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EXTENDED ABSTRACT  

True measurements of hydrological variables 
across full time and space domain are rarely 
available. Rather than the true values the best we 
often have are measured values with associated 
error variances. Model parameters are then 
estimated based on these measured values. This 
paper demonstrates that ignoring the structure of 
the errors introduce a systematic bias to estimated 
parameter values.  

We present a method to ascertain optimal 
parameter values in the presence of a known 
measurement error distribution. This method is 
known as simulation extrapolation (SIMEX). Say 
X is an input variable with no error and Y is the 
response variable. Consider instead of X our input 
variable is W where, W= X+ N(0, σ2). The 
calibrated parameter with W as input is called the 
naïve parameter estimate. At the start of this 
method we generate a series of alternate 
realisations for W (denoted W*) by artificially 
adding white noise to W in increasing multiples 
of the error variance σ2. Given the new estimate of 
the parameter (using realisations W*), it now 
becomes possible to speculate on what the 
parameter would be were it to have no additive 
noise (or an error variance of 0). The trend in 
altered parameter values provides a basis to 
extrapolate the parameters to a situation where no 
error exists.  

This paper explores the strength of the SIMEX 
method using two hydrological case studies. A 
synthetic example is presented in the first case 
study where three parameters of the Sacramento 

rainfall runoff model are ascertained to investigate 
the effect of errors in the rainfall input data. SIMEX 
is able to mitigate the bias from naïve parameters of 
Sacramento caused due to error in original rainfall. 

Hydrological models frequently use input variables 
like rainfall, evaporation, solar radiation and 
temperature. Measurement errors may arise due to 
instrumentation, interpolation or extrapolation of 
data in space and time or transformation of point 
measurement into areal values. In some cases error 
variance can be estimated from the statistical 
inference of the interpolation schemes. An example 
of a variable with known error variance is globally 
distributed sea surface temperature anomaly 
(SSTA) data. SSTA is widely used in climate 
prediction models. The earlier part of the SSTA 
data set contains higher magnitude of error due to 
reduced sampling frequency coupled with poorer 
technology. Our hypothesis is that the higher 
magnitude of noise in the earlier period introduces 
bias to model parameters when SSTA is used as an 
input variable.  

The relatively error invariant Southern Oscillation 
Index (SOI) is regressed over SSTA and calibrated 
using a subset of the series from 1900 to 1960. We 
use SSTA of winter, spring and summer as 
predictors of the SOI. The model forecasts SOI of 
next two seasons and also of next three months. We 
choose thirteen linear prediction models that show 
reasonable correlation between SSTA and SOI 
during calibration period. We validate the model 
during 1961 to 2003. Overall, the application of 
SIMEX has reduced the residual errors of nine out 
of thirteen predictions during validation periods 
with further two predictions remaining unchanged. 
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1. INTRODUCTION 

Hydrological modelling involves estimating 
model parameters that describes the relationship 
between one or more response variables and 
associated covariates. In many instances the true 
value of the covariates are not known and the best 
that is available is an estimate along with a 
characterisation of associated errors. In hydrology 
these errors may arise due to instrumentation, 
interpolation or extrapolation of data in space and 
time or conversion of point measurement into 
areal values. 

The sources of total errors can be traced into 
model structure, calibration data and input 
variables. The errors in model structure and 
calibration data are mainly investigated during 
calibration (Khadam and Kaluarachchi 2004). 
Competing hydrological models have been 
developed with an aim to minimise model 
uncertainty for various applications. A 
comprehensive list of models used in Australia is 
prepared by Boughton (2005). The conventional 
calibration practises, based on least square fit, 
assume white noise in calibration data. The least 
square method does not consider errors in input 
variables (Kavetski et al. 2002). 

Early research into errors dealt with linear models 
(Fuller 1987), and more recently non linear 
regression (Carroll et al 1995). Most of this 
research was conducted in the field of biometrics. 

The combined effect of errors in model structure, 
calibration data and input variables in 
hydrological models has been addressed by 
Kavetski et al. (2002). They introduce Bayesian 
Total Error Analysis method to simultaneously 
address the model uncertainty and input errors. 
Our study is limited to the effect of input error 
only. We offer a simulation based method with 
low computational burden since it does not 
attempt to address the model uncertainty. The 
error model is called SIMulation EXtrapolation or 
SIMEX.  

2. SIMEX  

2.1 Foreword 

SIMEX is a simple simulation algorithm that 
graphically shows the effect of measurement error 
on parameter estimates. The technique was 
introduced by Cook and Stefanski (1994) and 
Stefanski and Cook (1995). Biometricians have 

been applying SIMEX for a variety of problems 
since the mid nineties. In contrast, we found no 
references of its use in hydrological publications. 
This method has been extended to non parametric 
models in recent years (Carroll et al. 1999; Lin 
and Carroll 2000).  

2.2 Method 

For simplicity, we introduce the method in this 
paper using a linear regression model with 
additive error as shown in the following Equation 
(1). 

Y = βx X + εx   (1) 

Where, X = independent variable or covariate,
 Y= response variable,  
  βx= parameter inclusive of the intercept,
 εx = error. 

The error term εx has a zero mean and reflects the 
uncertainty associated with Y and the model 
structure. We like to emphasise that ε is not a 
consistence estimator of error in X. Consider a 
case where we do not observe true X but observe 
W instead, as expressed in Equation (2):  

W= X+ U    (2) 

Where U is white Gaussian error, independent of 
(X, Y), and has zero mean and variance of σu

2, 
which in statistical notation U~ N(0, σu

2). Note 
that we do not define the distribution of X, as no 
prior knowledge of that distribution is required for 
the validity of the SIMEX method. In practice, 
instead of Equation (1) we regress Y over W. 

Y = βw W + εw    (3) 

The error in W introduces a bias in parameter 
estimate βw, hence βw ≠ βx. In the statistical 
literature βw is defined as the naïve estimate and 
βx as the true estimate of the regression. The 
SIMEX method attempts to remove the bias from 
βw by determining the trend via simulation.  

The SIMEX method starts with the notion that the 
estimate of σu

2 is known. Subsequently, the 
method involves introducing a variable λ which 
successively generates higher magnitude of 
variances σi

2 according to Equation (4). 

σi
2= λi σu

2 , i =1,2,…n  (4) 

 Where,    λ1 < λ2 < λ3 …. λn . 

Based on this, one can generate a synthetic series 
of Ui* ~ N(0, σi

2), Gaussian random deviates with 
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zero mean and  σi
2 variance. Each set of the 

generated Ui* has a higher variance than the 
preceding set ie, σ1

2< σ2
2< σ3

2<….. σn
2. The errors 

are then added to the original record W and hence 
artificially generating covariate W* with 
increased additive errors: 

Wi* = W + Ui* , where   i =1, 2,…n (5) 

There will be n numbers of W* which can regress 
Y and solve βi* 

Y = βi* Wi* + ε*    (6) 

It is important to note that each Ui* series is 
replicated a few hundred times and the βi* 
represents the average estimates out of those few 
hundred replications of Equation (6). 

The combination of Equations (4) to (6) reveals 
that the estimates {β1*, β2*, β3*…. βn*} are 
directly related to {λ1, λ2, λ3,…. λn}. So we can 
write Equation (7). 

β* = F (λ)    (7) 

Like any modelling case, the curve F(.) needs to 
be properly specified. The SIMEX estimate βsimex, 
a surrogate of true estimate βx, can be found by 
extrapolating β* back to the notional no error 
zone: 

βsimex = F (λ=-1)    (8) 

βx ≈ βsimex     (9) 

2.3 Algorithm 

We start with known Y, W and σu
2. The algorithm 

depends on the model structure and thus the 
parameter to be estimated. This section illustrates 
the linear model that is presented in the last 
section.  

1. Initialise i =1, and λi = 0.2. 
2. Generate a random normal series U*i ~ 

N(0, λi σu
2). 

3. Compute the synthetic covariate, Wi* = 
W + U*i 

4. Fit the following linear model and 
estimate βi*, Ŷ = βi* Wi*. 

5. Repeat the steps from 2 to 5, say for 500 
times, and accept the mean estimate as 
the expected value of βi*. 

6. Repeat steps 1 to 5 for the following 
values. i ={2,3,..10}, λi = {0.4, 0.6 
…2.0} 

7. Draw (λi, βi*) and fit a line F(.) to βi*~ λi. 

8. Extrapolate to SIMEX estimate of the 
parameter β using Equation (8). 

 

3. SYNTHETIC EXAMPLE 

The application of SIMEX in a linear setting is 
demonstrated using a synthetic example by 
Chowdhury and Sharma (2005). We explore the 
validity of SIMEX in a non linear hydrological 
model here. 

Sacramento is one of the two USA originated 
water balance models that are widely used in 
Australia (Boughton 2005). We select this model 
to demonstrate the effect of SIMEX on a 
parameters of non linear model. The model is 
named after the Sacramento River in California, 
USA, where it was first applied (Burnash 1975). 

A conceptual rainfall-runoff model, where flow at 
time t is Qt , can be expressed as: 

Qt= S(It , Et; θp) + εt    (14) 

Where S(.) is the corresponding model, It  and Et  

are model inputs at time t, θp is the set of 
unknown parameter values and εt is an error term. 
In our case S(.) is the Sacramento model which 
uses rainfall and evaporation data (It , Et) to 
generate flow(Qt). 

The Sacramento model has five soil moisture 
storages. The model essentially operates based on 
water movements between storages, loss and 
routing as shown in Figure 1. It has 16 
parameters, {θp ; p =1,2…16}T.  The transpose 
superscript T, in statistical notation indicates that 
the set of θ remains the same for all the time steps 
denoted by the time subscript t.  

We use daily rainfall and evaporation at Golspie, 
NSW in the Upper Lachlan Catchment from 1980 
to 1992 as notional true estimate of catchment 
rainfall and evaporation, {It , Et; t=1,2.. 12x365}. 
The years and location are in fact irrelevant here 
except to keep the example in a realistic 
numerical domain. We generate flow based on a 
set of given values for all 16 parameters. This 
becomes our synthetic true flow. 

The scope for error in a rain reading during a drier 
time is low (a dry day reading is error free). On 
the contrary a storm may completely miss the rain 
gauge. So rainfall errors are assumed to be 
multiplicative in this study (Kavetski et al. 2002). 
Now we artificially corrupt the rainfall series It by 
multiplying it by a Gaussian series U ~ N(1, σ2). 
The corrupted series, Wt becomes the notional 
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recorded rainfall. For simplicity we assume the 
evaporation estimate to be error free.  

Wt = It * U    (10) 

E direct runoff

spill

UZTW E

surface flow
ground
level UZFW

inter flow
ET

unit hydrograph

LZTW

LZFW
supplementary LZFW

primary

base flow flow

Rain

 
Figure 1. Sacramento Model 

Three parameters are allowed to vary keeping the 
remaining 13 parameters constant. They are 
UZTW (upper zone tension water storage 
capacity), UZFW (upper zone free water storage 
capacity) and LZTW (lower zone tension water 
storage capacity). 

All 16 parameters of the Sacramento model can 
simultaneously be calibrated using the shuffle 
complex evolution search optimisation scheme 
(Kuczera 1997). However due to the simpler 
synthetic setting with fewer parameters, we use a 
modification of BFGS quasi-Newton method 
(Byrd et.al. 1995) readily available as a function 
in software R (Team 2004). The calibrated 
parameters using Wt as input is known as naïve 
estimate (θnaive). 

Qest
t = S (Wt, Et; θnaive

p| θq )  (11) 

 p ≡ {1,2,3} and q ≡ {4,5.. 16} 

Now we generate replicates of W, W*, with 
increasing amount of error {λiσ2} and thus 
estimate the increasingly biased parameter θ*. 
The simulation enables us to setup the following 
regression relationship. 

θ*p = Fp (λ)    (12) 

The strength of any non linear SIMEX depends 
on our ability to assign a structure to F (.). We 
rely on the synthetic study, data structure and our 
experience to decide on a suitable model for F (.). 
The current synthetic study on Sacramento has 
promisingly found that F follows a clear structure 
in at least three parameter spaces. Hence the 
extrapolation to Fp (λ= -1) is possible as shown in 
Figure 2 and listed in Table 1.  

Table 1. Sacramento Parameters before and after 
SIMEX (all values are in mm) 

Parameters True 
Value 

Naïve 
Estimate 

After 
SIMEX 

UZTW 60 63 59 

UZFW 150 146 149 

LZTW 38 41 38 

 

 

 

 

 

 

 

 

Figure 2. The SIMEX estimate of UZFW is 149 
mm which is close to the true value of 150 mm. 

4. PRACTICAL APPLICATION  

4.1 General 

We have demonstrated that traditional modelling 
practice of least square fit to the response data 
does not negate the errors of input variables. The 
motivation to estimate error in hydrological input 
variable has been limited due to lack of any 
procedure to incorporate them in the model 
structure. Error variance can be estimated from 
the statistical inference of the interpolation 
schemes used to fill the data in both space and 
time dimensions. Rainfall runoff models rely on 
this transformation of point rainfall into areal 
values prior to commencing any modelling 
exercise. The transformation introduces 
interpolation or extrapolation error. 

4.2 Climate Prediction Models 

Sea surface temperature data has been extensively 
used to formulate various prediction models (Fu 
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et. al 1987; Sharma 2000; Drosdowsky and Lynda 
2001). Reconstructed, gridded, monthly sea 
surface temperature anomaly (SSTA) data, 
available from the Climate Data Library of the 
Lamont-Doherty Earth Observatory of Columbia 
University, New York, is used in the example 
discussed here. The SSTA data set was 
reconstructed based on point measurements of sea 
surface temperature using the Kaplan Optimal 
Smoother (OS) interpolation algorithm (Kaplan et 
al 1997; Kaplan et al 1998). The reconstructed 
data set and associated error characteristics are 
available from 1856 onwards, at a resolution of 5° 
latitude by 5° longitude. The interpolation 
procedure allows for estimation of the error 
variance at each time step/grid location. The 
interpolation in space and time for the missing 
data and the weights reflecting the reliability of 
the records contributed towards the final estimates 
of the error variances. 

 

 

 

 

 

 

 

 

Figure 3. The error variance of monthly NINO3 
anomaly during the month of October every year. 

The arithmetic average of SSTA over the 
equatorial pacific region (5° N to 5° S and 150°W 
to 90°W) is known as NINO3. NINO3 has been 
extensively used in climate prediction models as a 
reduced form of the entire set of SSTA (Ruiz et 
al. 2005). The error variance of NINO3 data is 
shown in Figure 3, the overall variance of NINO3 
is 0.60. The variance is higher during early 
periods of data and the two world wars. Error 
variance of similar magnitude is estimated in 
other locations of SSTA data. 

The El Nino Southern Oscillation (ENSO) warm 
phase, associated with warming up of sea surface 
water in the equatorial eastern Pacific Ocean, is a 
predictor of dry weather in Australia, Southern 
Asia and South Africa. The strength of ENSO can 
be estimated from a sea level pressure anomaly 

based index known as the Southern Oscillation 
Index (SOI). This index is the standardised 
pressure difference between Darwin and Tahiti 
with records extending back to 1876. The SOI is 
estimated from two controlled weather stations 
without any need of spatial extrapolation. Hence 
the index is less exposed to measurement error 
compared to the globally distributed grided 
SSTA. 

The SIMEX method deals with input error only, it 
does not account for structural uncertainty of the 
model. Accordingly the method yields superior 
result where the model structure is strong and 
well established. We do not attempt to identify the 
best candidate model here for SIMEX application. 
We choose a simple linear model that uses 
specified SSTA grid cells as predictors. Our aim 
is to demonstrate the potential, not quantum, of 
SIMEX improving the predictions.  

Consider a setting where we need to fill in the 
SOI data based on a regression relationship using 
relevant predictors or we attempt to model 
persistence of SOI. As SOI and warming up or 
cooling down of central pacific SST are reflective 
of the common ENSO conditions, it would be 
intuitive to use the SSTA at selected location as 
the predictors of the SOI response variable. We 
use the relative low error time period of 1961 to 
2003 to validate the regression derived using 1900 
to 1960 error prone data. 

We approach the study by first exploring the 
correlation between the SSTA at NINO3 region to 
SOI. We expect that any significantly higher 
errors in SSTA pre 1960 would result in a drop in 
correlation relative to post 1960. 

The lagged correlation of seasonal SSTA to the 
SOI of next two seasons and the following three 
months are investigated. As an example, the 
spring (September to November) SSTA is 
correlated to SOI in the following summer, 
autumn, December, January and February. These 
lead times are common in developing forecasts 
(Sharma 2000; Drosdowsky and Lynda 2001; 
Ruiz et al. 2005).  

A consistent drop in correlation in pre 1960 data 
is experienced in all seasons except when autumn 
SSTA is used. We discard the results affected by 
the autumn predictability barrier. The remaining 
three seasons produce 15 correlations of which 2 
have very small values flagging the unsuitability 
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of linear dependence structure. We further discard 
these two models. We limit our investigation in 
these 13 prediction models. Ten out of the 13 
models show reduction in correlation in earlier set 
of data, see Figure 4, validating our preliminary 
assumption of higher error in earlier part of the 
SSTA data. 

 

 

Figure 4. Correlation of SST to SOI data pre and 
post 1960 period. The points below 1:1 line are 

showing drop in pre 1960 correlation. 

We proceed to investigate the 13 selected 
prediction models where three seasonal SSTA are 
the predictors and the predictands are the SOI of 
next two seasons and the next three months. The 
parameters are calibrated for the period of 1900 to 
1960. We validate the model using post 1960 data 
and measure the sum of mean squares of errors of 
the prediction or also known as residual variance 
of prediction. Later we have altered the parameter 
estimate by SIMEX using the known error 
variance of SSTA during the calibration period. 
We re-compute the residual variance of prediction 
during validation period. Nine out of thirteen 
validation fits show reductions in residual 
variance with further two predictions remaining 
unchanged, see Figure 5 and Table 2. The 
improvements are minor due to the inherent 
structural uncertainty of the chosen models, 
nevertheless the trend is validating the potential of 
SIMEX. 

The regression of SOI over SSTA is only 
presented here to investigate the sensitivity of the 
error variance in some controlled manner. In 
practise this regression has limited use. The 
application would be useful in the field of 
seasonal rainfall prediction that use SSTA.. The 
research on the effect of SSTA errors on rainfall 
prediction is ongoing.  

Table 2. Sum of mean square of errors of SOI 
prediction where SSTA is the predictor. 

SSTA WINTER  

SOI Before SIMEX After SIMEX 

Spring 9.6 9.4 

Summer 9.5 9.5 

September 12.0 11.7 

October 13.3 13.2 

November 15.6 15.3 

SSTA SPRING  

SOI Before SIMEX After SIMEX 

Summer  7.1 7.1 

Autumn 12.2 12.1 

December 10.9 11.3 

January 11.6 11.3 

February 13.0 13.1 

SSTA SUMMER  

SOI Before SIMEX After SIMEX 

Autumn 9.6 9.4 

March 12.0 11.7 

April 13.3 13.2 

. 

 

 

 

Figure 5. Sum of mean squares of errors during 
validation period before and after applying 

SIMEX. The points below 1:1 line are showing 
improvements due to SIMEX. 

 

5 CONCLUSIONS 

Errors in input data introduce bias in parameter 
estimates. SIMEX, a simulation based method, 
allows mitigating that bias from the parameters. 
We demonstrated by using synthetic rainfall with 
known error in the Sacramento model that 
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SIMEX can mitigate the bias for the three 
parameters tested. We explored errors in SSTA 
data widely used in climate prediction models. 
We find that the error in earlier sea surface 
temperature data results in a systematic drop in 
correlation with SOI. We demonstrate 
improvements in predicting SOI from SSTA after 
applying SIMEX. We conclude that hydrologist 
should check the effect of the errors on parameter 
estimates before using parameter values in 
validation. 
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