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EXTENDED ABSTRACT 

The hunting of geese and other waterfowl is an 
activity that circulates millions of dollars each 
year in North America.  The Atlantic population 
of Canada Geese (Branta Canadensis) has 
historically been a major target for hunters 
throughout the eastern parts of the United States 
and Canada, although numbers declined 
significantly in the 1990s.  Resident (non-
migratory) populations of geese and migratory 
populations during the non-breeding season can 
damage crops and cause public nuisance 
complaints.  Thus, management of goose 
populations can be a balance between providing 
high harvest opportunity while not allowing 
populations to get so large as to cause damage. 

We investigate optimal control of the Atlantic 
population of Canada Geese.  We seek to 
maximize harvest, while maintaining the 
population within acceptable upper and lower 
bounds.  Control is obtained by setting the harvest 
rate on breeding adult birds each year.  The 
optimal harvest strategy is informed by the 
population state, and must incorporate a range of 
uncertainties regarding population dynamics and 
the ability to control the population. 

The first uncertainty is environmental variation.  
This is unpredictable and uncontrollable, and 
represented by stochasticity in breeding 
productivity from year to year.  The second 
uncertainty considered in this paper is a limited 
ability to control the population.  Given a finite 
number of hunters, there may be an upper limit on 
the total number of birds that can be harvested 
each year.  We explore a range of limits to total 
annual harvest.  Structural uncertainty is the third 
uncertainty considered.  Models constructed to 
represent population dynamics are not a perfect 
description of the true dynamics.  In particular, 
there is disagreement about the strength of density 
dependence underlying Canada Goose dynamics.  
We pose two reasonable but contrasting models of 
density dependence in this study. 

Both models of population dynamics include age 
structure.  Canada Geese, like other goose 

populations, exhibit life-history attributes that differ 
by age.  Thus, a structured model may be necessary 
to fully capture the dynamics of this population.  
Annual harvest decisions are made using the 
estimated number of birds in each age group. 

While age-structured harvest has been investigated 
in the past, the objective has usually been only to 
maximize yield.  In this study we have the 
additional goal of maintaining population size 
within set bounds.  Stochastic dynamic 
programming has rarely been used to optimize the 
harvest of structured populations, probably due to 
the increased dimension of the state space required 
to describe population structure. 

Simulations of the optimal harvest under each 
model show a range of strategies.  Under the 
density independent model, annual harvest is 
maximized by holding the population size as close 
as possible to the upper acceptable limit, while 
ensuring that stochastic fluctuations rarely exceed 
this limit.  When there is limited control, however, 
the population is optimally maintained at a lower 
level, to ensure that it does not grow beyond harvest 
capacity and continue indefinitely with an 
unacceptably large abundance. 

Under the density dependent model, the maximum 
sustainable yield may be obtained by keeping 
population size at some level between the minimum 
and maximum acceptable thresholds.  Limits to 
control do not significantly change this optimal 
population size, although the amplitude of 
fluctuations may increase under very limited 
control.  This result depends critically on the fact 
that the population size that achieves maximum 
sustainable harvest falls within the desired bounds.  
If this were not the case, the limits to control could 
play a more central role. 

It is clear that the strength of density dependence 
and constraints on harvest significantly affect the 
optimal harvest strategy for this population.  Model 
discrimination might be achieved in the long term, 
while continuing to meet management goals, by 
adopting an adaptive management strategy. 
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1. INTRODUCTION 

The sustainable use of wild populations, such as 
fish and forests, poses significant challenges 
(Ludwig et al. 1993, Rosenberg et al. 1993).  In 
addition to social, political and economic issues, 
there are a number of scientific uncertainties that 
inhibit our ability to identify sustainable 
exploitation strategies.  Populations are influenced 
by environmental variation, which is unpredictable 
and uncontrollable.  While managers may estimate 
population size and other relevant information, 
such as environmental variables, it is impossible to 
measure the state of the system without error.  The 
harvest rates and other regulations set by managers 
will not be executed exactly as intended.  Finally, 
the understanding of the population that is used to 
set regulations (the model) is not a perfect 
representation of actual population dynamics 
(Williams et al. 1996). 

In representing population dynamics, one of the 
critical questions is how much structural detail to 
include.  There must be sufficient detail to capture 
key dynamics, but not so much that estimation 
issues undermine the predictive ability of the 
model.  One common structural detail that can play 
a significant role in sustainable harvest is the age 
composition of the population.  Individuals of 
different ages may contribute differently to the 
population growth rate through reproduction 
(motivating the study of reproductive value, 
MacArthur 1960), thus the age structure of the 
population can affect growth rate and harvest 
potential.  The consideration of age structure, 
however, brings added uncertainties.  First, the 
modeling process becomes more complicated by 
including the size of each age group within the 
population.  This increases the number of 
population processes that must be described, and 
the number of parameters to be estimated.  Second, 
it is common for harvest regulations to be set using 
an estimate of total population size, but it is 
usually much more difficult to measure the 
proportion of the population belonging to each age 
group.  Third, the optimal harvest will have age 
structure, but it is unlikely that the individuals to 
be harvested can be selected according to age. 

In North America, Canada Geese are an important 
harvested species that exhibit considerable 
population structure.  The Atlantic population, to 
be modeled in this paper, has a range covering 
eastern parts of the United States and Canada.  
Like many species of waterfowl, Canada Geese are 
hunted for sport, an activity circulating millions of 
dollars each year.  Resident (non-migratory) 
populations of geese and migratory populations 
during the non-breeding season can damage crops 
and cause public nuisance complaints.  Thus, 
management of goose populations can be a balance 

between providing high harvest opportunity while 
not allowing populations to get so large as to cause 
damage.  

Canada Geese in the Atlantic population, like other 
goose populations, exhibit life-history attributes 
that differ by age.  The age at first reproduction is 
typically greater than three years.  There is reason 
to believe that birds of different ages and breeding 
status may have different survival rates, including 
a different vulnerability to harvest.  Thus, a 
structured model may be necessary to fully capture 
the dynamics of this population, and hence, to 
derive an appropriate harvest policy. 

Before hunting regulations for Atlantic population 
Canada Geese are set, an aerial survey of breeding 
grounds is conducted annually in June to estimate 
the number of breeding pairs of birds.  In addition, 
annual reproduction is estimated from the age-ratio 
of birds banded in the late summer.  The 
abundance of non-breeding birds in several age 
classes can be reconstructed from these two data 
series.  Thus, observation of the system state can 
support decision-making that depends on the age 
structure of the population. 

We use stochastic dynamic programming to find 
the optimal harvest strategy for this population of 
Canada Geese, based on the estimated dynamics 
and the management objectives.  This technique 
has been used for optimizing harvest in the past 
(Walters 1975, Williams 2001).  However, 
demographic structure (age, size and/or sex) has 
rarely been considered, probably due to the 
increased dimension of the state space (an 
exception is Milner-Gulland 1997). 

In this paper, we explore the impact of two key 
uncertainties on the optimal harvest strategy.  First, 
there is a limited ability to control the population.  
Given a finite number of hunters, there is an upper 
limit on the total harvest that can be taken each 
year.  Part of the management objective is to 
maintain population size below a certain upper 
bound, so limited control can lead to a risk-averse 
strategy that foregoes harvest opportunity to insure 
the population remains within the desired bounds. 

Second, there is some disagreement about the 
strength of density dependence.  Over the range of 
abundance observed for this species, there is no 
clear information about the carrying capacity of 
the population.  General models of harvested 
populations indicate that the optimal harvest 
strategy is sensitive to the strength of density 
dependence (Reed 1979, Lande et al. 1995), and so 
we pose two models of reproduction to investigate 
the potential effects of density dependence. 
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2. MODEL AND METHODS 

2.1. Management objective 

Most of the literature on optimizing harvest has 
focused on maximizing the harvest yield.  
Increasingly, there is concern about the 
overabundance of some species.  Recent examples 
include raccoons (Rosatte 2000), gulls (Brooks and 
Lebreton 2001), deer (Doerr et al. 2001, Giles and 
Findlay 2004, Nugent and Choquenot 2004), 
moose (Nilsen et al. 2005), and a variety of species 
of geese (Ankney 1996).   While the Atlantic 
population of Canada Geese is not currently 
considered to be overabundant, experience with 
other goose populations raises some concern about 
the future status of this population.  For this reason 
we set an upper limit on acceptable population 
size.  In addition to this objective, there is a desire 
to maintain population size above a minimum level 
needed to sustain a satisfactory level of hunting, 
and to maximize the opportunity for harvest. 

To represent these objectives, we seek to maximize 
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(B) to denote the number of breeding 

adult birds at time t, and Ht to denote the total 
harvest taken at time t.  We set NMIN and NMAX as 
the minimum population size that allows 
satisfactory harvest and the maximum tolerable 
population size, respectively.  Thus the objective 
aims to maximize the harvest taken over an infinite 
time horizon, while keeping the number of 
breeding adults between NMIN and NMAX.  In 
practice we will approximate the infinite time 
horizon problem with a finite time horizon, 
sufficiently long to ensure that the optimal policy 
has converged. 

2.2. Decision and state variables 

There is evidence to suggest that there are four 
significantly different demographic groups within 
the Canada goose population.  These are the 1-
year-olds (1), 2-year-olds (2), non-breeding adults, 
(NB) and breeding adults (B).  The state of the 
population is assessed just before the breeding 
season, so that the youngest individuals are 
nearing their first birthday and are classified as 1-
year-olds.  Adult birds are three or more years of 

age, and individuals may or may not breed in a 
given year. 

The control available to management is to set a 
harvest rate on the breeding adult population.  
Other groups within the population will be 
harvested subject to their vulnerability to harvest, 
relative to breeding adult birds.  Young birds are 
considered to be inexperienced and therefore more 
easily hunted, along with any accompanying adult 
parents.  Thus the age classes respond to the set 
harvest rate in different ways.  The harvest rate is 
limited by the total number of birds that can 
possibly be taken in one year.  We set HMAX to be 
the maximum total harvest that can be taken in one 
year. 

2.3. State dynamics 

The number of offspring hatched in spring 
fluctuates from year to year.  There is evidence 
that it is a function of the timing of the snow melt 
on breeding grounds.  There is disagreement as to 
whether there is density dependence.  We will pose 
two possible models for breeding productivity Rt in 
year t. 

In the first model, we assume Rt is a random 
variable that is independent of total population 
size. 

In the second model, we assume that the impact of 
the timing of snow melt, zt, can be described as a 
standard Normal random variable.  Breeding 
productivity has the density dependent function 
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where εt is a Normal process error term, and Nt
TOT 

is the total population size at time t.  We assume 
that a, b, c, d > 0 are known constants and that εt 
has a mean of zero and known variance σ2

ε.  
Conditional on knowing total population size, Rt 
has a lognormal distribution, with parameters 

(1) ( )[ ]( ),exp1ln TOT dNca t −+−=μ  

(2) .222
εσσ += b  

After using one of the above models to calculate 
breeding productivity, we calculate the number of 
offspring in year t as 

 Nt
(0) = Rt Νt

(B). 
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We assume that the harvest rate on breeding adults 
in year t is set to be ht

(B).  Let the relative 
vulnerability of offspring and non-breeding birds 
be d(0) and d(NB), respectively.  Then the harvest 
rates on offspring and non-breeding birds are 

 ht
(0) = min {d(0) ht

(B), 1}, 

 ht
(NB) = min {d(NB) ht

(B), 1}. 

The total harvest prescribed for each group then 
becomes 

(3) Ht
(0) = ht

(0) Nt
(0), 

(4) Ht
(NB) = ht

(NB) [Nt
(1) + Nt

(2) + Nt
(NB)] 

(5) Ht
(B) = ht

(B) Nt
(B). 

The total harvest prescribed for the population is 

 Ht  = Ht
(0) + Ht

(NB) + Ht
(B). 

However, we are limited to removing at most 
HMAX birds from the population.  If the total 
harvest prescribed by our harvest rate ht

(B) exceeds 
HMAX, then we set the total harvest to be HMAX.  
We must also rescale our actual harvest rates by 
multiplying equations (3) to (5) by HMAX/Ht. 

The survival rates of birds in each demographic 
group are calculated by combining natural 
mortality with the harvest rates: 

 St
(0) = s (0) (1 – ht

(0)) 

 St
(1) = s (1) (1 – ht

(NB)) 

 St
(2) = s (2) (1 – ht

(NB)) 

 St
(NB) = s (NB) (1 – ht

(NB)) 

 St
(B) = s (B) (1 – ht

(B)), 

where s (i) is the proportion of birds in demographic 
group i that survive natural mortality, and St

(i) is 
the proportion of birds in demographic group i that 
survive both natural mortality and harvest during 
year t. 

Then the population at the beginning of year t+1 is 
composed of 

(6) Nt+1
(1) = St

(0) Nt
(0) 

(7) Nt+1
(2) = St

(1) Nt
(1) 

(8)  Nt+1
(NB)= (1–P)(St

(2)Nt
(2)+St

(NB)Nt
(NB)+St

(B)Nt
(B)) 

(9)    Nt+1
(B)= P (St

(2)Nt
(2)+ St

(NB)Nt
(NB)+ St

(B)Nt
(B)), 

where P is the proportion of adults that breed in a 
given year. 

2.4. Optimization 

We used stochastic dynamic programming to find 
the optimal state dependent harvest policy.  This 
was carried out in the ASDP software package 
(Lubow 1995). 

We chose a sufficiently long time horizon T to 
ensure that our state-dependent policy had 
converged to the stationary policy.  There is no 
payoff in the final time period, so that 

 V (N(1), N(2), N(NB), N(B), T) = 0, 

for all N(1), N(2), N(NB), N(B) ≥ 0.  We use V (N(1), 
N(2), N(NB), N(B), t) to denote the value of choosing 
the optimal harvest policy from time t to the time 
horizon, given that the population is composed of 
N(1) 1-year-old birds, N(2) 2-year-old birds, N(NB) 
non-breeding adult birds and N(B) breeding adult 
birds in year t.  The optimal state-dependent policy 
in year t is calculated as the harvest rate ht

(B) that 
maximizes the sum of returns accrued during year t 
(with respect to our objective function) and 
expected future returns (the value function V, 
weighted by the probability of each future state, as 
determined by the state dynamics). 

The method of stochastic dynamic programming 
requires us to discretize the state, decision and 
random variables.  The values used in this paper 
are listed in Table 1.  To prevent inappropriate 
extrapolation, a ceiling was placed on population 
size in equations (6) to (9) in the case of density 
independent breeding productivity.  Other 
parameter values required for the model are listed 
in Table 2. 

3. RESULTS 

3.1. Density-independent model 

In the absence of harvest, the density-independent 
model for breeding productivity causes the number 
of breeding adults in the population to grow 
without bound.  When we impose a ceiling on each 
age group (Table 1), the number of breeding adults 
maintains this ceiling over time.  Other age groups 
fluctuate below their ceiling, although the number 
of 1-year-old birds reaches its ceiling on occasions.  
The total population size fluctuates between 2 and 
2.6 million birds. 

The optimal harvest strategy was derived for a 
variety of values of HMAX (Table 1).  Each harvest 
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Table 1.  Values taken by state, decision and 
random variables for the optimization.  Notation  
X: Y: Z indicates that the minimum value 
considered is X, increasing in steps of size Y to a 
maximum value Z. 

Variable Values 

Density independent 
model: 

 

N(1), N(2), N(B) 0: 100 000: 1 000 000  

N(NB) 0: 50 000: 500 000 

ht
(B) 0: 0.1: 0.6 

Rt 1, 1.5, 2, 2.5, or 3 with 
equal probability 

ceiling in eqns (6) 
to (9) 

800 000 

HMAX 200000:100000:1500000

Density dependent 
model: 

 

N(1), N(2), N(NB) 0: 50 000: 550 000 

N(B) 0: 100 000: 1 000 000 

ht
(B) 0: 0.1: 0.6 

Discretized 
standard Normal 
distribution 

Pr(x = -2) = 0.0400 
Pr(x = -1.5) = 0.0656 

Pr(x = -1) = 0.1210 
Pr(x = -0.5) = 0.1747 

Pr(x = 0) = 0.1974 
Pr(x = 0.5) = 0.1747 

Pr(x = 1) = 0.1210 
Pr(x = 1.5) = 0.0656 

Pr(x = 2) = 0.0400
Rt exp(μ + σx), for x above 

and μ, σ  from  
eqns (1), (2) 

HMAX 200000:100000:1500000

Table 2.Values for parameters in the optimization. 
Parameter Value Parameter Value 

NMIN 120 000 d(0) 2.0

NMAX 500 000 d(NB) 1.0

a 0.7 s(0) 0.65

b 0.15 s(1) 0.86

c 3.0×10-6 s(2) 0.86

d 800 000 s(NB) 0.86

σε 0.2 s(B) 0.86

P 0.8  

 

Figure 1.  Long-term breeding population size 
under the optimal harvest strategy, as a function of 
maximum annual harvest HMAX, using the density 

independent model for breeding productivity.  
Asterisks denote the mean population size over 
100 simulations; error bars indicate the interval 
that covers 95% of observations.  Dotted lines 

show the lower and upper acceptable thresholds 
NMIN and NMAX, respectively. 

strategy was simulated for 100 runs, each 200 
years in length.  The first 100 years in each run 
were discarded.  In Figure 1 we display the mean 
number of breeding adults in the population and 
the fluctuation around the mean for the remaining 
observations. 

When HMAX was set to 200000, the population was 
not always successfully held within the desired 
range, i.e. a breeding population size between NMIN 
and NMAX.  In 90 of the 100 runs, the population 
grew until the number of breeding adults reached 
its ceiling (Table 1).  These runs were discarded 
from the data plotted in Figure 1. 

Since population growth is independent of density 
in the range of interest, harvest (and hence the 
objective) is maximized when the population is 
large.  We see in Figure 1 that when there is a 
great capacity to harvest the population (HMAX is 
large), then the population is maintained at a level 
close to the upper acceptable threshold NMAX.  
Stochasticity in breeding productivity R means that 
population size will fluctuate, and the mean 
breeding population size is held a little below 
NMAX to reduce the risk of fluctuations above 
NMAX.  However when ability to control is limited 
(HMAX is low), then the breeding population size is 
held well below the maximum acceptable level.  If 
the population were permitted to grow nearer to 
NMAX, the maximum harvest HMAX could not 
prevent the population from continuing to grow 
beyond NMAX, so that the objective is not achieved 
in the long term. 
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(a) (b) 

 
Figure 2.  Simulation of the population with 

density dependent breeding productivity under a 
constant harvest rate: (a) annual harvest, and (b) 
breeding population size, as a function of harvest 
rate h(B).  Mean values are given by solid lines, 

95% of observations fall between the dotted lines. 

 

Figure 3.  Long-term breeding population size 
under the optimal harvest strategy, as a function of 
maximum annual harvest HMAX, using the density 

dependent model for breeding productivity.  
Asterisks denote the mean population size over 
100 simulations; error bars indicate the interval 
that covers 95% of observations.  Dotted lines 

show the lower and upper acceptable thresholds 
NMIN and NMAX, respectively. 

3.2. Density-dependent model 

In the absence of harvest, the population under 
density dependent breeding productivity 
approaches a stochastic carrying capacity above 
the maximum acceptable population size NMAX.  
Using the parameters given in Table 2, the 
breeding population fluctuates around 700 to 800 
thousand birds, while the total population size is 
1.2 to 1.4 million birds. 

In Figure 2 we present the maximum sustainable 
yield for this population, assuming total harvest 
control (HMAX is infinite).  These plots were 
created by simulating the population under a fixed 

harvest rate h(B), making 100 runs, each 200 years 
in length, and discarding the first 100 observations.  
The annual yield and breeding population size 
were recorded.  Figure 2(a) indicates that annual 
yield is maximized for a harvest rate of about 13%, 
which holds the long term breeding population size 
at a little over 300 000 birds (Figure 2 (b)). 

State-dependent optimization and simulations were 
run in the same manner as for the density 
independent model.  (Variable levels and 
parameter values are listed in Tables 1 and 2, 
respectively.)  The number of breeding adults did 
not exceed NMAX in any simulation.  Figure 3 
displays the mean breeding population size and 
fluctuation around the mean, under a variety of 
levels of HMAX (Table 1).  For all levels of control 
above HMAX = 500000, the breeding population is 
held at about 300000 birds with some fluctuation 
due to stochasticity in breeding productivity.  
When HMAX = 300000 or 400000 the population is 
held slightly lower to ensure that control is 
maintained.  When HMAX = 200000, population 
fluctuations are much larger.  With such limited 
control it is difficult to maintain the population at 
the level giving maximum sustainable yield.  
However the density dependent function for 
breeding productivity ensures that the population 
never exceeds its upper acceptable threshold NMAX.  
This result depends critically on the fact that the 
population size that achieves maximum sustainable 
harvest falls within the desired bounds.  If the 
nature of density-dependence in the population did 
not have this property, then there would be tension 
between the different components of the objective, 
and the limits to control could play a more central 
role. 

4. CONCLUSIONS 

In this paper we have explored a variety of models 
for the optimal control of Canada geese, all of 
which may reasonably describe the dynamics of 
the Atlantic population and the constraints on 
harvest.  We posed two models for stochastic 
breeding productivity, and investigated a variety of 
values for the upper limit on annual harvest.  The 
objective was to maximize harvest, while 
maintaining the breeding population size between 
specified limits NMIN and NMAX. 

The optimal harvest strategy looks markedly 
different over the range of alternative models 
chosen.  Under the density independent model, 
annual harvest increases linearly with breeding 
population size.  When there is sufficient control 
available (HMAX is sufficiently large) then it is 
optimal to maintain the breeding population as 
close to NMAX as possible, while ensuring that 
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fluctuations rarely exceed this value.  When 
control is limited then the population is optimally 
maintained at a lower level, to ensure that it does 
not grow beyond harvest capacity and NMAX 
indefinitely. 

Under the density dependent model for breeding 
productivity, the maximum sustainable yield is 
obtained by keeping the breeding population size 
well below the maximum acceptable level NMAX.  
This level appears optimal for almost all levels of 
maximum control HMAX.  However the amplitude 
of fluctuations may increase under very limited 
control. 

Achievement of management goals could clearly 
be improved with a better understanding of 
population dynamics and limits to annual harvest.  
The data collection required to discriminate 
between these alternative models is a very slow 
process, but might be sped up by experimental 
management.  The use of adaptive management 
techniques (Walters 1986, Williams et al. 1996) 
can find the optimal trade-off between meeting 
management goals in the short term and 
experimenting for learning in the long term. 
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