
Deterministic Model To Quantify Pathogen And Faecal 
Indicator Loads In Drinking Water Catchments 

C. M. Ferguson1,2 and B.F.W. Croke3 
1 Ecowise Environmental, 16A Lithgow St, Fyshwick, ACT 2609. cferguson@ecowise.com.au 

2 Cooperative Research Centre for Water Quality and Treatment, Salisbury, SA 5108. 
3 Integrated Catchment and Assessment and Management Centre, School for Resources, Environment and 

Society and Department of Mathematics, Australian National University, Canberra, ACT 0200. 

Keywords: pathogen; catchment; Cryptosporidium, E. coli, water quality

EXTENDED ABSTRACT 

Catchments are the first potential barrier to 
pathogen hazards in the water supply system. 
Reducing pathogen loads exported from 
catchments to drinking water reservoirs is thus an 
important priority in applying a risk-based 
approach to managing water supplies. Although 
predictive models are available to estimate 
sediment and nutrient loads, few models are 
available to predict either bacterial indicator or 
pathogen loads exported from catchments. This 
paper describes the application of a process-based 
mathematical model to predict pathogen 
(Cryptosporidium) and faecal indicator (E. coli) 
loads generated within and exported from the 
Sydney drinking water catchments. The model 
was derived from a conceptual model that 
identified key processes for microbial sources 
from animals, on-site systems and sewage 
treatment plants (STPs) and their subsequent 
transport within drinking water catchments 
(Ferguson et al. 2003). Inputs to the model 
include GIS land use and hydrologic data and 
catchment specific information. The model was 
initially applied to the Wingecarribee catchment 
in the Sydney drinking water catchment and a 
sensitivity analysis of the model was undertaken 
to determine components of the model that 
required further investigation (Ferguson et al. 
submitted). The model was then applied to all 27 
individual catchments (and the 196 sub-
catchments) within the Sydney Catchment 
Authority (SCA) area of operations. The model 
predicts pathogen catchment budgets (PCB) and 
ranks the sub-catchments that generate the highest 
loads of pathogens and indicators (per km2), as 
well as the sub-catchments that export the greatest 
load of pathogens to the downstream storages. 
Ranking the sub-catchments enables quick 
identification of those areas that are generating 
the highest pathogen and indicator loads 
facilitating the implementation of control 
measures. 

The outputs from the model show that in dry 
weather the highest daily loads of 
Cryptosporidium were predicted to be generated 
in Kellys Creek and Mittagong Creek sub-
catchments in the Wingecarribee catchment. 
These sub-catchments are heavily impacted by the 
effluent discharged from Bowral and Moss Vale 
STPs, respectively. However, in wet weather the 
wash off of faecal material into surface runoff 
predicts that large loads of Cryptosporidium are 
generated in sub-catchments dominated by 
improved pasture grazed by cattle. The slow 
decay of protozoan pathogens combined with 
their rapid transport in water during wet weather 
events results in a cumulative export of 
Cryptosporidium to downstream sub-catchments. 
For example, the PCB model predicts that 
Warragamba reservoir would receive 4 x 1011 
Cryptosporidium oocysts following a 100 mm in 
24 h rainfall event in the Sydney catchment. The 
model predicts that in dry weather approximately 
1 x 1011 E. coli per day were generated in sub-
catchments that contain improved pasture with 
agricultural livestock with additional inputs from 
sub-catchments receiving STP effluent. The rapid 
die-off and limited transport of this 
microorganism in dry weather results in fairly 
localized impacts. However in wet weather 
significant loads of faecal indicator bacteria are 
mobilised to the stream network and transported 
to downstream sub-catchments with Warragamba 
reservoir and the Lower Wollondilly predicted to 
receive up to 5.4 x 1015 E. coli following a 100 
mm in 24 h rain event in the Sydney catchment. 
The pathogen and indicator wet weather export 
loads predicted by the PCB model can be used as 
input variables to the hydrodynamic reservoir 
model developed by Hipsey et al. (2005) thus 
enabling the estimation of the risk of their 
subsequent transport to the water storage offtake 
point in Warragamba Reservoir. 
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1. INTRODUCTION 

The wide variety of pathogenic microorganisms 
that can contaminate source waters and the lack of 
quantitative data concerning their origin and 
distribution within drinking water catchments has 
hindered the development of predictive models of 
pathogen loads from catchments. One of the first 
attempts to predict pathogen loads from drinking 
water catchments was a model developed by 
Walker and Stedinger (1999). This model used 
diffuse pollution inputs to predict Cryptosporidium 
concentrations in the raw water supplied to New 
York City from the Catskill-Delaware catchment. 
In the Netherlands, Medema and Schjiven 
(Medema and Schijven 2001) modelled the 
discharge of Cryptosporidium and Giardia into 
surface water and the dispersion into rivers and 
streams using an emission model (PROMISE) and 
a dispersion model (WATNAT). However, the 
authors noted that the model was unable to account 
for the impact of diffuse agricultural pollution. 
Several other faecal indicator models have also 
been developed recently (Collins and Rutherford 
2004; Crowther et al. 2003; Tian et al. 2002) and 
at least one other pathogen model is currently 
under development (Dorner, Huck and Slawson 
2004). None of these models are yet commercially 
available. 
 
This study describes the application of a process-
based mathematical model or pathogen catchment 
budget (PCB) to quantify pathogen and faecal 
indicator loads within the Sydney drinking water 
catchments. The model is based on a conceptual 
model that identified key processes for microbial 
sources and transport within drinking water 
catchments (Ferguson et al. 2003). The model uses 
a mass-balance approach and predicts the total 
loads generated and the total loads exported from 
each sub-catchment for the pathogen 
Cryptosporidium and the faecal indicator E. coli. 
 

2. DESCRIPTION OF THE MODEL 

The PCB model consists of 5 components: a 
hydrologic module, a land budget module, an on-
site systems module, a sewage treatment plant 
(STP) module and an in-stream transport module. 
The model is coded using the Interactive 
Component Modelling System (ICMS) software 
(Cuddy, Letcher and Reed 2002) freely available 
from the Commonwealth Scientific Information 
and Resource Organisation (CSIRO). The software 
can be requested from the website 
(www.clw.csiro.gov.au/products/icms). Inputs to 
the model include land use and hydrologic flow 
data and catchment specific information to predict 
pathogen loads. The hydrologic module uses the 
non-linear loss module of the IHACRES rainfall-

runoff model described by Croke and Jakeman 
(2004). Briefly, this model assumes an initial 
catchment moisture deficit and using the 
distribution of surface rainfall (GIS layer) an 
amount of rainfall is converted into a depth of 
effective rainfall (rainfall that ends up as stream 
flow) for each sub-catchment. The effective 
rainfall is used to estimate the wet weather 
mobilisation of faeces that have been deposited on 
the land (as described in the land module). The 
depth of effective rainfall depends only on the 
amount of rainfall and the soil moisture. The 
antecedent dry period is adjustable (30 days used 
in this study). The amount of rainfall is adjustable 
(30 mm and 100 mm in <24 h for intermediate and 
large events respectively, in the current 
simulations). 
 
The land module calculates the number of 
microorganisms leaving the sub-catchment as the 
sum from all animal species present in the sub-
catchment. Animal species are assigned as present 
or absent for a particular land use at a defined 
density. Animal density per sub-catchment is 
calculated from the GIS layers. Faecal material 
deposited on the land surface decays at the rate for 
microbial inactivation in soil. Faecal material, 
mobilised to the stream in wet weather or 
deposited in the stream, decays at the inactivation 
rate for each microorganism in water. Decay is 
calculated based on the estimated travel time to 
reach the sub-catchment outlet. In dry weather, the 
only linkage between the land budget module and 
the in-stream transport module was through direct 
input into the stream (i.e. animals defecating 
directly into the stream). This is calculated based 
on an estimate of the access to streams (wild 
animals have unrestricted access; domesticated 
animals may be prevented from accessing 
streams). In addition to access, an estimate of the 
likelihood of a particular species defecating into 
the stream is included. The wet weather budget 
includes the build up of material on the land, and 
the likelihood of mobilisation to the stream. The 
build up of the store of microorganisms on the land 
depends on the length of the antecedent dry period, 
the assumed storage at the start of the antecedent 
dry period, and the decay rate for each 
microorganism in soil. The mobilisation rate of 
manure assigned to each species is a considered 
estimate based on the size, shape and consistency 
of faecal material. Mobilisation varied with 
effective rainfall. 
 
STP and on-site system impacts were estimated 
using effluent water quality and population data. 
Selection of sub-catchments connected to STPs 
was based on proximity to a STP, and spatial 
connection of urban areas. STP connectivity was 
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calculated based on the proportion of the total 
population located in urban land use areas 
compared to the total sub-catchment population. In 
urban areas 98% of the population was assumed to 
be connected to the STP. The dry weather budget 
was simply the product of the population 
connected to the STP, the volume of water used 
per person per day and the post treatment 
microorganism concentration measured in the 
water released by the STP. The volume of effluent 
produced per person per day is adjustable (160 L 
in this study). In wet weather the volume of 
effluent that may be released during an event can 
be allocated based on the buffer capacity for each 
STP and available data on overflow volumes. The 
microbial load excreted per person per day was 
calculated by multiplying the percent prevalence of 
infection in the community by the concentration of 
microorganisms excreted per infected person per 
day. The wet weather budget was the load of 
microorganisms entering the STP (population 
connected multiplied by the number of 
microorganisms.person-1 day-1) buffered by the 
available storage at the STP. Any water entering in 
excess of the buffer was assumed to leave the STP 
without treatment. 
 
The input of microorganisms to the stream from 
on-site systems is assumed to depend on the 
population using on-site systems; an estimate of 
the number of microorganisms excreted per person 
per day; and the fraction of on-site systems 
connected to the stream. The only difference 
between wet and dry conditions for the on-site 
systems module is the level of connectivity to 
streams. In dry weather 1% of on-site systems 
were assumed to be connected to the stream and in 
wet weather this was assumed to increase to 20%. 
The model assumes that there was no decay of 
microorganisms between on-site systems and the 
stream network. 
 
In-stream routing effects were calculated using 
stream order, the length of the stream reach, flow 
velocity and settling factors. In dry weather, all 
microorganisms bound to sediment were assumed 
to settle out, and there was no resuspension of 
settled material in either dry or wet weather. A 
fixed rate of 50% of E. coli were assumed to be 
bound to sediment and thus lost through settling. 
Cryptosporidium primarily remain in the water 
column with only 5% becoming bound and lost 
through settling. The stream reach (km) was 
divided by the flow velocity to estimate the loss 
due to settling per km for each sub-catchment. 
Microbial inactivation was calculated using the 
microorganism specific decay rate for water and an 
estimated travel time. There was no decay of 
microorganisms entering the river network from 

the STPs before reaching the outlet of each sub-
catchment due to the STP being located near the 
sub-catchment outlet. During dry weather (low 
flow conditions), the flow velocity was assumed to 
be 0.1 m s-1. During intermediate wet weather 
events flow velocity was assumed to be 1 m s-1 and 
for the larger wet weather event flow velocity was 
assumed to be 3 m s-1. All flow velocity values are 
adjustable for each sub-catchment. Further detail 
of the model functions are described in Ferguson et 
al. (submitted). 
 

3. APPLICATION OF THE MODEL TO 
THE SCA CATCHMENTS 

Each sub-catchment was identified with a unique 4 
digit number. The first two digits represented the 
catchment (1 to 27) and the second two digits 
represent the sub-catchments within that catchment 
(Figure 1). The available GIS land use data for the 
Sydney drinking water catchment were 
transformed into a subset of 13 land use classes. 
The same assumptions were made regarding the 
density of the human population as described for 
the Wingecarribee catchment (Ferguson et al. 
submitted). These were 2400 people km-2 for urban 
residential, 100 people km-2 for rural residential, 
and 10 people km-2 for agricultural land uses. The 
specific sub-catchment characteristics of the 
catchments required to run the model were derived 
from the GIS land use layer e.g. sub-catchment 
area. However, other variables such as the location 
of the STP that an upstream sub-catchment is 
connected to were identified and input manually. 
The animal and microorganism data files for the 
model were the same as used for the 
Wingecarribee catchment based on results from 
studies by Cox et al. (in press) and Davies et al. 
(2005). 

 

In dry weather the STP loads were calculated using 
the arithmetic mean concentrations of the 
microorganisms in the post-treatment effluent for 
each STP. These inputs to the model were 
calculated from the existing data on microbial 
quality of sewage effluent (Krogh and Paterson 
2002; Paterson and Krogh 2003) combined with 
new data. In wet weather the volume of effluent 
that may be released during an event was based on 
the buffer capacity for each STP and available data 
on overflow volumes (Paterson and Krogh 2003). 
There are approximately 18 000 on-site systems in 
the Sydney drinking water catchment (Charles et 
al. 2001). The total catchment population was 
estimated based on land use type, and then the 
proportion of the population that was not located 
in an urban area and thus not connected to an STP 
were assumed to be using on-site systems. 
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4. OUTPUT FROM THE MODEL 

In dry weather daily Cryptosporidium loads 
generated within sub-catchments were predicted to 
range from approximately 4 log10 in Katoomba 
(0602) and Bindi Creek (1401) to as high as 6.3 
and 7.8 log10 in Mittagong (2504) and Kellys 
Creek (2503) sub-catchments, respectively (Figure 
2). These latter sub-catchments are located 
downstream of Moss Vale and Bowral STPs, 
respectively, in the Wingecarribee catchment. In 
intermediate (<30 mm in 24 h) and large (100 mm 
in 24 h) wet weather events daily Cryptosporidium 
loads generated in all sub-catchments increased by 
3-5 log10 (Figure 2). Wet weather Cryptosporidium 
loads generated within sub-catchments were 
predicted to range from 7-7.5 log10 in Berrima 
(2506) and Covan (1603) sub-catchments to as 
high as 10.6 log10 in Warragamba reservoir (1001) 
and 10.4 log10 in Upper Kowmung (0904). Similar 
trends were predicted for the exported loads of 
Cryptosporidium with most sub-catchments 
predicted to export approximately 5 log10 oocysts 
per day in dry weather (Figure 3). The exported 
loads of Cryptosporidium during wet weather 
again showed similar trends to the predicted input 
loads except that the exported loads were spread 
over a slightly wider range than the input loads 
with the highest exported loads reaching 11.6 log10 
in Warragamba reservoir (Figure 3). 
 
E. coli loads generated daily in dry weather were 
predicted to range from 9 log10 mpn (most 
probable number) in an Unnamed Ck in Werri 
Berri sub-catchment (2404) and Woronora R 
(2702) to 12 log10 in Bundanoon Ck (803) and 
Lower Mulwaree (1608). Generally there was little 
variation between sub-catchments within a 
catchment, with most sub-catchments predicting 
source loads of approximately 11 log10 mpn per 
day. Export loads of E. coli during dry weather 
were usually 3 log10 lower than the input load, with 
most sub-catchments predicting export loads of 
approximately 8 log10 mpn per day. The lower 
predicted export loads reflect the rapid die-off of 
E. coli in dry weather conditions compared to the 
more robust survival of Cryptosporidium oocysts. 
In wet weather the predicted daily E. coli source 
loads ranged from 11.5 log10 mpn in Berrima 
(2506) and Katoomba (602) to 14.5 log10 mpn in 
Warragamba reservoir (1001), Upper Kowmung 
(904) and Bundanoon Ck (803). The predicted 
daily export loads of E. coli during wet weather 
ranged from 12-15 log10 mpn compared to the 
source loads which ranged from 12-14 log10 mpn 
per day. 
 

5. DISCUSSION 

The model predicts that daily Cryptosporidium and 
E. coli loads generated during dry weather have 
mainly localised impacts on a few SCA sub-
catchments, primarily the Mittagong and Kellys 
Creek sub-catchments downstream of Moss Vale 
and Bowral STPs and also those sub-catchments 
that are impacted by agricultural activities 
associated with improved pasture land use. 
However, following rainfall events the rapid 
transport of microorganisms mobilised from the 
land surface results in a cumulative impact on 
downstream sub-catchments. The effect is more 
pronounced for Cryptosporidium than E. coli 
bacteria due to its slow inactivation rate. 
 
While it was acceptable to apply some 
assumptions and default values across the whole 
Sydney catchment, e.g. microbial decay rates, 
further work should replace other parameters with 
data that are more appropriate for the different sub-
catchments. Parameters that should be reviewed 
for each sub-catchment include; the fraction of 
urban areas connected to the sewerage system, 
flow velocities in dry, intermediate and large wet 
weather events, the level of stock access to streams 
and animal density estimates by land use type. For 
example, the default flow velocities could be 
replaced with measured values for those sub-
catchments that have flow gauging equipment 
installed. Also, the current model does not account 
for the potential resuspension of microorganisms 
from the sediment during wet weather events, 
indicating that current model outputs may 
underestimate the total loads generated during wet 
weather. 
 

6. CONCLUSIONS 

The application of the PCB model to the entire 
SCA catchments represents the first quantitative 
identification of those sub-catchments that 
represent the highest pathogen (and indicator) risk 
to the quality of Sydney’s raw drinking water 
supply. The outputs of the model should be used as 
first cut budgets to enable catchment managers to 
prioritise the implementation of control measures, 
to inform public education strategies and drive best 
management practices. However, the model should 
not remain static, incorporation of new data and 
replacement of default values with actual data will 
reduce the level of uncertainty of the outputs. The 
ongoing drought conditions in the catchment 
prevented the collection of wet weather water 
quality data. Collection and analysis of additional 
water samples during wet weather events is 
essential to properly test the outputs of the model. 
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Figure 1. Map of the Sydney drinking water catchment. 
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Figure 2. Cryptosporidum oocyst loads (log10 day) generated within SCA sub-catchments per day. Sub-
catchments are not in sequential downstream order. 
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Figure 3. Cryptosporidum oocyst loads (log10 day) exported from SCA sub-catchments per day. Sub-
catchments are not in sequential downstream order. 
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