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EXTENDED ABSTRACT 
 
This paper presents the identification and 
quantification of uncertainty in nutrient load 
estimates for the Goulburn-Broken catchment 
from irrigation drains. The reliable estimation of 
pollutant loads is a difficult task since, typically, 
water quality data is relatively sparse. The sparse 
nature of the data means that some estimation 
technique must be applied, based on assumptions 
about the behaviour of pollutant concentrations 
instream in the times when water quality was not 
sampled. Twenty two methods of estimating 
annual nutrient loads have been identified and 
compared in this study. The results vary 
significantly and show that the choice of 
estimation method contributes to the overall 
uncertainty of load estimation. 

The choice of estimation technique has been 
shown to have a large impact on the final estimate 
and therefore, it is recommended that more 
emphasis be given to the selection and 
documentation of load sampling and estimation 
techniques in future. In particular, it is 
recommended that the framework provided in this 
paper (or similar logic) is applied to select 
appropriate techniques. Furthermore, any 
estimation of loads should be accompanied by 
clear documentation of the techniques used and a 
justification of the technique selected. 
Additionally, when assessing changes in loads 
over time, it is important that the same estimation 

technique is applied to determine all annual 
estimates for comparative purposes. 

There is a large body of research investigating 
load estimation techniques, however, little 
attention has been given to quantifying the 
uncertainty surrounding estimated loads. In this 
paper, three main sources of uncertainty in the 
estimation of nutrient loads are identified: 
knowledge uncertainty (arising from the choice of 
estimation technique), stochastic uncertainty 
(arising from the variability of data) and data 
uncertainty (arising from measurement, scaling 
and sampling errors).  

A quantification of uncertainty has been 
performed for Total Phosphorous for thirteen sites 
in the Shepparton Irrigation Region for all 
available years, examples of which are provided 
in this paper. The results of this quantification 
showed that, whilst some results were quite 
reliable, others varied widely and caution should 
be applied in the application of those estimates. A 
method for quantifying uncertainty has been 
described and it is recommended that this 
methodology be applied wherever robust 
estimates are required which consider the 
potential effects of uncertainty. 
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1. INTRODUCTION 
This paper presents the identification and 
quantification of the uncertainty in annual nutrient 
load estimates for the Goulburn-Broken catchment 
from irrigation drains. The reliable estimation of 
pollutant loads is a difficult task since, typically, 
water quality data is relatively sparse. The sparse 
nature of the data means the uncertainty in load 
estimates is significant and should be considered in 
any analysis of pollutant loads.  

The quantification of uncertainty presented here is 
focussed on the interpretation of historical data, 
and provides a range of load estimates which could 
have occurred. Future research will focus on the 
design of sampling protocols to reduce the 
uncertainty associated with load estimation. 

This paper is structured into four sections. Firstly, 
in Section 2, background is given into the available 
techniques for estimating loads, a framework is 
presented for selecting an appropriate technique 
and a summary is given of the sampling regime in 
the Shepparton Irrigation Region (SIR). In Section 
3, a range of equally valid estimates are presented 
for Total Phosphorous (TP) loads from thirteen 
drain sites in the SIR in the years 1993/94, 
1998/99 and 2003/04. Then, in Section 4, the main 
sources of uncertainty of load estimates are 
explained and this uncertainty is quantified and 
analysed for the same thirteen sites. Finally, some 
recommendations are made for the estimation of 
nutrient loads using historical data. 

2. ESTIMATING LOADS FROM SPARSE 
WATER QUALITY DATA  

Estimation of nutrient loads in the drains of the 
Goulburn irrigation region by Goulburn-Murray 
Water is predominantly based on daily flow data 
and fortnightly concentration data. Whilst 
fortnightly water quality sampling is not unusual 
(given the high cost of sampling), this relative 
scarcity of data has the potential to create 
significant uncertainties in load estimates and also 
presents major limitations in quantifying the error 
of load estimates. 

Due to the relatively sparse nature of concentration 
data, some estimation technique must be applied, 
based on some assumptions about the behaviour of 
pollutant concentrations instream in the times 
when water quality was not sampled. Three main 
types of estimation techniques can be used: 

Interpolation Techniques: where assumptions are 
made about how concentrations vary in time 
between samples. Typical interpolation techniques 
are to linearly interpolate between concentrations 
or apply cubic splines to a time series of 
concentrations. For the SIR, these techniques 
require that concentrations from individual 

samples are assumed to represent the average daily 
concentration for the sampled day, and then the 
average daily concentration on non-sampled days 
is determined by linearly interpolating between 
fortnightly sampled concentrations. 

Regression or Rating Curve Techniques: where 
a relationship is assumed to hold between flow and 
concentration of a particular time period, say daily, 
and the concentration of non-sampled periods is 
inferred from the flow data. These techniques can 
also be extended to include relationships with 
other variables such as lagged concentrations and 
lagged flows. These techniques can only be used 
where a relationship between variables is 
established and that relationship can reasonably be 
expected to hold in non-sampled periods. 

Averaging or Ratio Techniques: where statistics 
derived from the available concentration samples 
and flow time series are used to estimate loads of 
longer time spans. For example, the annual load 
could be calculated as the average concentration of 
samples multiplied by the total annual measured 
flow. There are several different Averaging and 
Ratio Techniques and a comparison is given in 
Section 3. 

Sampling and catchment behaviour should inform 
the choice of load estimation technique. In 
particular, the choice of technique should consider 
the regularity of sampling, the alignment of 
sampling effort with flow regime and the variance 
of concentrations with relation to time or flow. 

There are many potential methods for estimating 
the quantity of nutrients discharged from a stream. 
In the first instance, Fox (2004) distinguishes 
direct estimation methods (using actual 
concentration and flow data) from indirect 
methods (using catchment models which simulate 
load arising from catchment processes), and 
further identifies statistical design (i.e. the spatial 
and temporal scales of data collection) and 
analytical methodology as key issues for any direct 
estimation method. This report focuses on issues 
associated with the analytical methodology of 
direct estimation, while future reports will address 
issues of statistical design. 

As Fox (ibid.) notes, the problem of obtaining 
‘representative’ load is difficult since data is sparse 
relative to the estimation of continuous flow-
concentration flux. There are many potential 
approximation techniques with varying level of 
performance with regard to precision and bias. 
Many reviews of techniques for load estimation 
have been previously undertaken (Preston et al. 
(1989), Cohn et al. (1989), Littlewood (1992), 
Letcher et al. (2002), Degens and Donohu (2002), 
Mukhopadhyay and Smith (2000)). These studies 
have usually concluded that there is no single 
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method which universally provides precise (i.e. 
minimum variance) and unbiased estimates. 
However, these reviews have typically been 
limited to specific datasets and situations, and 
usually, have presented no link between the 
characteristics of the sampling regime employed 
and the load estimation technique used. 
Consequently, no generalised framework has 
previously been developed linking the types of 
estimation technique results to the type of 
sampling regime. 

Based on the available research (listed above) and 
overlaying the types of sampling regimes seen in 
practice, a simplified summary of appropriate load 
estimation techniques has been prepared (Table 1). 
This matrix provides broad guidance on the 
categories of techniques to be considered, 
however, there are many specific variations of 
these techniques. Additionally, guidance on the 
sampling regime should be adjusted depending on 
the characteristics of the catchment in question and 
this issue will be investigated in future research. 

Table 1 Typology of annual nutrient load 
estimation methods 

Nutrient 
Sampling 
Regime 

No significant  
relationship1  

Significant 
relationship 

present 
Sparse 
sampling (> 
monthly) 

Averaging or 
Ratio 

Regression 

Regular 
sampling (e.g. 
fortnightly)  

·  Limited 
event data 

Averaging or 
Ratio  

·  Seasonally 
stratified 

Regression or 
Averaging or 
Ratio 

·    Seasonally 
stratified 

· Repre-
sentative 
event data 

Averaging or 
Ratio  

·  Seasonally 
stratified  

·    Flow- 
weighted 
stratified 

Regression or 
Averaging or 
Ratio 

·    Seasonally 
stratified 

·    Flow- 
weighted 
stratified 

Continuous 
sampling (e.g. 
daily) 

Linear 
interpolation 

Linear 
interpolation 

The typology presented in Table 1 has been 
constructed by excluding techniques that are not 
valid for particular sampling regimes and 
catchment characteristics. Specifically, the 
typology reflects two premises: firstly, that 
regression techniques cannot be used unless a 

                                                           
1 Between flow and nutrient concentration 

significant relationship can be demonstrated 
between water quality and some other variables 
such as flow, and secondly, that the interpolation 
techniques cannot be assumed to be valid unless 
the water quality samples are almost continuous. 

The issue of regression techniques was addressed 
by Peel and McMahon (2001) in their study of the 
power of nutrient load estimates where they 
assessed the significance of relationships between 
instantaneous flow and Total Nitrogen (TN), and 
instantaneous flow and TP. They concluded that 
the variance in TN and TP explained by 
instantaneous flow was too low to justify use for 
infilling unknown values of TN or TP 
concentrations (an example is given in Figure 1 for 
Rodney Main Drain, site 405720). Therefore, 
unless a significant relationship is established for a 
particular site in SIR, regression techniques are of 
limited use (and are therefore not included in the 
following analyses). 

405720 (Flow-TP relationship)
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Figure 1 Correlation between flow and TP 
concentration for site 405720 

In order to apply linear interpolation techniques, 
the assumption that concentrations vary linearly 
between fortnightly samples would need to be 
validated. Two brief experiments were undertaken 
by Etchells et al. (2005) to investigate this issue 
and it was demonstrated that this assumption is not 
supported by the data. Consequently, unless there 
is evidence to the contrary, the use of averaging or 
ratio estimators is a valid approach for load 
estimation.  

The sampling regimes in SIR have so far all been 
systematic but sampling has not been designed 
specifically to capture a proportionate share of 
high-flow events. These events have a very large 
impact on overall loads since the concentration 
during those events is multiplied by large volumes, 
and also, the variation in high-flow concentration 
tends to be significantly higher than that in low-
flow periods. This issue will be analysed more 
thoroughly in future research.  

Twenty two methods of estimating annual nutrient 
loads have been identified and calculated for this 
study. These methods and details about the sources 
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of these methods are provided in Appendix A. 
These methods can broadly be grouped into three 
categories: with Methods 1-8 representing 
unstratified calculations, Methods 9-15 
representing seasonally stratified versions of 
Methods 2-7 and Methods 16-22 representing 
flow-stratified versions of Methods 2-7. 

A model, GUMLEAF v0.1alpha (Generator for 
Uncertainty Measures and Load Estimates using 
Alternative Formulae) (Tan et al. 2005a), was 
developed to facilitate the computation of annual 
pollutant loads (incorporating sampling and 
method uncertainties) and visualisation of data and 
results, using the 22 methods.  Details of the 
structure and application of this software is 
documented in the GUMLEAF v0.1alpha User 
Guide (Tan et al. 2005b). 

Using the twenty two methods described in 
Appendix A, many separate estimates of annual 
load were calculated for each of the thirteen sites 
in the SIR for each year of available data2. And, 
unless some other information or analysis is 
presented to limit the validity of particular 
estimation techniques, it is reasonable to assume 
that each of these estimates is equally valid.  For 
example, twenty two different estimates of the 
annual TP load in 2003 at Rodney Main Drain 
(405720) are shown in Figure 2. Not surprisingly, 
estimates vary considerably across the twenty-two 
methods, although some discernible pattern exists 
depending on the type of stratification (seasonal, 
flow or none). These results demonstrate that the 
‘true’ load cannot be estimated. 

405720 (TP Load 2003)
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Figure 2 TP Load Estimates for Rodney Main 
Drain in 2003 using 22 estimation techniques  

Future research will focus on improving our 
understanding of uncertainty beyond historical 
                                                           
2 Not all twenty two methods could be applied for 
all sites in all years due to insufficient data. 

load estimation to incorporate considerations of 
sampling also. The design of sampling protocols 
should be developed with a corresponding load 
estimation technique in order that the uncertainty 
of estimates is minimised. Future research will 
provide guidance on sampling and load estimation 
to minimise uncertainty (without significant 
increases in the number of water quality samples). 

It is important to note that no sampling technique 
can overcome information deficiencies from a 
sampling regime where disproportionately few 
samples are taken in high flow events. There is an 
inherent assumption in the averaging and ratio 
methods that sampling is representative of general 
conditions. In practice, determining the pollutant 
concentration during high flow events is 
particularly important since a large proportion of 
load is generated during these events, and 
frequently, higher than average concentrations 
occur then.  

Using each estimate of annual load for each site in 
1993, 1998 and 2003, five year and ten year 
percentage reductions were calculated (Figure). On 
the basis of these calculations, there can be some 
confidence in concluding that, despite significant 
uncertainty, most sites have had load reductions of 
over 50% in the past decade. Furthermore, the 
standard deviation of some reductions is quite low 
giving a reasonable degree of certainty at 
particular sites (e.g. Rodney and Deakin Main 
Drains). Strictly speaking, such an assessment of 
load reduction should be informed by the 
magnitude of flow or rainfall in those years (since 
dry years will necessarily have lower flows and 
therefore relatively lower loads). Future research 
will address the formulation of load targets to 
consider the magnitude of flows. 
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Figure 3 5 year and 10 year load reductions at site 
405720 for 22 load estimation methods 

3. SOURCES OF UNCERTAINTY IN LOAD 
ESTIMATION 

Overall, three sources of uncertainty contribute 
significantly to overall uncertainty in nutrient load 
estimation. Those three sources are knowledge 
uncertainty, stochastic uncertainty and 
measurement uncertainty (Figure 4).  
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The annual load estimates of TP given in Figure 2 
show significant variation due to the estimation 
technique selected. Unless other overriding factors 
are considered to be relevant, any of the values in 
Figure 2 are equally legitimate as estimates of the 
‘true’ load. However, the ‘true’ load is not known, 
and therefore, the selection of estimation technique 
is one source of uncertainty in load estimation. For 
the purposes of this research, this source of 
uncertainty has been labelled ‘knowledge’ 
uncertainty. 

Knowledge uncertainty can be reduced through an 
increased understanding of the pollutant wash-off 
and transport processes. In general, for sites with 
limited high flow samples, methods that do not 
account for flow stratification will tend to 
underestimate the ‘true’ load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Sources of uncertainty in load estimates 

In addition to knowledge uncertainty, stochastic 
uncertainty also needs to be considered. Stochastic 
uncertainty is described by the deviation of water 
quality concentrations from any assumed value 
(e.g. a mean) and is represented in this study by 
estimates of variance. The standard deviations 
used in the analysis are based on the work of Fox 
(2005). 

Finally, a third source of uncertainty needs to be 
considered arising from errors in the measurement, 
scaling or application of data. Errors could 
potentially arise from drift or miscalibration in 
equipment, infilling missing data, poor sampling 
techniques or inaccurate scaling assumptions. 
Additionally, data and sampling uncertainty will 
arise from unrepresentative sampling, for instance, 
where few high-flow samples are available. 

However, since no information is known about the 
magnitude of these errors, they will be ignored for 
the purposes of this analysis. Since one source of 
uncertainty is being ignored, the remaining 
quantification is likely to be relatively more 
conservative. 

4. QUANTIFICATION OF THE 
UNCERTAINTY OF ANNUAL TP LOAD 
ESTIMATES  

The quantification of the uncertainty of load 
estimates should reflect the three sources of 
uncertainty: knowledge, variability and 
measurement uncertainty. However, since no 
information is available regarding data uncertainty, 
this source will not be considered in this analysis.  

The procedure used to quantify uncertainty uses 
Monte-Carlo simulation3 where the knowledge 
uncertainty and stochastic uncertainty were 
considered. The knowledge uncertainty was 
reflected since the one method for calculation 
(from the twenty two possible methods) was 
randomly selected, providing a particular mean 
and variance for consideration. Then, stochastic 
uncertainty was considered by assuming the 
estimate was normally distributed around the 
mean, generating a random normal variate with the 
relevant mean and variance. One thousand 
repetitions were generated and histograms 
produced to represent the resulting range of load 
estimates.  

Specifically, the method to quantify uncertainty for 
each site in each year consisted of six steps: 

1. Select random integer, j, between 1 and 22, 
corresponding to a particular method of load 
estimation (described in Section 2); 

2. Determine corresponding mean, μj, and 
variance, σ2

j, of the estimated annual load , for 
the randomly selected method and for the 
particular site and year; 

3. Randomly generate a standard normal variate 
for each repetition k, tk ~ N(0,1); 

4. Calculate the simulated load for each repetition 
k (Lk), such that: 

5. jkjk tL σμ .+=  

6. Repeat for k = 1 … 1000 

7. Present histogram of L for each site in each 
year. 

                                                           
3 Monte-Carlo simulation relies on generating 
many example solutions to a problem to 
approximate a numerical solution. 

Uncertainty 
of load 

estimate

Knowledge
Uncertainty

Technique / 
model / process 
uncertainty

Stochastic
Uncertainty

Variability of 
sample data

Measurement
Uncertainty

Measurement, 
data, scaling 
errors or from 
unrepresentative 
sampling

Uncertainty 
of load 

estimate

Knowledge
Uncertainty

Technique / 
model / process 
uncertainty

Stochastic
Uncertainty

Variability of 
sample data

Measurement
Uncertainty

Measurement, 
data, scaling 
errors or from 
unrepresentative 
sampling
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Example output showing the uncertainty of 
estimated loads for site 405720 is presented for 
three years in Figures 5 – 7.  
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Figure 5 Histogram of simulated annual loads for 
site 405720 in 1993 
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Figure 6 Histogram of simulated annual loads for 
site 405720 in 1998 
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Figure 7 Histogram of simulated annual loads for 
site 405720 in 2003 

5. CONCLUSIONS 
Overall, there are significant sources of uncertainty 
in the estimation of nutrient loads, arising from the 
choice of estimation technique (knowledge 
uncertainty), stochastic and measurement 
uncertainty.  

The choice of estimation technique has been 
shown to have a large impact on the final estimate 
and therefore, it is recommended that more 
emphasis be given to the selection and 
documentation of load estimation techniques in 
future. In particular, it is recommended that the 
framework provided in Table 1 (or similar logic) 
be applied to select appropriate techniques. 
Furthermore, any estimation of loads should be 
accompanied by clear documentation of the 
techniques used (which is often missing in 
practice) and a justification of the technique 
selected. Additionally, when assessing changes in 
loads over time, it is essential that the same 
estimation technique is applied to determine all 
annual estimates for comparative purposes (i.e. to 
give an apples to apples comparison). 

A quantification of uncertainty was undertaken for 
Total Phosphorous for thirteen sites in the 
Shepparton Irrigation Region for all available 
years. The results of this quantification showed 
that, whilst some results were quite reliable, others 
varied widely and caution should be applied in the 
application of those estimates. A method for 
quantifying uncertainty has been described in 
Section 4 and it is recommended that this 
methodology be applied wherever robust estimates 
are required which consider the potential effects of 
uncertainty. 

Finally, given the linkages between sampling 
regimes and appropriate load estimation 
techniques, it is clear that sampling regimes and 
protocols should be accompanied by details of 
corresponding estimation techniques. Future work 
will be focused on articulating sampling protocols 
and corresponding load estimation techniques to 
reduce overall uncertainty of load estimates as 
much as possible without significantly increasing 
the number of samples taken. 
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Appendix A Load estimation methods 
considered 
Method 1 (A_AvCsFp) = Sample period flow-
weighted averaging = sample conc x mean flow 
between sampling period in a year 
Method 2 (A_AvCmFm) = Annual mean sample 
conc-mean sample flow averaging = mean sample 
conc x mean sample flow in a year 
Method 3 (A_AvCsFs) = Annual sample conc-sample 
flow averaging = sample conc x sample flow in a 

year 
Method 4 (A_AvCmFd) = Annual mean sample 
conc-mean flow averaging = mean sample conc x 
mean annual flow in a year 
Method 5 (A_FWMC) = Annual flow-weighted mean 
conc = sample conc x sample flow in a year weighted 
by ratio of mean annual flow/mean sample flow 
Method 6 (A_RtoSim) = Annual simple ratio 
estimator (load estimate similar to FWMC method, 
but variance estimate differs) 
Method 7 (A_RtoKen) = Annual Kendall's ratio 
estimator 
Method 8 (A_RtoBea) = Annual Beale's ratio 
estimator 
Method 9 (S_AvCmFm) = Seasonal-stratified mean 
sample conc-mean sample flow averaging = sum of 
mean sample conc x mean sample flow of all seasons 
in a year 
Method 10 (S_AvCsFs)  = Seasonal-stratified sample 
conc-sample flow averaging = sum of sample conc x 
sample flow of all seasons in a year 
Method 11 (S_AvCmFd) = Seasonal-stratified mean 
sample conc-mean flow averaging = sum of mean 
sample conc x mean seasonal flow of all seasons in a 
year 
Method 12 (S_FWMC) = Seasonal-stratified flow-
weighted mean conc = sum of sample conc x sample 
flow weighted by ratio of mean seasonal flow/mean 
sample flow of all seasons in a year 
Method 13 (S_RtoSim) = Seasonal-stratified simple 
ratio estimator 
Method 14 (S_RtoKen) = Seasonal-stratified 
Kendall's ratio estimator 
Method 15 (S_RtoBea) = Seasonal-stratified Beale's 
ratio estimator 
Method 16 (R_AvCmFm) = Flow regime-stratified 
mean sample conc-mean sample flow averaging = 
sum of mean sample conc x mean sample flow of all 
regimes in a year 
Method 17 (R_AvCsFs) = Flow regime-stratified 
sample conc-sample flow averaging = sum of sample 
conc x sample flow of all regimes in a year 
Method 18 (R_AvCmFd) = Flow regime-stratified 
mean sample conc-mean flow averaging = sum of 
mean sample conc x mean regime flow of all regimes 
in a year 
Method 19 (R_FWMC) = Flow regime-stratified 
flow-weighted mean conc = sum of sample conc x 
sample flow weighted by ratio of mean seasonal 
flow/mean sample flow of all regimes in a year 
Method 20 (R_RtoSim) = Flow regime-stratified 
simple ratio estimator 
Method 21 (R_RtoKen) = Flow regime-stratified 
Kendall's ratio estimator 
Method 22 (R_RtoBea) = Flow regime-stratified 
Beale's ratio estimator 
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