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EXTENDED ABSTRACT 

Streamwater pollution by pesticides is a critical 
environmental issue in farmed catchment areas. 
Many important factors are involved in this 
pollution phenomenon, like weather, area 
topology, land use and crop management practices, 
which all influence streamwater quality. 

The purpose of the ongoing study presented in this 
paper is to evaluate the impact of land use and 
management practices on streamwater pollution. 
We use modelling, simulation and machine 
learning techniques for acquiring knowledge about 
this complex domain. Our main objective is to 
learn qualitative rules relating the pollution factors 
to the temporal distribution of the stream pesticide  
concentration. The study area is the farmed 
catchment of Fremeur (~17 km2), located in 
Brittany, France.  

Our approach relies on a simulation model, called 
SACADEAU, which is based on two main 
components: a biophysical transfer model and a 
decision model. The biophysical transfer model 
simulates pesticide transfer through the catchment, 
from application sites on maize parcels, to the 
river. The decision model simulates farm 
management practices such as tillage, sowing, and 
pesticide application. The two other components of 
the SACADEAU model include a climate model 
which provides daily rainfall and temperature, and 
a spatial model which describes land use and 
catchment topology (Figure 1).  

This simulation model is used for generating a 
large number of scenarios of the catchment system, 
considering different weather series or spatial 
distributions of land use and agricultural activities.  

 

 

Figure 1: The SACADEAU model 

Machine learning techniques were used to interpret 
the very complex and large set of results. ICL, an 
inductive logic programming software, generated a 
set of simple rules which described the factors 
influencing streamwater contamination. This 
demonstrated that soil characteristics, and in 
particular organic carbon content, are a key factor 
controlling contamination. Other important factors 
are: type of pesticide used, timing and quantity of 
rainfall, and topology of the catchment. 

The Sacadeau model is not yet fully implemented 
and The first results have been obtained with a 
simplified model. We were able to check the 
coherence and the feasibility of our approach, and 
to build a first view of the role of some attributes 
in stream-water quality. When the SACADEAU 
model is fully operational, it should be possible to 
develop more specific rules that incorporate a 
greater level of details about spatial and temporal 
variations. 
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1. INTRODUCTION 

Water quality is a critical and complex 
environmental issue. It is characterised by 
biological, physical and chemical components. 
Each component depends on numerous processes 
that are highly variable with time and space. Time 
variations are related rainfall events, intra-annual 
variations and inter-annual trends. Space variations 
may be due to local features such as human 
activities or management or global change such as 
crop system evolution. Since a large number of 
parameters are involved in pollution phenomena, 
modelling, simulation and machine learning 
appears to be useful techniques for acquiring 
knowledge in this complex domain.  

The objective of the SACADEAU project is to 
build a decision-aid tool to help specialists in 
charge of catchment area management to preserve 
streamwater quality. It is focused on herbicides 
stream water pollution that may be rather high 
during the few months after applications, and  
dedicated to medium size catchment (5-100 km²). 
A qualitative transfer model, simulating herbicide 
transfer through the catchment area, is coupled 
with a management model, simulating farmers’  
decisions concerning weeding strategies and 
herbicide applications. The main objective of 
SACADEAU is to evaluate the impact of land use 
and management practices by simulating scenarios, 
and by discovering discriminating variables and 
acquiring knowledge in this complex domain 
through the use of machine learning techniques.  

2. THE EXPERIMENTAL SITE 

The experimental site, the Fremeur catchment area, 
is located in Brittany, France and covers about 
seventeen square kilometres (Figure 1). 

 

 

Figure 1: The Fremeur catchment area. 
 

It was chosen because it is one of 43 catchments, 
from 10 to 100 km² in area, that together represent 

60% of the regional drinkable water resource and 
that are specifically observed within the Bretagne 
Eau Pure Project: data on soil, climate, land cover, 
agricultural practices are thus numerous. This 
catchement is very close to Kervidy-Naizin 
catchment where hydrological processes were 
studied (Bruneau et al., 1995 ; Crave and Gascuel-
Odoux, 1997 ; Molenat et al., 2002, 2005).  

The Fremeur stream is 28 km long and presents 
1,65 km/km² density.  The average annual 
precipitation is about 900 mm. The soils are silty 
loam, with an organic matter content about 50g/kg. 
The weathered bedrock, 1 to 30 m deep, and 
fissured and fractured Brioveran Schist underlies 
the soil. A shallow and perennial groundwater 
mainly controls runoff processes. A survey made 
in 2001 shows that the agricultural land use (72%) 
is essentially intensive farming. The agricultural 
surface area was covered by maize (30%), wheat 
(30%), meadow (30%) and leguminous plant 
(10%). The remainder surface area was covered by 
forest, road or housing.  

3. GENERAL FRAMEWORK OF THE 
SACADEAU MODEL 

The Sacadeau model simulates streamwater  
contamination by herbicides spraying on maize 
crops. It models herbicide transfer through the 
catchment area and simulates the resulting mean 
daily river contamination. This phenomenon 
depends on numerous parameters, including 
human activities, climate, soil type and fields and 
catchment area topology. Since different topics are 
involved, we created three sub-models to describe 
them (see Figure 2): 

• A decision model, which models farmers' 
strategies. This provides herbicide application 
characteristics (date, substance, quantity) and 
agricultural interventions (soil tillage, sowing 
and weeding dates) according to predefined 
farmers' strategies and weather conditions.  

• A climate model, which provides daily 
weather data such as temperature and rainfall 
amount. 

• A spatial model, which distributes in space the 
agricultural activities, according to the fields 
and catchment area topology.  

Using the outputs of these three sub-models, a 
biophysical transfer model determines herbicide 
outflow, modelling transfer from application 
locations, through the catchment area, to the 
stream. 
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Figure 1: The SACADEAU model 
 

At this step of the project, the spatial and the 
climate model have not been implemented. The 
experimental site was used as a framework for the 
spatial model. The catchment database was used to 
build scenario on soil type, locations of crop and 
herbicide application, extension of buffer zones. A 
database of thirty years of weather record was used 
in place of the climate model, from three sites 
(700, 900 and 1200 mm annual rainfall amount), 
with ten years data per site.  

4. THE TRANSFER MODEL 

Modelling pesticide transfer in agricultural 
catchments is very challenging because of 
difficulties to represent numerous hydrological  
processes and spatial structures in an adequate way 
(Moussa et al., 2002). We propose here an oriented 
decision making framework. The transfer model 
takes into consideration  surface and subsurface 
flow (Tortrat, 2005). It runs on a short period of 
few months after herbicide applications, when 
transfer processes are dominant, with a daily time 
step because of the availability of climatic and 
hydrological data. It is based on an original spatial 
scheme. Common models take in consideration a 
regular squared grid to model transfer from pixel 
to pixel. We preferred to chose the parcels as the 
core model elements because of the uniformity of 
input data on agricultural practices and the interest 
of expressing outflow per field for decision 
making.  

Surface flow is estimated from soil surface 
conditions. The concepts were developed in 
STREAM model, an expert-based runoff model 
(Cerdan et al., 2001). In this model, decision rules 
in the form of matching tables characterizing 
agricultural fields according to soil surface 

conditions (roughness, soil surface structure, crop 
cover) were used to determine infiltration capacity. 
Here, a daily mean infiltration capacity was 
considered and calibrated from regional data. It 
was assumed to be uniform per parcel. Surface 
flow is computed per parcel and aggregated on the 
whole catchment by using a tree structure linking 
field outlets and their contributive areas (Tortrat, 
2005). The usual pixel drainage network was so 
replaced by a parcel outlet tree, and, finally, a 
parcel tree. For each parcel, it is necessary to 
define “parcel outlet”  that may be unique or 
multiple. The flow pathways within the field were 
integrated as proposed by Souchère et al. (1998). 
The ditch and hedge networks that modify flow 
pathways at the bottom of the field were integrated 
in the field outlet tree (Tortrat, 2004). 

The pesticide subsurface flow is calculated 
according to the depth of shallow groundwater 
from the soil surface. The temporal and spatial 
variations of the shallow water table depth were 
estimated by TOPMODEL (Beven and Kirkby, 
1979), that allows good estimates for midslope and 
bottom domains (Molenat, 2005). Empirical 
relationships expressed in the forms of matching 
tables were used to estimate the contamination to 
the shallow ground water. It is equal to zero when 
the water table depth is deeper than 3m and 
exponentially increasing as depth is lower. A 
saturated surface flow was integrated. Each parcel 
is characterised by its topographic index 
distribution and relative surface area per class. The 
contribution to subsurface flow is computed per 
parcel and aggregated on the whole catchment in a 
single constant volume store with a constant 
drainage coefficient (Tortrat, 2005).  

Water and pesticide transfer are coupled in a very 
simple way. The degradation is modelling by a 
standard one order kinetic. A fixed exchange 
coefficient between soil and water is considered. 
The amount of herbicide in soil is daily computed 
according to the degradation and transfer 
processes. 

5. THE DECISION MODEL 

The purpose of the management model is to 
simulate farmers technical decisions concerning 
maize crops on the catchment that explain 
herbicide pollution. This includes soil tillage, 
sowing and herbicide applications during 
springtime. This model takes as input the spatial 
distribution of crops on the catchment. This 
allocation of crops to parcels is produced by the 
spatial model. 
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5.1. Weed control programs in maize crops 

Weeding programs in maize crops consist in 
planned but adaptive combinations of weed control 
operations like post-emergence mechanical 
cultivation, post-emergence thermal weeding, 
herbicide spraying or cover crop seeding, used 
under different primary tillage methods. As the 
objective of the SACADEAU project is to analyse 
the transfer of herbicides over a catchment area, 
we were especially interested here in modeling 
herbicide spraying strategies.  

A survey identified three main weed control 
strategies based on herbicide spraying on the  
Fremeur catchment area: 

• a pre-emergence strategy with a single 
application after sowing; 

• a post-emergence strategy with two 
applications at 3 leaves and 5-7 leaves stages ; 

• an intermediate strategy, with two applications 
after sowing and at 5 leaves stage. 

Chemicals are chosen in relation with weeding 
strategies of the farmers. The recommended rates  
are generally applied. Application dates on a parcel 
are directly related to the type (pre-emergence, 
post-emergence) of the weeding strategy and on 
the maize plants growth . This one depends mainly 
on sowing date and weather conditions after 
sowing. Two main periods for sowing were 
observed on the Fremeur catchment (beginning 
and end of April), generally depending on the 
parcel locations (upslope and downslope). Finally, 
tillage practices, which influence the 
infiltration/surface runoff process, had also to be 
considered.  

5.2. Simulating farmers’  decisions 

Given management strategies for each maize 
parcels of the catchment, the management model 
simulates, on a daily basis, tillage, sowing and 
weeding applications as a function of weather 
conditions. At the parcel level, this model relies on 
a classical temporal windows approach previously 
used in decision models like Otelo (Aubry et al., 
1994), Déciblé (Aubry et al., 2004), Moderato 
(Bergez et al., 2002) or Control-Dièse (Martin-
Clouaire et al., 2005). Operations like sowing or 
weeding applications are only possible within 
some temporal intervals. The beginning and 
ending of these intervals are defined by crop 
evolution. When the temporal window of an 
operation is opened, the simulation model checks 
day after day whether the operation can be 
performed or not (Figure 2). 

 

 

 

 

 

Figure 2: temporal scheme of decisions for pre-
emergence and post-emergence strategies. 

 
In order to execute an operation, different 
constraints need to be satisfied. At the stand level, 
constraints are related to weather and soil 
conditions. Farmers do not work on sowing or 
weeding applications when the weather is rainy. 
We modelled this condition by a threshold on the 
daily rainfall amount. Farm machines cannot work 
on a parcel when the soil bearing capacity is not 
high enough.  We modelled this restriction as a 
number of days farmers have to wait before 
working on a parcel after an high rainfall event.  

Decisions at parcel level are also constrained by 
machines and time availability. These constraints 
need to be considered in order to represent 
correctly the spatial and temporal distribution of 
operations on the catchment (Leenhardt et al., 
2002). We thus introduced two upper 
organizational levels on the catchment. On farm 
level, farmers manage the set of their parcels. A 
farmer cannot work on all his parcels at the same 
time, and sowing and weeding operations have 
durations that depend on the speed and number of 
machines and the surface of the parcels. On a 
given day, the cumulated time of work cannot go 
over the maximum working hours of farmers. At 
the farm group level, sharing farm machinery takes 
place between farmers. Sowing and tillage 
machines are available at this level. They are 
allocated to farmers depending on the number and 
priority of parcels they need to work on. Farmers 
have to wait for these machines before starting the 
sowing or tillage operations.  

When all these conditions are fulfilled on a parcel, 
the current operation can be performed. The 
operation window is then closed and simulation 
goes on, waiting for the next window opening on 
this parcel, until the end of the simulation period. 

6. ACQUIRING KNOWLEDGE BY 
MACHINE LEARNING 

The complexity of inputs and outputs of the 
simulation model makes interpretation of results 
difficult. We thus developed an automatic tool for 
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learning from simulation data qualitative rules 
expressed in a high level language. 

6.1. A High-Level scenar io Language 

A scenario is a set of simulations under certain 
constraints. It can be seen as a qualitative question. 
An example of scenario is « What happens if a 
post-emergence weeding strategy is applied 
instead of a pre-emergence strategy on all the plots 
close to the river when the climate is rainy with 
many high rainfall events from May to July? ».  
The objective is to give a qualitative answer like 
« Herbicide concentrations are high when 
applications just precede (within 2 days) heavy 
rainfalls (qty > 10mm) ».  

An initial step was to gather a set of scenarios 
suggested by experts so that relevant problems 
concerning streamwater quality were understood 
by members of the project. We then defined a 
scenario simulation methodology (Figure 3). The 
three main processes of this methodology are 
translation between qualitative descriptions and 
quantitative constraints, generation of a set of 
simulations and analysis of simulation results.     

 

Figure 3: simulating scenarios 

Translation between qualitative descriptions and 
quantitative constraints is a fundamental process if 
we want to construct comprehensive results for 
decision-makers. This can be done a priori by 
experts or by automatic process. For example, 
when data is described by continuous attributes, 
the translation consists in finding relevant 
thresholds provided by experts or machine learning 
techniques (clustering and automatic 
discretization). This can be also done a posteriori. 
For example, a climate corresponding to a rainy 
spring (regarding water contamination) is, for 
experts, a springtime with frequent and high 
rainfall events. After some experiments, we 
defined a new parameter which is a potential 
rainfall amount that may produce surface runoff, 
cumulated during the study period and using soil 
infiltrability. The second process is the definition 
of simulations. It can be a random choice of a 

subset of simulations for which quantitative 
constraints are verified. The last process is the 
analysis of simulations results. To get 
understandable results, simulation results have to 
be summarized. This step can be achieved by 
automatic learning techniques like rule learning.        

6.2. Learning from Simulation Results 

A lot of simulations are needed if we want to get 
relations concerning all the inputs and outputs of 
the model: farmers’  strategies (pesticides and 
quantities used, spatial and temporal localisations 
of applications), catchment area topology, climate 
characteristics, pollution peaks. For these reasons, 
an automatic tool for summarizing the highly 
structured results was adapted and we opted for an 
Inductive Logic Programming (ILP) approach. Let 
us explain the goal of ILP for our streamwater 
quality concern.  

Assume that the simulation outputs are of two 
types: the pollution classes + (no pollution) and – 
(pollution). The aim of ILP is to find logical 
discriminative relations between variables, that is 
relations – or rules - that are verified by many 
simulations of class – and none of the simulations 
of class +, and vice versa. Here is an example of 
such rule: “ If atrazine is spraying on a parcel close 
to the river at most two days before a rainfall then 
simulation is of class –“. This rule can be written 
with predicates weeding, close and rainfall as 
below: 

weeding(day1,parcel,atrazine) ∧ close(parcel,river) 
∧ rainfall(day2), 0< day2–day1 < 2 � class - 

The singularity of an ILP learner is to find first 
order logic relations. Actually, a same variable 
(like variable parcel in the example) can be found 
in many predicates (weeding and close). To find 
such discriminative rules, the number of rules to 
assess is huge and has to be restricted. We chose 
ICL software (Van Laer, 2002) to construct this 
kind of relations. ICL uses a grammar to restrict 
the number of rules to assess. 

7. RESULTS 

In a first step, this approach has been tested with a 
simplified model that only simulates water and 
herbicide transfer per parcel, due to surface runoff, 
and agregates runoff on virtual catchments in a 
very simple way. The parameters were defined in 
relationships to regional data. Input data were: 
farmer's program and chemicals, defined per 
parcel; common soil characteristics and climate to 
all the parcels of the catchment; extension of 
buffer zone and slope distribution that buffers the 
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outflow per parcel at catchment scale. Mean daily 
discharge acted as a factor of dilution at catchment 
scale. We simulated all the scenarios (i.e. inputs 
were not constrained) and propositional relations 
were learnt (i.e. simpler relations than first order 
rules were considered). Six types of parameters 
were defined; five of them were defined by experts 
and the sixth by automatic learning. Parameters 
defined by experts were: 

 
• Soil characteristics of the catchment. The kinetic 

of the soil surface degradation, and so 
infiltrability, depends on organic matter content 
for soils with similar texture. Two soil types 
have been considered:  20 g.kg-1 or 50 g.kg-1 
organic matter content. 

• General topography of the catchment. Two 
values “concave”  or “convex”  may be chosen. A 
concave catchment area has more low slopes 
close to the river than a convex one.  

• Farmer’s strategy, which takes the value “pre-
emergence”  or “post-emergence” . A pre-
emergence strategy consists in a first application 
of pesticides just after the seeding date of maize 
whereas a post-emergence consists in a first 
application one month after the seeding date. 

• The chemical used for maize crop, which can 
take one of the two values “atrazine”  or “new” . 
Atrazine is now forbidden in France. New 
molecules which have shorter half time of 
degradation are now used.  

• The extension of buffer zones close to the river: 
these act as sinks for water and herbicides. We 
considered two values: no buffer zones or 
extended in 90 percent of the border of the 
stream. 

The climate typology was defined by automatic 
learning. To describe a climate (defined as 
temporal series of rainfall between April and 
August), we considered two attributes: the number 
of days which rainfall amount is higher than a 
threshold of  10 mm and the potential  rainfall 
amount on the study period that may produced 
surface runoff, as defined previously. Thus, five 
types of climate series were distinguished by ways 
of clustering methods. A climate of type 0 is a very 
dried climate and a climate of type 5 is a very wet 
climate.      

Setting values for these parameters, we generated 
896 instances. For each instance, a pollution class 
(among five classes) was associated. The class 0 
represents no pollution and class 4 represents high 
pollution. These classes of pollution were defined 
with the sum of herbicide concentrations (between 
april and august) and the number of high values 

during the same period. Propositional rules were 
learnt with ICL. 70 rules were learned to 
summarize the 896 instances.  An analysis of the 
relative importance of the attributes is given below 
(we call an example a list of attribute-value pairs 
and a pollution class): 

All (100%) the rules of class 0 explain an example 
by a few rainy climate and a soil with an 50 g.kg-1 
organic matter content. 74% of the rules of class 1 
and 59% of rules of class 2 explain an example by 
the presence of buffer zones in 90% of the parcels 
close to the river. 74% of the rules of the class 1 
explain an example by the use of new chemicals. 
67% of the rules of class 3 explain an example by 
an  20 g.kg-1 organic matter content. 88% of the 
rules of class 4 explain an example by an 20 g.kg-1 
organic matter content and no buffer zone. 

From these results, we concluded that the soil 
characteristics (organic matter content here) had an 
important role in water contamination. Let us give 
two rules, of different classes, with the same 
attribute-value list except for the soil 
characteristics: 
1. if climate=3 and organic_matter=20 g.kg-1  

and buffer zone=90% and chemicals=new 
then class=2 

2. if climate=3 and organic_matter=50 g.kg-1  
and buffer zone=90% and chemicals=new 
then class=1 

The difference of one class corresponds to a factor 
of 10 on the sum of herbicide concentrations. A 
soil with a lower organic matter content resulted in 
higher levels of pesticide contamination of 
streamwater. Considering the others attributes, we 
concluded that the use of new chemicals, no rainy 
climate and a concave basin were favourable 
factors.  

Conclusions given above on the relative 
importance of the attributes were largely expected. 
The impact of farmers’  strategies was less 
expected. The pre-emergence strategy appeared to 
be a more favourable strategy than the post-
emergence one. A possible reason was that late 
herbicides applications met degraded soil surface 
conditions that improved surface runoff. 

8. CONCLUSIONS 

We developed a machine learning approach for 
acquiring knowledge about streamwater pollution 
by maize crop herbicides from a simulation model 
that represents transfer and farmers' decision 
processes. First results have been obtained with a 
simplified model. We were able to check the 
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coherence and the feasibility of our approach, and 
to build a first view of the role of some attributes 
in stream-water quality. When the SACADEAU 
model is fully operational, it should be possible to 
develop more specific rules that incorporate a 
greater level of details about spatial and temporal 
variations. 
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