17 component 
(values different from 1). In particular we focus 
our attention on the series of the irregulars, which 
is computed as residual from the other smoothed 
components. Monte Carlo simulations have been 
done to assess the capability of the C17 component 
to indicate structural changes and the promptness 
of ART to confirm that an anomalous value is 
actually a breakpoint. Finally we consider the real 
case of the Quarterly Gross Domestic Expenditure 
in New Zealand from June 1986 to March 2005. 
Figure 1 and 2 show a time plot of the original 
series and the irregular component respectively. 
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Figure 1: QGDE in NZ (1986-2005) 
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Figure 2: Irregular component of QGDE 

The series C17 provided by X-12 contains 5 
anomalous observations and ART identifies one of 
them, corresponding to March 1989 as an outlier. 

4. CONCLUSION 

Atheoretical regression trees are an effective way 
to identify structural breaks at unknown time. The 
use of smooth transition regression trees is better 
suited for time series. The application shows that 
the series of anomalous observations C17, 
provided by X12, provides useful information for 
the prompt identification of structural breaks. 
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