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ABSTRACT

A spatial individual-based model of producer-
consumer interaction is described. The model
includes a two-dimensional grid of cells in which
a producer organism grows according to a logistic
equation, and individual herbivores which move
towards cells high in producer biomass to consume the
producer. Herbivores die of starvation if their energy
reserve is too low or they may reproduce asexually
if they have eaten sufficiently. The individuals in
the model are the herbivores and the matrix cells—
the producers are represented only as an attribute of
the individual cells. The model was built as simply
as possible with parsimonious producer-consumer
interaction and consumer behavior.

In this paper we consider spatial effects in the model.
We test the effect of three independent variables: a)
the distance over which the herbivores may move
per time step, b) a torus matrix compared with an
edged matrix and c) the size of the space matrix.
We also comment on the inclusion of space itself
into the model algorithm. The effect of the three
independent variables on population size is tested by
using a 3-factor ANOVA for herbivore and producer
populations. The model is executed ten times for
each of 18 combinations of levels of the three factors.
We find a significant Distance × Edge × Matrix
interaction for the herbivores. The variation in
population among the three matrix sizes at each move
distance differed depending on whether an edge was
present or not. For the producers the ANOVA showed
a significant Distance × Matrix interaction which
arose because the variation in population among the
three matrix sizes was not consistent across the three
move distances.

The effects of two factors were clearly evident in
the graphical display of the model, but not highly
significant in the statistical procedure. The effect of an
edge is evident when the populations are graphed over
time or when the graphical display of the software
is observed during a simulation. The herbivore

population changes over time with an edge present
are not as smooth as without an edge. Watching the
graphical display reveals a cycle of near population
extinctions as a majority of herbivores move towards
high populations of producers only to be trapped
by the edge and die of starvation. Observation of
the graphical output reveals that such large falls in
population in a small number of time steps do not
occur to the same extent when an edge is not present.

The herbivore maximum move distance also has an
effect on the model dynamics which is not evident
in the statistical analysis. An increasing move
distance results in greater fluctuations in the herbivore
population and an increased likelihood of extinction.
Observing the model graphical output as the move
distance increases, the herbivores move to areas of
greater producer biomass more quickly, resulting in
greater fluctuations in both populations. If the move
distance is too great, the herbivore population is able
to consume too much of the producer population in
too few time steps and becomes extinct. This danger
of extinction during steady state dynamics increases
as the matrix size decreases.

We also find metapopulation behavior emerging from
the interactions between the individual herbivores and
cells, where patches and transient barriers emerge
and disappear, with local extinctions and recruitment
occurring. This behavior was not explicitly coded into
the model.

The contribution of this paper to the modeling of
ecological systems is threefold. First, we demonstrate
that the details of distance moved, the existence of an
edge and the size of the space involved do affect model
dynamics and we argue that these details should
be included in model descriptions in the literature.
Second, we demonstrate that a simple algorithm of
producer-consumer interaction can exhibit behavior
characteristic of metapopulation theory. Third, we
argue that graphical output of a spatial model can
reveal details of behavior which are not evident in the
population means.
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1 INTRODUCTION

The use of individual-based modeling (IBM) can
facilitate understanding of a system and even
decision-making in resource management (Grimm
1999, Judson 1994 and Łomnicki 1999). The use
of individual-based modeling has grown in ecology
in the last 2-3 decades (DeAngelis et al 2001,
Grimm 1999 and Łomnicki 1999). Individual-based
models may also explicitly include space, as may
mathematical or other models. Arguments for the
inclusion of space are similar to those for the use of
IBMs themselves: such models more closely simulate
some aspects of the natural system being modeled,
aspects which are important for the question being
researched. In the case of IBMs, discrete individuals
with potentially unique state and behavior may be
included, as may their individual interactions on
local levels. The inclusion of space in a model
allows the modeler to expose individuals to only
other individuals in the local vicinity, rather than
to the whole population. Models which do not
explicitly involve space rely on the principle of
mass action, whereby individuals mix instantly and
randomly, and hence all individuals in the system
have an equal chance of interaction with all other
individuals. This is clearly not the case in real
ecological systems, and researchers who find that
the inclusion of space in their models affects model
dynamics include DeAngelis and Petersen (2001),
Donaldson and Nisbet (1999), Keitt and Johnson
(1995), McCauley et al (1993) and Schneider (2001)

The use of IBM has not grown as the early pioneers
may have hoped, and the reasons for this include
the difficulty of describing an IBM and the lack
of standard practices (Grimm 1999). The lack of
standard practice in describing IBMs in the literature
makes replication of these models impossible. For
example, consequences of the size of the space used in
a model are reported by authors including Donaldson
and Nisbet (1999) and Schneider (2001), who find that
the size of the space matrix affects the stability of the
model. Acosta (2002) finds a similar effect interacting
with with dispersal dynamics. Few authors, however,
report the exact size of the space used. In a brief
survey no authors were found to mention whether
their space was a torus or an edged space.

Similarly, the distance over which individuals may
move in one time step is found to affect the stability
of the populations of DeAngelis and Petersen (2001),
McCauley et al (1993) and Wilson et al (1993).
These authors report that the higher the mobility of
prey organisms, the more stable the prey populations.
DeRoos et al (1991) finds that limited mobility in a
predator-prey model reduces population fluctuations,
although average densities remain unaffected. Many
other authors, however, do not report this detail in

their descriptions of their models.

In this paper we consider the effects of space on a
simple producer-consumer system. We find that the
inclusion of space itself into the model algorithm,
the distance over which the consumers may move per
time step, the existence of an edge on the matrix and
the size of the space matrix affect model dynamics
and we argue that these details should therefore be
reported by the builders of spatial models. We find
that the inclusion of space introduces behavior similar
to that described by metapopulation theory, and we
find that the graphical output from the model is useful
in understanding the dynamics of the model.

2 METHOD

2.1 Design

The effect of three independent variables (matrix size,
edge use and move distance) on population size was
tested by using a 3-factor ANOVA for herbivore
and producer populations in a spatial, individual-
based producer-consumer model. The model was
executed ten times for each of eighteen combinations
of factor levels listed below. The data collected
were the mean population levels for each execution
of the model reaching 1000 time steps. In cases
where the herbivore population became extinct, either
in transient dynamics at the start of the simulation
or during steady-state dynamics, the means were
not used because the transient dynamics would then
represent a larger portion of the total time steps
in these cases than for cases running 1000 steps.
Table 1 lists these extinctions. For the purposes of
the ANOVA the factors matrix size and move distance
were treated as random factors (three levels) and
edge use was treated as a fixed factor (two levels).
To test the assumption of homogeneity of variance,
Cochran’s C test was used.

The independent variables and their levels are:

• The size of the matrix: gw = gh = 100, 141 or
200 giving 10000, 20000 or 40000 cells.

• The use of an edge: ge = 0 or 1.

• The herbivore maximum move distance per
time step: hmd = 1, 2 or 4.

2.2 Description of the spatial model

The spatial IBM described here simulates a producer
and consumer species in a two-dimensional space,
and the energy flow between the two species. The
individuals in the model are the cells of the grid
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and the members of the consumer species—the
members of the producer species are not represented
as individuals. Members of the consumer species are
born, reproduce and possibly die of starvation. The
producer species grows in each cell and is eaten by
individual consumer, which move between cells.

Cells and consumers are created as discrete objects
in the computer memory, each with a potentially
unique state and resulting behavior. The attributes
of each cell are the current biomass of producer—
the units of biomass are undefined—and an integer
number of consumers. The attributes of the consumers
are a current position and resource level, the latter
representing the energy reserves carried by living
organisms and also not formally defined.

The producer species in each cell grows according to
the logistic growth model of classical ecology (see,
for example, Adler (1998) pp224-226). Each cell
has an individual biomass of a producer organism,
a growth rate for the producer and a maximum
carrying capacity for the producer. The biomass of the
producer organism in each cell is assigned randomly
when the simulation is started for the simulations
reported here. It then grows towards the maximum
capacity of the cell as the simulation progresses.
Producer biomass is lost from a cell when a consumer
eats the producer in the cell.

The resource level of each consumer increases as the
consumer eats the producer in its current cell, and
decreases with time, as the consumer moves from
cell to cell and as the consumer reproduces. If a
consumer does not eat enough resources it will die and
be removed from the simulation.

When the model is started a given number of
consumers are created and assigned to cells in the
grid randomly. In each time step of the simulation,
each consumer eats a given percentage of the producer
species in the cell then compares the current cell with
neighboring cells. If a neighboring cell has a higher
biomass of producer the consumer will move to that
cell.

The model inputs are as follows—the input values
used to produce Figure 1 and Figure 2 are also listed
here:

• The width and height of the grid in cells (gw =
100 and gh = 100)

• The existence or otherwise of an edge to the
matrix (ge = 0).

• The producer growth rate of each cell (pr =
0.02)

• The maximum producer population of each cell
(pK = 200)

• Initial number of herbivores (hp0 = 100)

• Initial resource level of the herbivores (hr0 =
1000)

• Percentage of producer eaten per cell per time
step (hpe = 80)

• Trophic efficiency of the herbivores (hte =
100)

• Herbivore maximum move distance (hmd = 1)

• Herbivore move cost (hmc = 10)

• Herbivore move level of stochasticity (hms =
2.0)

• Metabolic tax per cycle for the herbivores
(hmt = 100)

• Reproductive cost for the herbivores (hrc =
1000)

The generalized nature of this model means that many
predator-prey systems could be represented in the
terms of this model. Our decision to refer to producer
and consumer organisms was arbitrary.

2.2.1 Model output

The model output includes

1. The population of consumers per time step
and the mean producer biomass per cell per
time step. Figure 1 shows cycling population
levels similar to those of the Lotka-Volterra
equations of classical ecology. The appearance
of this graph is highly dependent on the model
parameter values, as the other figures in this
paper illustrate.
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Figure 1. Population levels for 1000 cycles
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2. A graphical display of each cell (Figure 2).
The brightness of each cell indicates the cell
producer biomass—the brighter the cell, the
closer the biomass is to the maximum pK value
in the matrix. The white cells indicate the
presence of a consumer. Figure 2 shows the
matrix after 1000 time steps and is the final
state of the simulation graphed in Figure 1. The
dark areas have low producer biomass and are
areas from which the consumers have recently
moved. The brighter areas have had longer
to recover from consumer grazing, and are the
areas towards which the consumers are moving.

Figure 2. Graphical output after 1000 cycles

2.2.2 Initialization

At the start of the simulation the cells are created in
the computer memory in a matrix or grid of gw width
and gh height in cells. The matrix may or may not
have an edge (ge)—an edge cannot be crossed by the
herbivores. The lack of an edge results in a torus
(wrap-around) effect. Each cell is assigned a random
producer biomass chosen from between zero and the
maximum pK value for the cell). The herbivores are
then created and assigned to random cell addresses.
The number of herbivores created is hp0, and each is
given an initial resource level of hr0.

2.2.3 Processing per cycle

The processing which then occurs during each time
step is as follows:

1. Each cell producer biomass advances one step
towards the maximum carrying capacity of the

cell, pK , according to the growth rate of the cell,
pr. The logistic growth model is expressed here
as the stepping function used in the computer
code: Nt+1 = Nt + Ntpr(1 −

Nt

pK

). Each
cell has an individual pr and pK value, however
these values are uniform across the matrix in the
simulations reported here.

2. Each herbivore compares the current cell
producer biomass with the neighboring cells,
and moves to the cell with the highest
effective producer biomass. The number
of neighboring cells considered depends on
how far the herbivores may move, hmd.
The effective producer biomass of a cell is
calculated using the actual producer biomass,
the presence of other herbivores and the cost
of moving to the cell, hmc × movedistance.
A level of stochasticity is involved—the final
hms (herbivore move level of stochasticity)
percentage of the effective producer biomass is
randomly chosen before a decision to move is
made.

3. Each herbivore eats the given percentage of
producer on the new cell, hpe. The cell
producer biomass is reduced and the herbivore
resource level is increased, taking into account
the trophic efficiency of the herbivore hte.

4. The cost for each herbivore of living one time
step is hmt, and this is subtracted from the
resource level carried by the herbivore. Herbi-
vores which do not have sufficient resources to
live one more time step die of starvation and are
removed from the simulation—this is the only
way a herbivore dies.

5. Any herbivores with sufficient resources to live
one more time step and reproduce then produce
an offspring asexually at a resource cost of hrc.
The new individual is placed on the same cell as
the parent, but with the parameter set used in the
simulations reported here, the new individual
usually moves away in the next time step as
two herbivores on one cell halves the effective
producer biomass of the cell when a decision to
move is made.

3 RESULTS

3.1 Matrix size, edge and move distance

The variances of the herbivore data were heteroge-
neous (Cochran’s C = 0.34, P < 0.01). This is
not a problem for the interpretation of the ANOVA
results because this analysis is robust to departures
from the assumption of homogeneity of variances for
the sample sizes (n = 10) used in these tests. The
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3-factor ANOVA found a significant Distance × Edge
× Matrix interaction (F4, 162 = 2.98, P < 0.05).
The variation in population among the 3 matrix sizes
at each move distance differed depending on whether
an edge was present or not (Figure 3).

The different matrix sizes of 10000, 20000 and 40000
cells introduce a possible confounding effect: the
different numbers of cells may be expected to result
in differing numbers of herbivores as with more
cells there are greater energy reserves available in
the larger biomass of producers. We adjusted for
this by dividing the herbivore numbers by two for
matrix size 20000, and by four for matrix size 40000.
The resulting ANOVA produced identical significant
effects and interactions. This is an important result:
the number of herbivores per cell rises as the matrix
size increases.

The variances of the producer data were homogeneous
(Cochran’s C = 0.15, P > 0.05). The 3-factor
ANOVA showed a significant Distance × Matrix
interaction (F4, 162 = 42.63, P < 0.001) which
arose because the variation in population among
the 3 matrix sizes was not consistent across the 3
move distances (Figure 4). The populations for
each of the matrix sizes were significantly different
from one another at distances moved 1 and 2, but
the populations of matrix sizes 1 and 2 were not
significantly different at distance moved 3.

 50

 100

 150

 200

 250

321

P
op

ul
at

io
n

Move Distance

(a) No Edge

Matrix size 1
Matrix size 2
Matrix size 3

 50

 100

 150

 200

 250

321
Move Distance

(b) Edge

Matrix size 1
Matrix size 2
Matrix size 3

Figure 3. The herbivore three-way interaction

The statistical procedure found no main effect of edge,
but found this factor to be significant in the three-
way interaction for the herbivores. The effect of
an edge, however, is evident when the populations
are graphed over time or when the graphical display
of the software is observed during a simulation.
Figure 5 graphs the population levels with move
distance hmd = 3 and the edge ge = 0 and 1. The
herbivore population changes with an edge present
are not as smooth as without an edge. Watching the
graphical display reveals a cycle of near population
extinctions as a majority of herbivores move towards
high populations of producers only to be trapped
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Figure 4. The producer two-way interaction

by the edge and die of starvation, as illustrated in
Figure 6. Such large scale falls in population in a
small number of time steps do not occur to the same
extent when an edge is not present.
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Figure 5. Edge effects with a move distance of 3

3.2 The effect of move distance

The herbivore maximum move distance (hmd = 1)
has an effect on the model dynamics and the viability
of the herbivore population which is not evident
in the statistical analysis. If all other parameters
are kept constant, an increasing hmd results in
greater fluctuations in the herbivore population and an
increased likelihood of extinction. Figure 7 illustrates
herbivore maximum move distances hmd = 2 and
3, the only change in parameters from Figure 1. In
figure 7b the herbivore population becomes extinct,
which occurs in approximately 50% of cases with this
set of parameters.

3.3 Simulations not reaching 1000 time steps

The means analyzed by the statistical procedure were
only gathered from simulations which reached 1000
time steps. Table 1 lists unsuccessful simulations.
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Figure 6. Edge effects with a move distance of 3,
Matrix size 200 × 200. The herbivores move towards
high concentrations of producers, to be trapped
against the edge at the bottom of the image.
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Figure 7. Move distances of 2 and 3 cells

Transient dynamics are observed at the start of a
simulation, where population levels settle from the
arbitrary starting levels. Steady-state dynamics are
observed when the simulation is displaying relatively
stable cycling populations.

Table 1. Herbivore extinctions before 10 successful
simulations. TD: Transient dynamics; SSD: Steady-
State Dynamics. Only those parameter sets resulting
in extinctions are tabled.

Mv dist Edge Matrix size Extinctions
3 0 1 TD:19, SSD:3
2 1 1 SSD:2
3 1 1 TD:7, SSD:3
3 0 2 SSD:3

4 DISCUSSION

The statistical procedure finds a significant interaction
of matrix size (gw and gh), edge (ge) and herbivore
maximum move distance per time step (hmd) for the
herbivore population, supporting the finding of Acosta
(2002), and a significant interaction of matrix size
and herbivore maximum move distance per time step
for the producer population. The effects of an edge
and of herbivore maximum move distance are also
observed in the shape of the population graphs and in
the behavior of the individuals in the model graphical
output.

As the herbivore maximum move distance increases,
the herbivore population tends to decrease, although
the magnitude of this effect changes with the edge
and matrix size for the herbivores—as the matrix
size increases, the effect of move distance on the
herbivore population decreases. Observing the model
graphical output as the move distance increases, the
herbivores move to areas of greater producer biomass
more quickly, resulting in greater fluctuations in both
populations. If the move distance is too great, the
herbivore population is able to consume too much of
the producer population in too few time steps and
becomes extinct. This danger of extinction during
steady state dynamics increases as the matrix size
decreases. DeRoos et al (1991) also finds that
limited mobility in a predator-prey model reduces
population fluctuations, although average densities
remain unaffected. These finding complement those
of DeAngelis and Petersen (2001), McCauley et al
(1993) and Wilson et al (1993), who find the opposite
result for the producers: the higher the mobility of
prey organisms, the more stable the prey populations.

The existence of an edge around the matrix affects
the dynamics of the herbivore population. This effect
is observed in the shape of the graph and the model
graphical output, rather than in overall population
means. When the matrix has an edge, the herbivores
tend to become trapped against it and die out. The
producers near the edge then start to recover biomass,
and the remaining herbivores towards the centre of
the matrix then start to move to the edges, repeating
the cycle. This results in sharp drops in the herbivore
population and almost instant changes of graph slope,
as illustrated in Figure 5b.

The herbivore population per cell rises as the matrix
size increases, although this effect varies with the
edge and maximum herbivore move distance. The
cycle of herbivores moving to areas rich in producer,
consuming too much of the producer biomass and
dying out, recovery of the consumer biomass and
finally new herbivores moving in is observed in the
model graphical output. This dynamic is amplified
by a greater matrix area resulting in overall larger
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mean herbivores per cell. These metapopulation
dynamics are the most significant difference between
this model and a non-spatial model of producer-
consumer dynamics. They occur in this model
despite the lack of explicitly defined patches. The
metapopulation effect is reduced with increasing
herbivore move distance, and with decreasing matrix
size. If the matrix size is too small, persistence of
the herbivores is impossible even if the producer pr

and pK are increased (these results are not detailed in
this paper but are observed consistently). Our finding
that persistence is impossible in small homogeneous
habitats but prolonged in larger more complex habitats
with slow dispersal in which patches and barriers
emerge is similar to the finding of Acosta (2002), who
finds a similar effect interacting with with dispersal
dynamics. Donaldson and Nisbet (1999), Schneider
(2001) and Wilson et al (1993) also report that the size
of the space affects the stability of the model. This
fundamental aspect of metapopulation theory emerges
in these models from the individual interactions at a
local level—these outcomes are not explicitly coded.
They are a result of the transient patches and barriers
which are evident in the graphical output of the model.

In this paper we have described a parsimonious model
of producer-consumer interaction which involves
space and the consequent local interactions between
individuals. We investigate the effects of move
distance, an edge and the size of the matrix and we
find that these factors do affect the model dynamics,
and should therefore be part of the description
of similar models. A significant finding is the
metapopulation-like behavior of local extinctions and
recruitment of the consumer species due to the local
interactions in space. The simple algorithm of the
model does not specifically code this behavior. The
importance of the graphical output of the model in
addition to the population levels in observing and
understanding the model dynamics is highlighted.

This research leads us in two directions: to test the
significance of some or all of the model parameters
not yet tested, and to compare more formally the
behavior of this model with metapopulation theory.
A combination of these directions poses the question:
which of the parameters and which aspects of
the model algorithm result in the behavior which
resembles that of a metapopulation?
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