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EXTENDED ABSTRACT 

Modelling frameworks are constantly being 
developed and expanded to take advantage of new 
computing technology. One such framework 
undergoing expansion is The Invisible Modelling 
Environment (TIME) (Rahman et al 2003). TIME 
is a software development framework for 
creating, testing and delivering environmental 
simulation models. 

With increasing demands being placed on 
computer systems by complex models, a solution 
was needed to address the problem of ever 
increasing execution times. 

A number of options were available to reduce 
long runtimes in TIME. Considering the options, 
a Grid Computing solution was chosen as the 
most viable because it could provide the greatest 
return on investment. 

A computational grid can be formed by the 
networking of existing personal computers and 
the installation of specialist control software. 
Existing local area and wide area networks can 
also be utilised as part of a grid with no changes 
to hardware configuration. 

The nature of some of the processing being done 
within the TIME engine lends itself to 
performance optimisation through grid 
computing. Tasks to be run on a grid need to be 
able to be broken down into small sub-problems 
and each of the sub-problems needs be a 
computationally intensive operation rather than a 
data intensive operation. The sub-problems also 
need to be able to run in parallel rather than in 
series as is generally the case for applications that 
run on a single machine. 

Although a number of grid computing technologies 
exist, the Alchemi .NET Grid Computing 
Framework was the framework of choice for TIME. 
Alchemi is an open source software framework that 
has been specifically designed for the fast and 
efficient harnessing of the computational power of 
networked machines. Although only in the early 
stages of development when first adopted, its 
flexibility and potential made it the best choice for 
integration into TIME. 

The Distributed Invisible Modelling Environment 
(DIME) is the extension to TIME that allows users 
to transparently distribute model execution over a 
network. It is the component which links TIME and 
Alchemi. 

DIME includes support for the distribution of 
global optimisation routines present in TIME and 
for the batch processing of models. 

The performance of the DIME component was 
analysed at each functional stage of development 
with particular attention to load and performance 
testing. 

The integrity of the grid was maintained through 
load testing. Load testing involved modifying the 
grid composition during execution and simulating 
network failures to ensure stability. 

The performance tests demonstrated the 
effectiveness of distribution under certain 
conditions. These kinds of tests are essential in 
producing guidelines for when a grid should be 
used for model processing. Although incomplete at 
this stage, our preliminary performance results look 
very promising. 
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1. INTRODUCTION  

In recent years there has been considerable activity 
in the development of model building frameworks 
that take advantage of new technologies. One such 
framework is The Invisible Modelling 
Environment (TIME) (Rahman et al 2003). 

TIME is a software development framework for 
creating, testing and delivering environmental 
simulation models. TIME differs from other 
modelling frameworks in a number of ways, 
particularly in its use of metadata to describe and 
manage models. This gives flexibility to 
components that manage data and models, 
recognising that one approach does not necessarily 
fit all applications. TIME includes a number of 
tools, which operate generically on models, 
including an automatic user interface generator and 
various model tools. TIME is currently being used 
to develop a range of modelling applications, 
including a library of rainfall runoff models 
(Perraud et al 2003) and a stochastic climate 
library (Srikanthan et al 2005). 

A solution was needed to address the problem of 
long execution times, particularly during the 
numeric optimization and sensitivity analysis of 
model parameters.  

There were a number of options available to 
reduce long runtimes. Considering the options, a 
Grid Computing solution was chosen as the most 
viable because it could provide the greatest return 
on investment. Another important advantage is that 
a Grid would enable other external organisations 
using TIME to create their own Grid to increase 
performance. This would not have been possible if, 
for example, our solution to long runtimes was to 
purchase a supercomputer exclusively for the 
CSIRO. 

Grid computing uses the resources of many 
separate computers connected by a network to 
solve large scale problems. These are either for 
large computationally intensive problems where 
the grid is known as a Computational Grid or grids 
to manage large amounts of distributed data known 
as Data grids. Throughout this paper the term Grid 
or Grid computing refers to Computational Grids 
(Satoshi et al 2005). 

This paper will discuss the alternatives considered, 
the implementation details of the chosen solution 
and the benefits that this new technology has 
brought to the TIME framework. 

2. PROBLEM DEFINITION  

As model complexity increases so to does the 
demand placed on computer systems which 
implement them. This increase in demand 
inevitably leads to longer runtimes and the slower 
processing of model data. In this section we 
describe some of the options available to 
developers to increase the performance of their 
modelling frameworks. We then detail the option 
we selected to implement in the TIME framework. 

2.1. Increasing performance 

There are several alternative approaches when 
attempting to increase the speed at which 
computational tasks are executed. These 
approaches fall into two broad categories— 
software and hardware. Software solutions include 
the choice of programming language, the compiler 
used and algorithmic optimisation. Hardware 
optimisation can take place at multiple levels; 
within a single machine—CPU speed, Front Side 
Bus (FSB) speed, RAM speed and onboard cache 
size all have the potential to increase performance. 
It is also possible to connect multiple machines 
together to provide an increase in performance for 
certain tasks. Supercomputers, Clusters and Grids 
are examples of hardware architectures designed to 
address the problem of performance improvement 
through hardware optimisation. 

The grid architecture (Foster and Kesselman 1999) 
has several advantages over the supercomputer and 
cluster, the foremost of which is cost. A 
computational grid can be formed by the 
networking of existing personal computers and the 
installation of specialist control software. Existing 
local area and wide area networks can also be 
utilised as part of a grid with no changes to 
hardware configuration. The number of computers 
connected to a grid is dynamic and can be changed 
at any time. Machines on the grid need not be 
dedicated either—many grid systems are designed 
to execute jobs using otherwise unused clock 
cycles on client machines. The more computers 
connected to the grid and the faster they are, the 
more powerful the grid becomes. 

2.2. TIME and Grid Computing 

The nature of some of the processing being 
executed within the TIME engine lends itself to 
performance optimisation through grid computing. 
Tasks to be run on a grid need to be able to be 
broken down into small sub-problems and each of 
the sub-problems needs to be a computationally 
intensive operation rather than a data intensive 
operation. The sub-problems also need to be able 
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to run in parallel rather than in series as is 
generally the case for applications that run on a 
single machine. 

Various global optimisation routines are 
implemented in TIME and some are suitable for 
distribution on a grid. Multi-start routines which 
consist of a number of independent searches can 
easily be executed across a grid, with each search 
being sent to a different machine for execution 
rather than one processor sequentially executing 
N-searches. 

TIME has the concept of physical models which 
consist of a series of variables (inputs, constants, 
parameters and outputs) and a time step method 
which, when invoked, advances the model’s state 
by one time step. Being completely independent, 
models of this type are highly suitable for batch 
processing across a grid. 

Sensitivity analysis, which involves numerous 
independent model runs, is another area in which 
distributed computing would decrease execution 
times. 

With the power of a computational grid, large 
numbers of individual independent tasks can 
potentially be executed with vast improvements in 
processing speed. This has two obvious benefits in 
that individual jobs can be executed faster or more 
jobs can be executed in a given timeframe.  

A coarse-grained approach to parallel processing 
has been adopted in the TIME environment. This 
kind of task separation takes place at the 
application level, meaning that the program itself 
is specifically designed to utilise the grid. Fine-
grain approaches attempt to break up the task for 
parallel execution at a much lower level. This is 
more difficult but advantageous, as it is not bound 
to a specific application, thus can be used for a 
wider range of tasks with little or no change to the 
application. 

3. EXISTING GRID TECHNOLOGIES 

A number of grid computing technologies exist, 
each using differing technology in all aspects of 
their design from network communication to job 
scheduling. Due to the availability of varying 
technologies, it was deemed unnecessary to 
develop an entirely new grid computing 
framework for TIME. Two distribution 
frameworks were identified as potential candidates 
for use; Condor (2005) and Alchemi (2005). 

3.1. Condor 

Condor is a specialized workload management 
system for compute-intensive jobs. It is a well 
established product whose roots stem from the 
Remote-Unix (RU) (Litzkow 1987) project which 
has evolved into a cross platform distribution 
framework. It offers a job queuing mechanism, 
scheduling policy, priority scheme, resource 
monitoring, and resource management capability. 
In spite of its features and reputation, Condor was 
not chosen. Its underlying technologies and native 
language were seen as less suited for integration 
with TIME than Alchemi’s. 

3.2. Alchemi 

The Alchemi .NET Grid Computing Framework 
was the grid computing framework of choice for 
TIME. Alchemi is an open source software 
framework that has been specifically designed for 
the fast and efficient harnessing of the 
computational power of networked machines. 
Although only in the early stages of development 
when first adopted, its flexibility and potential 
made it the best choice for integration into TIME.  

The framework is written in the C# programming 
language which is the same language 
predominantly used in TIME. The Alchemi 
software is designed for application level task 
definition which is tied into applications through 
the use of the object oriented programming 
concept inheritance. The interface provided is 
extremely simple to utilise in any existing C# 
application. The architecture is such that jobs are 
sent to a manager machine whose responsibility it 
is to handle scheduling and manage the available 
resources on the grid. Client machines, known as 
executors, connect to the manager at will and in 
doing so make themselves available for use by the 
manager for executing jobs. By default, the 
manager makes scheduling decisions based on the 
availability of CPU resources of the executor 
machines. The manager is also responsible for 
handling exceptional circumstances such as when 
executor machines unexpectedly disconnect either 
on purpose or due to network failure. The Alchemi 
framework is capable of handling all scheduling 
and monitoring processes by default unless 
otherwise specified by the client application.  

Microsoft .NET Remoting is the transport 
technology utilised by Alchemi to remotely 
execute code on machines in the grid. Remoting is 
a high level abstracted network communication 
protocol designed to talk between application 
domains, either within a machine, or over a 
network. Another important feature of Alchemi is 
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its support for multi-clustering. This means that 
multiple independent grids can be connected and 
act as one at will, vastly increasing the available 
power of the grid. 

4. DIME 

The Distributed Invisible Modelling Environment 
(DIME) is the extension to TIME that allows users 
to transparently distribute model execution over a 
network. It is the component which links TIME 
and Alchemi.  

The most significant decision when developing 
DIME was where DIME could best divide 
processor intensive areas of TIME. It needed to be 
at a point where the overall problem could be 
broken down into small sub-problems. Each of the 
small sub-problems needed to be a 
computationally intensive operation rather than a 
data intensive operation and the sub-problems also 
need to be able to run in parallel. 

4.1. Distributing model execution 

The underlying logic of the TIME framework 
resides within TIMECore. TIMECore provides the 
Model class from which all the models are 
extended as shown in Figure 1. In order to run 
models a ModelRunner class is generally used. 
TIMEShell and VisualTIME provide the ability to 
execute a model from the command line and a 
GUI, respectively. Both TIMEShell and 
VisualTIME use the ModelRunner class to execute 
the models. Figure 1 uses a UML diagram to 
illustrate the basic layout of the important classes 
used for model execution. 

 

Figure 1. UML diagram of original TIME model 
structure 

ModelInstance represents a particular instance of a 
developed model which inherits from the base 
class Model such as a Rainfall Runoff model. The 
basic model execution was chosen as a starting 

point for adding distribution. The ModelRunner 
class was the best point to add in the functionality 
since it is a common class used by most 
applications when running models. Directly adding 
the distribution here would mean that TIME would 
become tightly coupled with the Alchemi Grid API 
since the ModelRunner would have to inherit from 
the GridThread which is in Alchemi. This is a 
significant drawback. 

We decided to implement an interface that is 
common to both ModelRunner and a grid based 
equivalent. This would help to make the program 
easier to understand and code. The interface class 
implements all of the "signatures" for the methods 
currently contained in ModelRunner and 
ModelConfig. 

The new GridModelRunner class inherits from 
GridThread within Alchemi and instantiates an 
instance of the standard ModelRunner. The 
GridModelRunner also implements the interface 
IModelRunner as shown in figure 2. 

 

Figure 2. UML diagram of the addition of DIME 
to TIME  

This design implements the Alchemi GridThread 
functionality through the ModelRunner without 
making the ModelRunner dependant on Alchemi. 

This solution means that the TIME framework is 
in no way coupled to Alchemi and the DIME 
functionality can be loaded at runtime through its 
dynamic linked libraries.  

In order to set the options for the Alchemi manager 
some metadata was added to a new class called 
DimeOptions (lower right corner in Figure 2). This 
information will be extracted using reflection in 
the VisualTIME Configuration GUI and integrated 
into the standard configuration screen. 
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4.2. Distributing model optimisation 

A second area that would potentially benefit from 
distribution was model optimisation. 

To understand how an optimiser works within the 
TIME framework it is important to understand 
how a model is run. A model takes a set of input 
data and a set of parameters and produces output 
based on all of the inputs and the parameters used. 
An optimiser takes a set of input data and a set of 
output data and attempts to determine which set of 
parameters would best produce the output data, 
given the input data. 

In doing so, the optimiser must perform a 
multitude of model runs, testing different 
parameters during each run to find the optimal 
parameter set. The optimisation process is 
statistical in nature— the more optimisation model 
runs that can be completed, the higher the 
probability of obtaining the optimal parameter set. 
Figure 3 shows the IOptimiser interface class 
being executed by the Calibration Manager to run 
optimisations locally. 

When designing the distributed optimisers, three 
realistic solutions to the problem of distributing 
optimisers were found. The simplest and least 
efficient would be just to use a GridModelRunner 
object in place of the ModelRunner used by 
OptimiserModelConfiguration, as shown in Figure 
3. The advantage of this design is that it would be 
very simple to implement and would work with 
minimal effort. The downside is efficiency and 
speed. This design would have caused a new job to 
be sent off for each model run, which would have 
resulted in a large amount of network traffic for 
each model optimisation. 

4.3. Categorise Search Optimisers 

We estimated that conducting the distribution at a 
higher level would minimise the network traffic 
and increase the overall speed of the optimisation 
process. 

Given that there are two major types of optimisers 
within TIME, single search optimisers and multi-
start optimisers, we considered splitting each of 
the start points contained in a multi-start optimiser 
into a single job. This would be possible as each 
start point of a multi-search algorithm is 
independent.  

Our final design was an architecture that allowed 
for the distribution of multiple optimisation runs 
over the grid. This enabled both single search and 
multi-search algorithms to be distributed over the 

grid. Instead of running a single IOptimiser under 
CalibrationManager; numerous IOptimisers are 
added to a GridOptManager class which handles 
all Alchemi grid functionality, shown in Figure 3. 
This is a superior implementation and minimises 
network traffic. The number of IOptimisers added 
to the class is defined by the user in the 
GenericCalibrationForm. Figure 3 shows the 
integration of the new DIME architecture into the 
TIME calibration system. 

 

Figure 3. UML diagram of the DIME addition to 
the TIME Calibration system 

Under the new architecture, when the optimisation 
is being distributed, the IOptimisers are passed to 
the GridOptManager which then puts them into the 
GridOptimiser class. The GridOptimiser class is 
used as a shell to hold the IOptimiser and inherits 
from GridThread (which enables the distribution of 
objects in Alchemi). Once loaded with 
IOptimisers, the GridOptManager then proceeds to 
distribute all of its GridOptimsiers and await the 
results. When the results are returned, the 
GridOptManager sorts the results, and passes the 
IOptimiser with the best parameter set back to the 
GenericCalibrationForm for display. 

4.4. Batch Runner 

It was necessary to create a specialised batch 
runner to handle the interaction with DIME and 
Alchemi, since the ability to send a large number 
of models to be run in parallel would become 
common functionality, necessary for a number of 
different applications such as sensitivity analysis.  

The batch runner was set up to run many models at 
once, either locally or over the grid. Its specific 
requirements were to: 
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• allow fields to be set with lists or values 

• determine combinations of model runs 

• minimise network traffic.  

The BatchRunner class was able to use 
IModelRunner, rather than ModelRunner or 
GridModelRunner, which enabled the 
BatchRunner to be run locally or across the grid. 

The main problem in developing BatchRunner was 
in the class implementation. BatchRunner needed 
to be able to operate on any model. As models can 
have any number of inputs and parameters it was a 
problem finding all possible combinations of 
model inputs and parameters. We wrote a recursive 
function to iterate through all combinations of 
model inputs and parameters. 

This provided an elegant solution to the problem. 
The function ensures that we can determine all 
possibilities of any number of changing variables. 

The BatchRunner will fit into the exiting 
architecture as shown in figure 4. 

 

Figure 4. UML diagram of BatchRunner design 

TIMEShell was modified to use the BatchRunner 
and a new interface was written to allow 
VisualTIME to use the BatchRunner and distribute 
batch jobs. 

5. ANALYSIS OF PERFORMANCE 

The performance of the DIME component was 
analysed at each stage of the development. Each 
release was reviewed with particular attention to 
load and performance testing (Bridgart et al 2004). 

5.1. Load testing 

The load testing involved having multiple users 
and executors connecting to the one manager 
submitting jobs, either completing or cancelling 
jobs, disconnecting and reconnecting from the 
grid, and running large jobs on all the available 
executors. The largest grid assembled for testing 

was a 32.1 GHz grid with 12 desktop machines 
that were in use by the majority of their owners 
while the load testing was taking place. 

5.2. Performance testing 

The purpose of the performance testing was to 
quantify the level of improvements gained by 
executing jobs over the grid. 

Before performance testing began it was necessary 
to have a consistent testing environment. A small 
scale grid with five computers, not in use for any 
other purpose, was set up as the testing grid. The 
testing grid was in a standard working 
environment with a total of 8.613 GHz capacity 
(Davis 2004). There were five executors running 
with the Alchemi manager running on a separate 
machine. These tests were done using the 
BatchRunner through TIMEShell. 

The model used to test the batch runner system 
was purpose built, designed purely to use 
excessive CPU resources and reference small data 
sets. The graph in Figure 5 shows the number of 
model runs that were run both over the grid and 
locally. 

 

Figure 5. Performance Results (Davis 2004) 

As can be seen in Figure 5, when more than 20 
model runs were required, the initial overhead of 
using the grid was outweighed by the benefits of 
parallel processing gained by the grid. When 
executing a low number of runs, the overhead of 
using the grid exceeds the benefits, and as a result 
it was more efficient to run low numbers locally 
(Davis 2004). 

The performance gains from using the grid were 
significantly greater than first expected across all 
tests. This includes the performance tests run on 
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the grid optimisers which, unlike the batch runner, 
used real-life models and data. Gains were seen 
with a lot fewer runs than predicted, thus the 
overhead of using the grid was not as high as first 
anticipated. 

It is worth noting that in spite of these promising 
results, the system has not yet been fully tested 
over a wide range of models. Further analysis will 
be required to develop strong guidelines for 
modellers wishing to use the grid capabilities in 
TIME regarding when it is appropriate to distribute 
work. 

6. CONCLUSION 

The resulting extension to the TIME framework, 
DIME, proved to be an effective and efficient 
distribution system which was able to be 
successfully deployed. The Alchemi API was 
easily able to be utilised, due to its flexibility and 
simple design. Given the nature of TIME and its 
various components, the use of a computational 
grid proved effective in reducing operational 
runtimes. The system created not only addresses 
the needs identified in this paper but has the 
potential to be expanded into other areas of the 
framework. Additions to the system can be made 
as the framework is expanded and other areas are 
identified as being computationally intensive. 

The system has successfully grid-enabled TIME 
without tightly coupling TIME to the Alchemi 
API. The grid was shown to be robust and non-
intrusive when deployed under standard operating 
conditions, allowing for the seamless decrease in 
execution times for effected TIME applications. 
This kind of project and research into distributed 
computing presents opportunities for future 
scientific applications. 

Ongoing developments in these areas continually 
increase the potential impact of environmental 
simulations. Cost effective harnessing of existing 
computer infrastructure enables an increase in 
computational power, for larger and more complex 
models. This can be a valuable resource which can 
be utilised by the modeller. 
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