
Simulation of Action in Production Systems
Guerrin, F.

Inra/Cirad, UPR Risque Environnemental et Recyclage, BP 20, 97408 Saint-Denis, Reunion Island, France
E-Mail: guerrin@cirad.fr

Keywords: Action representation; Activity simulation; Hybrid dynamical system; Temporal logic; Production
system.

EXTENDED ABSTRACT

The attempt to use simulation models as manage-
ment-support tools puts human decision and action
to the fore. Although it is well-known that there is
a strong intricacy between decision and action,
action representation is here the focus. A formal-
ization to implement in simulation models this
concept is proposed and discussed in the light of
the ‘situated action’ paradigm (Suchman 1987),
Allen’s theory of action and time (Allen 1984),
and BRAHMS, a model to simulate people’s actual
practice (Sierhuis 2001).

This tentative theory originates in modelling and
simulation experiences in the field of agricultural
production systems. These systems are dealt with
at various scales of observation: from livestock
enterprises or crop plots to whole-farm systems or
groups of farms (Guerrin and Paillat 2003). Within
such systems, material (and information) fluxes are
issued from processes operated by human agents
or natural causes. Two types of fluxes are distin-
guished: those mainly driven by human agents
(workable fluxes) and those mainly driven by natu-
ral causes (biophysical fluxes). These fluxes inter-
act through human action that aims at orienting
biophysical fluxes by acting on workable fluxes.

The emphasis put on action simulation is justified
by how is conceived the use of models in decision-
support for managing such systems. Putting aside
the prescriptive approach (the model provides the
user with the decision) a simulation model is
thought of as a reflexive tool aimed at fostering
experimentation and apprenticeship by the user on
its own practice. What-If? simulation mirroring the
interplay of intended actions within the system is
deemed useful to support stakeholders’ decision-
making (Mc Cown 2002). Hence, the model needs
not represent the decision cognitive process, but
rather, ‘what’ is being done in fact. The main con-
cern is thus to simulate the actions and their con-
sequences resulting from scenarios described in
terms of situations, plans, management rules, con-
straints, to help the user compare policy trade-offs.

The modelling ontology of action proposed here
generalizes and builds upon the features developed
within two dynamic simulation models applied to

livestock waste management: MAGMA (Guerrin
2001), which simulates the application on crops of
manure from various livestock in a one-to-many or
many-to-one fashions; APPROZUT (Guerrin 2004;
Guerrin and Médoc 2005), which simulates the
deliveries of slurry from multiple pig farms to a
unique treatment plant in a many-to-one fashion.

An action is represented as a dynamic process by a
binary function of time. Action may be singular
(occurring once) or cyclic (repeating occurrences
over time). The state of an action (0 or 1 values
holding on time intervals) is distinguished from the
temporal events bounding its occurrences. These
are quasi-instantaneous state transitions: 0 1 de-
termining the start dates of actions’ occurrences;
1 0 their end dates. They are generated by
changes in other processes playing the role of trig-
gering or interrupting conditions. As long as these
changes are not detected, action is maintained in
its current state. These processes, continuous or
discrete, may be a combination of predefined
schedules or clocks, external processes accounting
for the environment, or other actions. In turn, an
action exerts an immediate or delayed effect on
target processes (e.g. fluxes controlling stocks) and
system performance indicators. This binary
formalization of action gives rise to the use of pro-
positional or predicate calculus to reason upon
action in a dynamical system framework. The
management of actions involves mainly action
coordination. It can be achieved by several means
namely planning, action composition, and alloca-
tion over time of continuous or discrete resources
shared by concurrent actions according to their
demands and priorities. An advantage of this dy-
namical system approach is to ease the connection
of action models with classical dynamic models
accounting for the biophysical processes at work in
production systems.

The mathematical functions used to represent these
concepts are given and their use is illustrated, for
the sake of clarity, on simple toy-example simula-
tions. However, references are made to real issues
from livestock effluent management experimented
with the MAGMA and APPROZUT models. This
modelling ontology of action (still under work) has
been implemented in the Vensim simulation soft-
ware based on systems dynamics.

210

mailto:guerrin@cirad.fr

1. INTRODUCTION

By ‘action’, we mean what is actually performed
by any kind of agent (human or artifact). It is used
as synonymous with ‘activity’, though this term
sometimes denotes composite action. It is distin-
guished from the concept of ‘task’, understood as a
functional specification of action for prescriptive
or explanatory purposes. Action is viewed as a
process embodied in the biophysical world and
thus situated in space, time and society. In ‘situ-
ated action’ (Suchman 1987) the emphasis is put
on interaction between the agents and their envi-
ronment. The notions of ‘plan’ and ‘goal’, that are
central in the problem-solving approach (find the
sequences of actions to reach a predefined target
state), are deemed insufficient to simulate action in
people’s practice. A plan is rather viewed as a re-
source for action, not as its sole determinant, and
‘motives’ are substituted for ‘goal’ (Clancey 2002;
Suchman 1987). With this in mind, we describe
hereafter a tentative modelling ontology of action:
How to represent it? (section 2); How to reason
about it? (section 3); How to manage it? (section
4). A comparison of this approach with Allen’s
theory of action and time (Allen 1984) and
BRAHMS, a model to simulate people’s action in
practice (Sierhuis 2001) ends the paper (section 5).

2. REPRESENTATION OF ACTION

2.1. General Representation of Action

Any action A is represented as a binary pulse func-
tion ()A dependent on a condition : A

rwise

s t C ()t

1

C ()t

 (1) () 1 if C (), 0 otheA As t t=

C ()A t

()As t =

 is a time-varying logical proposition (false
or true if evaluated to 0 or 1) defined according to
variable states or explicit temporal parameters.
Hence, an action is a dynamical process described
with state values 1 (as long as CA holds) or 0 (as
long as CA does not hold) over a succession of
temporal intervals. Each interval over which

 defines an occurrence of A (action A
‘holds’). Its bounds are determined by state transi-
tions caused by quasi-instantaneous events denot-
ing a change in the evaluation of (Figure 1): A

• 0 1: action occurrence starts at t At
−= ;

• 1 0: action occurrence ends at At t+= .

As in computer simulation time representation is
discrete, by convention, the temporal extent of an
action occurrence is the semi-closed interval

 with duration . [,)A At t− +
A At tτ + −= −

1

0
At
−

At
+

() 0A As t t−< = () 0A As t t+≥ =

() 1A A As t t t− +≤ < =

sτ

sAt τ− − sAt τ+ − t

Aτ

sτ

Figure 1. Singular occurrence of action as a tem-
poral interval bounded by its start and end dates.

Hence, the duration of an event is the value sτ of
the simulation time-step that must be carefully
chosen with respect to real-time. Actions must also
be defined at a grain-size relevant for the model
purposes, namely in terms of effects to be ac-
counted for (an action remains ‘primitive’ as long
as it is not further decomposed). Transforming an
action into effects is made by the product of its
state function with a parameter, e.g. a base flow
(work time available daily in MAGMA; tanker in-
flow in APPROZUT), introducing or not a delay.

2.2. Action as a Function of Temporal Bounds

It is assumed here that temporal parameters of ac-
tion A (start date tA

− , end date , duration At
+

Aτ) can
be anticipated during the simulation. Determining
the dates of the starting (resp. ending) events of
action A’s occurrences is done by sampling the
time values at which holds a condition
(resp.) for triggering (resp. ending) action A:

()AP t−

()AP t+

 (2)
if ()

()
(max(0,)) otherwise

A
A

A s

t P t
t t

t t τ

±
±

±

= 
−

where the superscript ± denotes the variables rela-
tive either to starting (–) or ending (+) an action
occurrence and sτ is the simulation time-step.

()AP t±

AP±

AP±

 is, like , a proposition evaluated to 0
or 1. Note that distinguishing between these
propositions allows the conditions to starting, end-
ing or continuing an action to be different. As long
as does not hold, t remains constant (i.e.
equal to its value at the preceding time-step). As
soon as a triggering event is detected (evaluation
of turns from 0 to 1) a date is worked out
that remains the same until a new event occurs.
Therefore describes a stepwise evolution
whose value at a time is the date of the previous
event, i.e.

()AC t

()t

, ()A t±

()t ±

t±

t

A

()t

A

t t∀ ≤ . A

211

This provides the dynamical system some memory
for reasoning upon action. Therefore, based on the
start and end dates worked out with Eq. (2), the
general condition for A is:
 (3) () () ()A A AC t t t t t− +≡ >

0

that is, A occurs as soon as its starting event is
triggered and until its next ending event occurs
(see Figure 2).

Using Eq. (2), three cases arise in a dynamical
context: (i) the start and end dates are both trig-
gered independently (see example section 2.3); (ii)
the start date is triggered and the end date deduced
by: () ()AP t t tA A (see example below); (iii)
the end date is triggered and the start date deduced
by: () ()A AP t t t τ− +

−≡ =

A

. For the sake of realism, it
is necessary to explicitly introduce a delay
on the processes generating the starting or ending
events. In case (i) A’s duration results from inde-
pendent starting and ending conditions, thus the
delays

0τ ± ≥A

τ −
A and τ +

At
−

At
−

 may be computed independ-
ently. In case (ii), as the end date is deduced from
the start date, if is delayed () so will be

. In case (iii), as is deduced from t t
0τ − >

t+

A

A A A
+ −> :

A Aτ τ+ ≥ At
−

τ+ −≡ = +

A

• if , can be computed in time
for action duration be guaranteed;

• if 0 A Aτ τ+≤ <

A

, cannot be computed in
time and action duration is reduced to the
delay

At
−

τ + ; particularly, when 0Aτ + = , then
 and thus, no action occurs. 0A =τ

When determined independently, may be
computed according to: a lookup table encompass-
ing a pre-established schedule (e.g. harvests in
MAGMA; personnel’s holidays in APPROZUT); a
‘clock’ variable, allowing repeated actions to be
computed according to a periodic function (e.g. the
modulo function returning the remainder of

()AP t±

/t cτ
with 0c the clock’s period). Figure 2 shows an
example where the triggering condition
holds when a 10-day period clock equals zero aug-
mented by a delay , the end date is
deduced from the start date and the duration of
action is given as a logarithmic function of time.

()AP t−

A

τ >

0.5 dayτ − =

2.3. Action as Function of External Processes

In contrast with the above example, it is assumed
here that neither the start nor the end dates can be
anticipated but they both depend upon some exter-
nal process. In this case, action is driven in a reac-
tive fashion.

Clock
10

8

6

4

2

0 10 20 30 40 50 60 70 80 90 10
Time (Day)

100

80

60

40

20

0

0

0 10 20 30 40 50 60 70 80 90 1
Time (Day)

Start date

00

End date

Action
1

0 0 10 20 30 40 50 60 70 80 90 1
Time (Day)

Action Duration6

4.8

3.6

2.4

1.2

0

00

Figure 2. Action triggered by a clock at fixed pe-
riods with increasing durations (for). 0t >

For example, let V t denote a stock level evolu-
tion, defined as the integration over time of its rate
of change (inflow – outflow). Assume the actual
inflow is discontinuous and determined by action
A described above (section 2.2) jointly with a base
inflow of 10 units/day. Thus: . Now
we want an action B exerted on the outflow
(

()

t

10 ()q s t= ×

10 ()q s

i A

o B) to control the stock between an
upper and a lower threshold using the
following policy: B starts as soon as V t
and holds until V t

sup infV V>

() sup

inf() ≤ . Using Eq. (2), and
assuming no delay for simplicity (), the
start and end dates of B are:

0Aτ ± =

= ×

V≥

V

()supif () V

()
(max(0,)) otherwise

B

B s

t V t
t t

t t τ
−

−

 ≥= 
−

 (4)

()infif () V

()
(max(0,)) otherwiseB

B s

t V t
t t

t t τ
+

+

 ≤= 
−

 (5)

The start date (i.e. upper threshold crossing) is
known before the end date, whereas the end date
remains unknown until the lower threshold is
reached, i.e. as long as B occurs. Instead, it is the
end date from the previous occurrence of B which
is known during that time. Thus, by Eq. (3) the
condition for B is: C t . Due to the
conditions used (stock above or below thresholds),
the

() () ()t t t t− +≡ >B B B

B s are not unique as in Figure 2. We get in-t±

212

stead a new date at each time-step as long as the
starting or ending condition holds (Figure 3).

1

0

100

80

60

40

20
0

Action B

Stock level V(t)

Vsup

Vinf

0

start date end dateAction B:

1

0 0 10 20 30 40 50 60 70 80 90
Time (Day)

100

Action C

Figure 3. Feedback control of stock by action B
according to upper and lower thresholds; action C

is computed independently (see text).

Determining the start and end dates of action oc-
currences is not always required. Verifying that
some condition holds on some variable’s evolution
may be sufficient. For example, specifying an ac-
tion C that should execute as long as V t remains
above the upper threshold or below the lower, may
be simply computed by stating the condition:

()

) (6) () (sup inf() () V () VCC t V t V t≡ ≥ ∨ ≤

The resulting evolution of C is given in Figure 3.

It is implicitly assumed in this example that the
stock level is the only variable determining action.
Taking into account other determinants (e.g., re-
source availability, temporal constraints, environ-
mental conditions, other actions, etc.) is possible
by making more complex the conditions for action
(many examples are in MAGMA and APPROZUT).

2.4. Action as a Function of Other Actions

Here is considered the case when an action E is to
be derived from an action D according to some
constraints. As constraints, the well-known Allen’s
temporal binary relations are used (Allen 1984).
Among the 13 possible relations, we deal only
with the 8 meaningful relations in a dynamic con-
text where E cannot start before D. Inverse rela-
tions could be similarly built in the reverse case
(given E, derive D). Note that Allen’s relations are
mutually exclusive (not two relations may hold at
the same time) and given any two action occur-
rences, one relation should hold.

Determining afterward D’s start and end dates is
done with Eq. (2) by detecting when the corre-
sponding events occur:

• Start date is when D holds whereas it did
not hold at the preceding time-step:

() ()() () 1 () 0D D D sP t s t s t τ− ≡ = ∧ − = ;

• End date is when D no more holds
whereas it did at the preceding time-step:

() ()() () 1 () 0D D D sP t s t s t τ+ ≡ = ∧ − = .

The duration of D’s occurrences can be derived by
computing the difference D D Dt tτ + −= − on the tem-
poral intervals when D Dt t+ −> , then holding the
same value when D Dt t+ −≤ (i.e. while action is oc-
curring and the next Dt

+ is still unknown). Action E
can then be derived by Eq. (3) after working out its
start and end dates from D’s start date by Eq. (2).
It can also be derived more simply by Eq. (1) sub-
ject to condition:

 (), ,()E D D E D D E EC t t t tτ τ τ− − − −≡ + ≤ < + + (7)

where Dt
− is the start date of D, Eτ is the duration

of E’s occurrences, and the delay after
which E can start with respect to D’s start date.
The constraints to be satisfied by these parameters
for D and E to comply with Allen’s relations are
listed in Table 1.

,D Eτ − ≥ 0

Table 1. Allen’s relations and temporal constraints
to derive action E from D (,D Eτ τ : duration of ac-

tions D and E; ,D Eτ − : starting delay of action E with
respect to D’s start date).

Relation Diagram Constraint
DURING(E,D) D

E ,

,

(0)

 ()
D E D

E D D E

τ τ

τ τ τ

−

−

< <

∧ < −

STARTS(E,D) D

E ,(0
()
D E)

E D

τ

τ τ

− =

∧ <

STARTS(D,E) D

E ,(0)
()
D E

E D

τ

τ τ

− =

∧ >

FINISHES(E,D) D

E ,

,

(0 <)

()
D E D

E D D E

τ τ

τ τ τ

−

−

<

∧ = −

EQUAL(D,E) D

E ,(0)
()
D E

E D

τ

τ τ

− =

∧ =

BEFORE(D,E) D

E
,()D E Dτ τ− >

OVERLAPS(D,E) D

E ,

,

(0 <)

()
D E D

E D D E

τ τ

τ τ τ

−

−

<

∧ > −

MEETS(D,E) D

E
,()D E Dτ τ− =

213

3. REASONING ABOUT ACTIONS

3.1. Using Allen’s Logic

Given any two actions D and E, the aim here is to
find out which Allen’s relation hold between them.
This may be done by establishing the order be-
tween the temporal parameters of actions which
must hold for the relation to hold. However, in a
dynamical simulation context, any (D,E) relation
can only be considered when both D and E hold
(i.e. for , with t the current time value).
Moreover, whether or not this relation holds can be
known only from a special time-point; and this fact
is kept, by convention, until the next event. For
example, DURING(E,D) can be known only once E
is completed (at

D Et t t− −≤ ≤

Et
+) and this fact may be kept until

D ends (at Dt
+), that is for . These tem-

poral orders and extents are given in Table 2.
,E Dt t t

+ + ∈ 

Table 2. Temporal order on start and end dates for
actions (E,D) to verify Allen’s relations and tem-

poral extent over which they are kept holding.
Relation Order Extent

DURING(E,D)
D D Et t t t+ − −

E
+< < < ,E Dt t+ +  

STARTS(E,D)
D E Dt t t t+ − − +

E< = < ,E Dt t+ +  

STARTS(D,E)
E E Dt t t t+ − −

D
+< = < ,D Et t+ +  

FINISHES(E,D)
D E D Et t t t− − + +< < = ,E Dt t+ −  

EQUAL(D,E)
D E D Et t t t− − + += < = ,E Dt t+ −  

BEFORE(D,E)
E D D Et t t t+ − + −< < < ,E Et t− +  

OVERLAPS(D,E)
E D Et t t t+ − −

D
+< < < ,D Et t+ +  

MEETS(D,E)
E D Dt t t t+ − +

E
−< < = ,E Et t− +  

3.2. Using Propositional Logic

Using ,+ ⋅ or Max,Min

(1,...,)

 on {0,1}, we can de-
fine Boolean operations on the state functions of
actions iA A i n∈ = :

, () 1
i ii AA A s t s¬ = −

1

1
1

1 1

()

() () min(())

() () () () max(())

() () (1 ())

i i

i i i

A

n

A A Ai
i
n n

A A A A Aii i

A A A

t

s t s t s t

s t s t s t s t s

s t s t s t

+

∧
=

−

∨
= =

∨ ∨ ∧

∀ ∈

= =

= − ⋅ =

= ⋅ −

∏

∑ ∑
(8)

i
t

with the following equivalences:

• Negation iA¬ holds when Ai does not;

• Conjunction A∧ holds when all Ai holds;

• Inclusive disjunction A∨ holds when at
least one Ai holds;

• Exclusive disjunction A∨ holds when
exactly one Ai holds.

These operations may also be conveniently derived
from a superposition operation , summing up
the Ais and thus taking integer values onto [:

()t

AΣ
]0, n

1
()

() 1 iff () 0, 0 otherwise
() 1 iff () , 0 otherwise
() 1 iff () 0, 0 otherwise
() 1 iff () 1, 0 otherwise

i

n

A A
i

A A

A A

A A

A A

s t s

s t s t
s t s t n
s t s t
s t s t

Σ
=

∧¬ Σ

∧ Σ

∨ Σ

∨ Σ

=

= =
= =
= >
= =

∑

 (9)

Here, negation A∧¬ is the conjunction of the ne-
gated Ais (it holds when no Ai holds). Superposi-
tion can also be used to compare actions either
pair-wise (Hamming distance) or altogether:

() ()0 if () 0 ()

()
1 otherwise

A A
A

s t s t
d t Σ Σ n = ∨ == 


()d t

 (10)

Integrating over time yields the duration for
which some actions

A

iA differ from the others.

4. MANAGEMENT OF ACTIONS

Action management mainly involves action coor-
dination which is crucial because a same agent
may perform several activities or separate agents
need cooperate. This can be achieved by many
ways of which three are demonstrated hereafter:
specification and execution of a ‘plan’ (in the wide
sense of explicitly coordinated actions), action
composition, and shared-resource allocation. An-
other means, coordination mediated by an artifact,
was illustrated in section 2.3 by the stock example.

4.1. Plan Specification and Execution

Plans may be specified and simulated using Al-
len’s relations described as temporal constraints
(Table 1). For example, here is a plan involving 5
cascading actions: P={D, E, F, G, H}. Given D,
actions E-H are defined directly or transitively by:

• E: DURING(E,D);

• F: STARTS(E,F) ∧ OVERLAPS(D,F);

• G: FINISHES(G,F) ∧ MEETS(E,G);

• H: BEFORE(G,H).

The plan repeats based on D’s clock (Figure 4).

214

0 10 20 30 40 50 60 70 80 90
Time (Day)

D

E

F

G

H

P

100

Without interruption With interruption

Figure 4. Cyclic execution of a plan P={D, E, F,
G, H} based on Allen’s relations with or without

interruption (represented as a Gantt chart).

Introducing an interruption while D executes (thus
splitting each D’s planned occurrence in two) im-
pacts the other actions: by splitting occurrences of
E and F and by delaying G and H (Figure 4). Due
to time shifting, some relations are fully (DURING,
BEFORE) or partially (STARTS, MEETS, OVERLAPS)
conserved, one is not (FINISHES). In the presence
of interruptions, actions may be either cancelled,
newly restarted, or resumed, conserving in that
latter case their planned duration (as in the exam-
ple Figure 4). Duration conservation is obtained,
for each action, by the means of a local feedback
controller defined by a binary function comparing
the current action’s duration to the planned one.
E.g., the controller for action F is:

 [
0

1 if () (max(0,))
()

0 otherwise

t
]F F c

F
s t s t dt

u t Fτ τ − −= 


∫ <
(11)

with cτ the clock period of D. The definite integral
computes the current duration of F within each
plan cycle. F is controlled by working out F’s state
function ()Fs t by Eq. (1), using as holding condi-
tion the conjunction , where

 is the condition for F as if no interruption
occurred: F stops when its actual duration equates
the planned one

() (() 1)F FC t u t∧ =
()tFC

Fτ .

4.2. Action Composition

Abstracting the behaviours of separate actions into
a single composite action allows groups of actions
to be coordinated instead of multiple individual
actions. Returning to the example in section 4.1,
this can be done by time-slicing the plan into sub-
plans with homogenous states. These sub-plans are
formalized by conjunctions of a temporal con-
straint, action states, and action superposition ap-
plied to the set P={D, E, F, G, H} (time ‘t’ is omit-
ted in Eq. (12) for simplicity):

1

2

3

4

5

6

() (1) (1)

() (1) (

() (1) (

() (1) (2)

() (0)

() (1) (1)

E D D A

E E D E F P

D E D F G P

G D F G P

H G P

H H H P

P t t s s

P t t s s s s

P t t s s s s

P t t s s s

P t t s

P t t s s

− −
Σ

+ −
Σ

+ +
Σ

+ +
Σ

− +
Σ

+ −
Σ

≡ < ∧ = ∧ =

3)

3)

≡ < ∧ = = = ∧ =

≡ < ∧ = = = ∧ =

≡ < ∧ = = ∧ =

≡ < ∧ =

≡ < ∧ = ∧ =

 (12)

The state of the composite action P is given by the
exclusive disjunction of sub-plans Pi:

1 2 3 4 5 6{ , , , , , }() ()P P P P P P Ps t s t∨= (13)

P reflects the complete plan structure, i.e. the right
sequence of right actions at the right dates, even
with interruptions (Figure 4).

4.3. Shared-Resource Allocation

Managing actions competing for a shared resource
at the same time is performed by allocating each
action a part of the resource according both to its
own demand and priority. This permits cancelling
or delaying an action with lower priority or per-
forming in parallel actions with the same priority.
The resource may be continuous (as in MAGMA the
work time available daily for spreading manure) or
discrete (as in APPROZUT the transport capacity of
slurry). Priority degrees are numbers (larger the
number, higher the priority) assigned to actions
according to management practices by an arbitrary
scale of constants (as in MAGMA the priority of
manure application to crops combining the priori-
ties between the types of manure and the types of
crops) or according to dynamic variables (as in
APPROZUT the normalised level of slurry stock of
pig farms combined with their herd size and dis-
tance to the treatment plant).

Given a set of actions {Ai}, allocation is per-
formed, as described in Guerrin (2001), by com-
puting the height of each action’s demand as a
stepwise function of the priority scale p:

if 2 2
(,)

0 otherwise
i i id W p W p p W

h i p
/ − ≤ ≤ +

= 


 (14)

with di the demand of action Ai, pi its priority de-
gree, and W a width parameter to work out its pri-
ority range []2, 2i ip W p W− + . Then, the
amount of resource allocated to action Ai is ,
given by the surface under the height function
comprised between the lower priority bound p

iR

min
below which no resource is left and the upper
bound of the priority range of action Ai:

min

2
()ip W

i p
R h i p

+
= ,∫ dp (15)

215

An example of the influence of various organisa-
tional choices expressed as priority rules on the
workload distribution in a supply chain (pig slurry
deliveries from multiple farms) is given in Guerrin
and Médoc (2005) using the APPROZUT model.

5. DISCUSSION AND CONCLUSIONS

The modelling ontology presented here complies
with many of the requirements deemed necessary
by Allen (1984) and Sierhuis (2001) for represent-
ing action, although some features are lacking.

Conceived in the frame of dynamical systems, this
ontology is firmly grounded in time with a repre-
sentation that proved powerful for simulating
processes and events. These ‘occurrences’, as in
Allen’s theory, are basically characterised by the
temporal interval over which they hold. Represent-
ing complex situations and reasoning about tempo-
rally qualified propositions, events, actions and
plans is possible either in an absolute or relative
sense (i.e. with respect to one action’s temporality
instead of the base time line). Simulating sequen-
tial and parallel actions or events and their interac-
tion is not a problem. ‘Hand-off’ actions, not di-
rectly related to a task (e.g., waiting, talking, rest-
ing,…), may be dealt with the same way that any
action. Similarly, interrupting and resuming an
action, delaying actions and effects, dealing with
concurrent actions (using priorities), and assessing
consequences on the system’s organization, can be
addressed in deterministic and random cases (see
Guerrin 2001; Guerrin and Médoc 2005). As time
moves forward in dynamical systems, if a clear
notion of present (current time-step) and, to some
extent, of the past (e.g. keeping track of previous
events or delaying past events) do exist, the future
is not yet apprehended. Integrating anticipatory
features is a challenge for which possible solutions
are foreseen (e.g. forecasting functions based on
previous simulation outputs). An advantage of this
dynamical system approach is also to ease the con-
nection of action models with classical dynamic
models accounting for the biophysical processes at
work in production systems.

Distinguishing between actions and other process
properties (e.g. action conditions) is not explicit in
the formalization as both are represented by binary
functions. Actually, an occurrence (event, process)
is an ‘action’ if it is assumed to be caused by an
agent (Allen 1984). This common binary formal-
ization may give rise to some equivalence with
propositional or predicate calculus in the frame-
work of dynamical simulation. If forward chaining
of If-Then rules is straightforward (as in BRAHMS,
actions are based on a condition/action pattern;
Sierhuis 2001), the practical interest of more so-

phisticated logical inferences deserves further at-
tention. If some aspects of multi-tasking (coordi-
nated parallel actions) and hierarchical organiza-
tion of action can be represented, the concept of
‘Agent’ is still absent in contrast with BRAHMS
where agents are individualized and endowed with
communication and reasoning capabilities. Al-
though the notion of goal is also absent (intention-
ally), further attention should probably be paid to
the notions of belief, motive and intention as in
BRAHMS and the BDI agent model (Rao and Geor-
geff 1995) to better reflect the psychological and
social aspects of human behaviour (Clancey 2002).
However, a cost-benefit analysis of such additional
features should be made for decision-support in the
context of agricultural production systems.

6. REFERENCES

Allen, J (1984), Towards a general theory of action
and time, Artificial Intelligence, 23, 123-154.

Clancey, W. (2002), Simulating activities: relating
motives, deliberation, and attentive coordina-
tion, Cognitive Systems Research, 3, 471-499.

Guerrin, F. (2001), Magma: A model to help man-
age animal wastes at the farm level, Com-
puters and Electronics in Agriculture, 33(1),
35-54.

Guerrin, F. (2004), Simulation of stock control
policies in a two-stage production system.
Application to pig slurry management involv-
ing multiple farms, Computers and Electron-
ics in Agriculture, 45(1-3), 27-50.

Guerrin, F. and J.-M. Médoc (2005), A simulation
approach to evaluate supply policies of a pig
slurry treatment plant by multiple farms. Efita-
WCCA Joint Conf. on IT, Vila Real, Portugal.

Guerrin, F. and J.-M Paillat (2003), Modelling
biomass fluxes and fertility transfers: animal
wastes management in the Reunion Island.
Modsim 2003, Townsville, Australia.

Mc Cown, R.L. (2002), Changing systems for sup-
porting farmers’ decisions: problems, para-
digms and prospects, Agricultural Systems, 74
(1), 179-220.

Rao, A.S. and M.P. Georgeff (1995), BDI agents:
from theory to practice, ICMAS, 1st Int. Conf.
on Multi-agent Systems, San Francisco, USA.

Sierhuis, M. (2001), Modeling and simulating
work practice, PhD thesis, Social Science and
Informatics (SWI), University of Amsterdam,
SIKS Dissertation Series N° 2001-10.

Suchman, L.A. (1987), Plans and situated actions:
the problem of human-machine communica-
tion, Cambridge University Press.

216

	INTRODUCTION
	REPRESENTATION OF ACTION
	General Representation of Action
	Action as a Function of Temporal Bounds
	Action as Function of External Processes
	Action as a Function of Other Actions

	REASONING ABOUT ACTIONS
	Using Allen’s Logic
	Using Propositional Logic

	MANAGEMENT OF ACTIONS
	Plan Specification and Execution
	Action Composition
	Shared-Resource Allocation

	DISCUSSION AND CONCLUSIONS
	REFERENCES

