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EXTENDED ABSTRACT

Since Merton (1969), the description of a contingent
claim as a Brownian motion is commonly accepted.
Thus an option price, a future price, a share price, a
bond price, interest rates etc., can be modelled with
a Brownian motion. In summary, any financial se-
ries which present value depends on only a few previ-
ous values, may be modelled with a continuous–time
diffusion–type process. The general diffusion equation
is given by,

dX(t) = µ(X(t))dt + σ(X(t))dB(t), (1)

where µ(X(t)) is the drift function and σ(X(t)) is the
volatility function of the process. There is a vast list of
references related to developments on the short–term
interest rate as a stochastic diffusion. For instance:
a) Vacisek (1977) studied equation (1) for a mean–
reverting drift function and a constant volatility; b)
Cox, Ingersoll and Ross (1985) posed the CIR model
which contains the square root of X(t) as part of the
diffusion function.

There exist financial data with long–range depen-
dence (LRD). The typical data with this property is
obtained as aggregation of several processes of type
(1). For instance, portfolios or indexes such as the
S&P 500, Nikkei, FTSE, etc. It is important to exploit
this property as information imbedded in the data can
be used to find arbitrage opportunities. Processes with
LRD are modelled by,

dX(t) = µ(X(t))dt + σ(X(t))dBβ(t). (2)

Equation (2) differs from equation (1) in the diffu-
sion term: the classical Brownian motion is substi-
tuted by a fractional Brownian motion of the form
Bβ(t) =

∫ t

0
(t−s)β

Γ(1+β)dB(s), where B(t) is the standard
Brownian motion and Γ(x) is the usual Γ function.
The fractional Brownian motion has dependent incre-
ments, in essence the fractional Brownian motion dis-
plays LRD which is measured by β. Classically the
Hurst index, H ∈ ( 1

2 , 1), indicates the process displays
LRD. The parameter β is related to H as β = H − 1

2
(see Beran 1994, p.52–53). If 0 < β < 1

2 then the
process is said to have LRD, if − 1

2 < β < 0 then the

process is said to have intermediate–range dependence
(IRD) and if β = 0 then the process is of type (1).

As a particular case of (2), we are interested in the
form

dX(t) = −αX(t)dt + σdBβ(t), (3)

where the α > 0 is the drift parameter and the the
diffusion function is given by the parameter σ > 0.
This particular expression is chosen because it has a
solution (Comte and Renault, 1996) that is equivalent
to a stationary process.

Thirty years ago, Black and Scholes (1973) assumed
a constant volatility to derive their famous option pric-
ing equation. The implied volatility values obtained
from this equation show skewness, suggesting that the
assumption of constant volatility is not feasible. In
fact, the volatility shows an intermittent behaviour
with periods of high values and periods of low val-
ues. In addition, the asset volatility cannot be directly
observed. The stochastic volatility (SV) model deals
with these two facts. Hull and White (1987) amongst
others study the logarithm of SV as an Ornstein–
Uhlenbeck process. Andersen and Lund (1997) ex-
tend the CIR model to associate the spot interest rate
with stochastic volatility process through estimating
the parameters with the efficient method of moments.

Comte and Renault (1998) specified the fractional
stochastic volatility model (FSV), as an extension of
the SV with stochastic volatility displaying LRD. This
paper proposes a new methodology to estimate the
volatility parameters from the returns. Our research
shows that the parameter estimation of the FSV model
can be transformed to the parameter estimation of
a process without LRD. A priori, the assumption of
long memory on the stochastic volatility might sug-
gest LRD on the underlier and returns. It is shown
that the returns do not display LRD independently of
long memory in the volatility values.
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1. LRD PROCESSES

In this section we are interested in a fractional stochas-
tic process of type (3). As it can be found in Comte
and Renault (1996), these processes have a solution of
type,

X(t) =
∫ t

0

A(t− s)dB(s) (4)

with A(x) = σ
Γ(1+β)

(
xβ − α

∫ x

0
e−α(x−u)uβdu

)
. It fol-

lows from equation (4) that X(t) belongs to a fam-
ily of non–stationary Gaussian processes. It is known
that an asymptotically equivalent process X̃(t) can be
found,

X̃(t) =
∫ t

−∞
A(t− s)dB(s), (5)

which is still stationary Gaussian with mean zero. The
spectral density of this process is defined by,

φX̃(ω) = φX̃(ω, θ) =
σ2

Γ2(1 + β)
1

|ω|2β

1
ω2 + α2

, (6)

which is well–defined for all values ω ∈ <. Thus for
values of β ∈ (0, 1

2 ), the spectral density behaves as
a usual LRD spectral density: decreasing to zero as
|ω| → ∞ and increasing to ∞ as |ω| → 0. For values
of β ∈ (− 1

2 , 0) the spectral density, φ(ω, θ), decreases
to zero as |ω| → ∞ and |ω| → 0 and has the maximum

at ω = α
√

−β
1+β .

The autocovariance function and the spectral den-
sity are closely related to each other. The autocovari-
ance function is defined in the time domain while the
spectral density is defined in the frequency domain.
In summary, the spectral density is the Fourier trans-
form of the autocovariance function and therefore we
can derive one from the other. The autocovariance
function of X̃ is the inverse Fourier transform of (6),

γX̃(τ) = cov(X̃(t + τ), X̃(t))

= 2
∫ ∞

0

φX̃(ω, θ) cos(ωτ)dω.
(7)

This explicitly implies,

γX̃(τ) = 2σ2

Γ2(1+β)

{
π cosh(α(τ))

2α1+2β cos(βπ)
−

|τ |1+2βΓ(−1− 2β)

2F3[1, 1 + β, 3
2 + β, α2(τ)2

4 ] sin(βπ)
} (8)

with 2F3 the generalised hypergeometric function
(Prudnikov et al.,1986). Then the variance of X̃(t)
is given by

σ2
X̃ = γX̃(0) =

σ2π

Γ2(1 + β)α1+2β cos(βπ)
. (9)

Note that σ2
X̃

contains all information of process (5).
Gao, Anh and Heyde (2002) and Gao (2004) propose
using a continuous–time version of the Whittle con-
trast function to estimate α, β and σ. What financial
data can be modelled with X̃(t)? Indexes such as the
S&P 500 are perfect candidates. Figure 1 shows that
the S&P 500 is not stationary. In other hand, the
returns displayed in Figure 2 are likely stationary, al-
though they are non–Gaussian.

Figure 1 shows the curve of the index from January
1950 until July 2005.
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Figure 1: S&P500 daily index from Jan. 1950 until
Jul. 2005

The condition of Gaussianity is very restrictive. To
the extend of our knowledge, there is no financial data
with LRD that can be modelled by X̃(t) directly.

2. FRACTIONAL STOCHASTIC VOLATILITY

The SV model consists of two stochastic differential
equations (SDE) which simultaneously model the price
and its volatility. Comte and Renault (1998) extend
the SV model to accommodate data whose volatility
displays LRD, specifiying the FSV model. The form
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Figure 2: S&P500 returns from Jan. 1950 until Jul.
2005

of interest to this paper is given by,

dY (t) = ṽ(t)dBI(t), (10)

dX̃(t) = −αX̃(t)dt + σdBII
β (t), (11)

where X̃(t) = ln(ṽ(t)) and Y (t) = ln(S(t)). The inde-
pendency between BI(t) and BII

β (t) is assumed.

Equation (10) models the behaviour of the price
process S(t) – for instance the value of the S&P 500
at time t. In this equation ṽ(t) is the volatility, a
stochastic process modelled by equation (11). The aim
of this paper is to find a methodology to estimate α,
β and σ.

Equation (11) is a fractional stochastic process of
type (3). Thus, X̃(t) is a Gaussian process with vari-
ance σ2

X̃
as given in equation (9). Then, ṽ(t) is a log-

nomal process with mean µṽ = exp(σ2
X̃

/2), variance

σ2
ṽ =

(
exp(σ2

X̃
)− 1

)
exp(σ2

X̃
) and covariance matrix

Kṽ given by,

exp{σ2
X̃
}



exp{σ2
X̃
} − 1 . . . exp{γX̃(nτ)} − 1

exp{γX̃(τ)} − 1 . . . exp{γX̃((n− 1)τ)} − 1

.

..
. . .

.

..
..
.

..

.
exp{γX̃(nτ)} − 1 . . . exp{σ2

X̃
} − 1


Note that σ2

ṽ is an expression containing the three
parameters of the volatility process.

The solution of (10),

Y (t) = Y (0) +
∫ t

0

ṽ(r)dBI(r),

is non–stationary and non–Gaussian, with mean Y (0).
The initial value Y (0) can be assumed to be zero with-
out loss of generality. The covariance function of Y (t)
is of the form

γY (τ) =
∫ min(t,t+τ)

0

E[ṽ2(r)]dr

= min(t, t + τ)σ2
ṽ .

Thus the covariance depends on t. As expected
ln(S(t)) is non–stationary. However, the returns de-
fined as

rt = ln
(

S(t)
S(t− 1)

)
for t = 2 . . . T.,

are stationary. This motivates the study of the incre-
ments of Y (t),

∆Y (t,∆t) = Y (t + ∆t)− Y (t). (12)

In the continuous case t,∆t ∈ < and ∆t → 0. For the
discrete case t, ∆t ∈ {1, . . . , N} where N is the length
of Y (t). The first difference transformation is defined
for ∆t = 1. A general formula of the autocovariance
function of (13),i.e., E[∆Y (t + τ,∆t1)∆Y (t, ∆t2)] is
given by,∫ ∞

−∞
eiτω(1− eiω∆t1)(1− e−iω∆t2)

1 + ω2

ω2
dF (ω),

which is independent of t for all ∆t1,∆t2 and τ ∈ <. If
∆Y (t, ∆t) ∈ L2(<) then, Y (t) is said to be wide-sense
stationary or second-order stationary (see Doob 1953,
Yaglom 1987). When F (ω) is absolutely continuous,
we can find the spectral density φ∆Y (ω) as the deriva-
tive of F . If we assume that the increments are of the
same size, i.e. ∆t1 = ∆t2 = ∆t, then the form of the
autocovariance is,

γ∆Y (τ) =

 σ2
ṽ(∆t− |τ |) |τ | < ∆t

0 |τ | ≥ ∆t
(13)

which Fourier transform provides the spectral density,

φ∆Y (ω, θ) =
σ2

ṽ

2π

(
sin(ω∆t/2)

ω/2

)2

. (14)
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When ω → 0, the spectral density φ∆Y (ω, θ) is pro-
portional to (∆t)2. The spectral density goes to zero
when ω → ∞. As it can be seen in Figure 3, this is
the spectral density of a process without LRD as does
not explode at ω = 0. In addition, the autocorrelation
function (13) decreases to zero. We conclude that the
series of equal size increments of Y (t) does not display
LRD.
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Figure 3: Comparison of spectral density of a IRD and
LRD process

Empirically, the returns of the S&P 500, Dow Jones,
Nasdaq, Nikkei, etc. do not display LRD. A priori, one
might expect that the LRD of the volatility process
would be transpassed into the underlying process. Our
study shows, the LRD of the volatility may not be
sufficient to ensure the LRD of the returns.

3. WHITTLE ESTIMATION

Some detail discussion on spectral analysis involv-
ing short–range dependent stationary time series can
be found in §10 of Brockwell and Davis (1991) and
Priestly (1981). Gao, Anh and Heyde (2002) propose
a continuous–time periodogram of the form

IN
Y (ω) =

1
2πN

∣∣∣∣∣
∫ N

0

e−iωtY (t)dt

∣∣∣∣∣
2

,

where N > 0 is the upper bound of the interval [0, N ],
on which each Y (t) is observed.

As in Gao (2004), this paper uses an extended
continuous–time version of the discrete Gauss–Whittle
contrast function used by Dahlahaus (1989). For pro-
cesses with LRD, we need to get a weight function
invloved to ensure that the contrast function is well–
defined. This is not the case for processes with IRD,
thus the contrast function used in this paper is,

LN
Y (θ) =

1
4π

∫ ∞

0

{
log(φY (ω, θ)) +

IN
Y (ω)

φY (ω, θ)

}
dω.

The minimum contrast estimator of θ is defined as

θ̄ = arg min
θ∈Θ0

LN
Y (θ),

where Θ0 is a compact subset of Θ.

As can be seen from Theorem 3.1 of Gao
(2004), both the convergence in probability
and the asymptotic normality of θ̄ hold au-
tomatically for the case where θ ∈ Θ1 ={
θ = (α, β, σ) : α > 0, 0 < β < 1

2 , σ > 0
}
. As in

Casas and Gao (2004), the convergence also holds for
− 1

2 < β ≤ 0 which is of our concern in this paper.

4. CONCLUSIONS

The estimation of the volatility process is one of
the most difficult problems in econometrics. Neither
volatility simulation techniques nor volatility data col-
lection are completely satisfactory. Instead, the au-
thors propose a technique to estimate the volatility
from the returns. The main assumption is that the
volatility process is Gaussian with the property of
LRD. Therefore the probability distribution of the re-
turns is non–Gaussian. Suprisingly, the returns do not
inherit the LRD property from the volatility process.
The main contribution of this paper is the simplication
of an estimation problem for process with LRD to an
estimation problem for processes without LRD.
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