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EXTENDED ABSTRACT

'Recently, a paradoxical phenomenon of semipara-
metric estimators was found that some semiparametric
estimators are more efficient when infinite dimen-
sional nuisance parameters are unknown. This paper
examined the structure of the paradox.

Pierce (1982) found a paradoxical phenomenon. Let
0 = (B8',~") be parameters which we would like to
estimate. In many cases, we are only interested in
some parameters and the rest is nuisance parameters.
Let 3 be parameters we were interested in and -~y
be nuisance parameters. Usually, an estimator of
has smaller variance when the nuisance parameter
~ is known. Pierce (1982) found that under some
conditions the variance of estimator of 3 with
unknown -y is smaller than the one with known ~.

Robins et al. (1992), Robins et al. (1994) and
Lawless et al. (1999) reported the same phenomenon
in their semiparametric models. Henmi (2004) and
Henmi and Eguchi (2004) investigated the paradox
in semiparametric situations. Henmi (2004) and
Henmi and Eguchi (2004) investigated the following
problem. Let M = {p(z;6,9)} be a family of
probability distribution, 6 is a finite dimensional
parameter and g is an infinite dimensional nuisance
parameter. The parameter 6 is composed of two parts,
a parameter of interest 5 and a nuisance parameter .
There is a moment condition

E(m(z,0)) =0,

and @ could be estimated by solving

Note that the estimation of the infinite dimensional
parameter ¢ is not required to be estimated in this
setting. Under the above settings, Henmi (2004) and
Henmi and Eguchi (2004) examined the phenomenon
that the variance of estimator of 5 with unknown ~ is
smaller than the one with known ~. To summarize,
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they investigated only the situation that estimations
of infinite dimensional nuisance parameters were not
necessary.

The above setting does not suffice to analyze
many semiparametric models. Many semiparametric
estimators require estimation of infinite dimensional
nuisance parameters. Estimation of infinite dimen-
sional parameters (for example, density estimations
or nonparametric regressions) is more difficult than
estimation of finite dimensional parameters and the
convergence rate is slower than finite dimensional
cases.

This paper investigated the paradoxical phenomenon
that the efficiency of estimator increased when the
nuisance parameters are estimated. We found that the
paradox might occur even if the nuisance parameters
were infinite dimensional. We obtained the necessary
and sufficient condition of the paradox, and showed a
sufficient condition in an easy-to-understand way. Our
sufficient condition depended on the relation of the
projection of the estimating function on the tangent
set.

In the last section, two semiparametric estimators,
Kaplan-Meier integral and the average treatment
effect, were examined. We found that both of the
examples satisfied our sufficient condition of the
paradox.



1 INTRODUCTION

This paper investigated the following question.
Suppose our estimation problem includes infinite
dimensional nuisance parameters and we need to
estimate the nuisance parameters. Is it possible
that the variance of the parameters of interest with
estimated nuisance parameters is smaller than the one
with known nuisance parameters?

The following is the organization of the paper. The
section 2 explains our model and the settings. In
section 3, we state the conditions under which the
paradox occurs. The section 4 includes examples. The
section 5 is the concluding remarks.

2 MODEL

We investigate the following problem. Let {z;|i =
1,...,n} be an i.i.d. sample from a population and
the following moment condition is satisfied,

)

where m(...) is a ¢ x 1 vector valued function, Gy
is ¢ x 1 vector of parameters of interest and g is
some infinite dimensional nuisance parameters. For
simplicity, we assume that go does not depend on the
finite dimensional parameter 3. All examples in the
later session satisfy this assumption.

E[m(zi7 605 90)] = Oa

If we know true g, (3 could be estimated by solving

w o) =0 @

In general, go is unknown, however, an estimator
based on m(z;, [, ¢g0) is not feasible. A feasible
version might be based on a preliminary estimate g
of go. We investigated a class of semiparametric
estimators which are satisfied

n

i=1

©)

Many semiparametric estimators are included in this
class. An important example is Robinson’s (1988)
estimator for the semiparametric regression model,
where go = (Ely|v], Elz[v]) = (g10(v), g20(v)),
m(z,0,9) = (# = 92(v))(y — g1 (v) — (x = g2(v))' ).

3 MAIN RESULTS

In order to study the limiting distribution with
estimated nonparametric components, impose the
following high-level assumptions.
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Assumption 1 (i) 3 2 Bo; (i) m(z, 8, ) is contin-
uously differentiable with respect to g; (iii) for
any 5 = Bo, d(1/n) S, m(zi, B,9)/98 =
M = OE[m(z,5,90)/0B|5—s, and M is
nonsingular. (iv) go does not depend on the
finite dimensional parameter (3.

Conditions (i) and (iii) assure of the consistency of 3
and 9(1/n) >, m(z:, 3, §)/08 that might require
much work to check in a particular model. Condition
(ii) is imposed for simplicity and it might be possible
to weaken (ii).

Suppose (1/y/n) > 1, m(zi, Bo,g) is bounded in
probability, then usual mean value expansion gives

V(B — Bo) = M”%;m(zwﬂo,é) +0p(1).

Here calculating the asymptotic distribution re-
duces to finding a formula for the distribution of

(1/v/n) 325y m(zi; Bo §)-

Assumption 2

()
\/ﬁ{% m(zi. Bo,§) — Elm(z1, 6o, 9)]
*% im(%ﬂo,go)} = op(1);
(i

VnE[m(z1, o, §)] = % éﬂ' +0,(1),

where E[r;7{] < oo and E[r;] = 0.

Note that the expectations in (i) and (ii) are taken for
given g.

Condition (i) is a type of stochastic equicontinuity
conditions. Conditions (i) and (ii) imply that

% Zm(zi’ﬂo’g) - % Z(m(zivﬂo,go)JrTi)wLop(l),

thus 7; is a correction term for the effect of the
estimation of g.

With Assumption 1 and 2, we get the following
lemma.

Lemma 1. (Newey (1990) lemma A.3) If Assumption
1 and 2 are satisfied, then [ is asymptotically linear
with influence function —M ~*(m(z;, o, g0) + 7).



Proof. By Assumption 1(ii) and the mean value
theorem,

% Zm(zuﬂo,é) JrM\/ﬁ(ﬂA — o) = 0p(1). (4)

Also, by Assumption 2,

Si-
'M:

Il
-

('%7507.@)

g0

Zm zi, B0, 4) — E[m(zi, Bo, §)]
m(Zi, 605 90)}

I
%

S|

M-

i=1

+vnE[m(z;, Bo, §)] +

% Z m(Zi, 605 gO)
i=1

1 n

= —Z(m(zi,ﬂo,go)JrTi)+Op(1)- ()
\/ﬁ =1

S0 by the central limit theorem,

(1/v/n) 37 m(z, Bo, §) is bounded in probability.
Therefore, by equation (5), solving equation (4) for

V(3 = Bo) gives

- LS

+o,(1).
O

Note that Assumption 2 is required for linearizing
m(zi, Bo, §) with respect to g. Thus, if another
linearization method is available, Assumption 2 is not
required.

If we know the true g, 5 could be estimated by
solving (2). Let /3 denote this estimator that utilizes
the information of true go. The influence function of
B is —Mﬁlm(zi, ﬂo, go) and

V(B — Bo) = ZM m(zi, Bo, 9o)-

For simplifying notations, let m,; denote m(z;, 5o, go)-
Suppose the following decomposition of m;,

mi = At + u;,

where Ais E(m;7)){E(r;7])} ' and u; = m; — Am;.
With these notations, the influence functions of 3 and
(3 are
mei = 7M(UZ+AT1)
—M(mi + Ti) = —M(ui + (A + I)Ti)

AB—po) = _M—%;m(m@,g) +op(1)

m(zi, Bo, go) + 7i) }

and the asymptotic variances could be expressed as

) = M7 '[B(uul) + AE(r;m)A | M1
) = M7'[E(wul)

HA+DE(mT)(A+1) M

where I is g x ¢ identity matrix. Thus necessary and
sufficient condition of the paradox is

V(v/nB) < V(v/npB)
— A+ DE(n7m)(A+1) < AE(r;1))A.

We get the following theorem.

Theorem 2. Suppose Assumption 1 and 2 are
satisfied.  Let Ar; be the linear projection of
m(z;, Bo,go) on 7. The necessary and sufficient
condition of that the asymptotic variance of B is
smaller than the asymptotic variance of 3 is

(A+ DE(rm)(A+I) < AE(rim))A’.  (6)

If the dimension of interested parameter (3 is one, the
condition becomes a bit simpler.

Corollary 3. Suppose Assumption 1 and 2 are
satisfied and ¢ = 1. Let a7; be the linear projection of
m(zi, Bo, go) on ;. If a < —1/2, then the asymptotic
variance of 3 is smaller than the asymptotic variance

of 3.
3.1 A sufficient condition

One of sufficient conditions for (6) is
A=-1I,
it implies that
Proj(m;|r;) = —;.

If this sufficiept condition is satisfied, the influence
function of 5 becomes —Mu;, = —-M(m; —
Proj(m;|;))

For illustrating the sufficient condition, suppose a
finite dimensional nuisance parameter case. The
finite dimensional case provides insight concerning
the infinite dimensional case. Suppose ~ is a finite
dimensional nuisance parameter vector. And 4 is an
estimator of ~ solving >"" | h(z;,%) = 0. Let £ be
an estimator of 3 that satisfies the following moment
condition,

Let 3 denote an estimator of 5 when ~ is known to g,
thus it satisfies

I .
- Zm(zivﬂvvo) =0.
n 1=1



It is well known that under general conditions the
distribution of 3 is

fiw - (e(3))

% Z m(Zi, 605 ’YO)
i=1

+op(1) )
Under general regularity conditions, the distribution
of 3is
Vit = —(B(2Z2))"
n 0 86

n

L Zm(ziﬁoﬁ) +op(1),
i=1

Vn 4

(1/4/n) > m(z;, Bo,%) could be decomposed as the
following,

T; Zlaﬁ07 = T; ZlaﬁOa’YO
1 = 215607’70)
+ 5;
V(¥ — )+0p( )
and

Vn(i=v0) = (E <g—:)>1 % gh(ziﬁoH"p(l)-

A more illuminating expression can be obtained from
the generalized information matrix equality

£ (35) - o o ()

oh
E (8_7) = —E (hS]) andsoon,

(ms)

where Sg and S, are scores for 3 and -, respectively.
With the above expressions, we get

Va6 —6o) = (E(mSp))~ \/—Z{m Zis B0, 70)
—E (ms}) (£ (hS})) " hzi.70))
+op(1). (8)

Usually, the additional term

E(mS)) (E (hS@))*1 h(zi,~v0) makes the variance
of 3 lager than the variance of 3. Suppose that 4 is
efficiently estimated, thus h(z;,v) = Sy(zi,7), then
the second term in parentheses becomes
B (m8)) (E (hS})) ™" h(z:,70)
-1
= E(mS]) (B(5,8,)) " 8,(z7).
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It is the projection of m(z;, Bo, o) on S,. Thus, if v
is efficiently estimated,

V(B —pBo) = (E(mSp))” \/— Z{m Zi5 B0, 70)

—Proj(m(z, 50,70>|Sv)} + op(1).

To extend this result to semiparametric models, we
focus on a parametric submodel and a tangent set.
A parametric submodel is a parameterization of g,
say g¢(v), such that g(yo) = go for some ~o.
We can construct the likelihood function or scores
of the parametric submodels. An example of the
parameterization is such that g(yv) = (1 — v)go +
~vg1. A tangent set in nonparametric direction is the
mean-square closure of linear combinations of scores
S., for the nonparametric component of parametric
submodels;

T = {teR":E[t]’] <

38,8, with lim Elt — B;S,,]%] = 0}.
j—oo

In the finite dimensional case, the projection of m on
the score of the nuisance parameter ~ plays the most
important role in the paradox. In the semiparametric
case, the projections on the tangent set 7 have the
similar role.

Let u = m — Proj(m|7) be the residual from the
projection of m on 7 and S = Sz — Proj(Ss|7)
be the residual from the projection of Sz on 7. The
following lemma is a special case of Theorem 4.3 in
Newey (1993).

Lemma 4. Suppose Assumptions 1 and 2 are satisfied
and g is reqular. If Vi 7, € 7, 8 has an influence
function —M ~1u.

Proof. Since go does not depend on (3, 7; also does not
depend on 3. It implies E(07;,/08) = E(1;53) = 0.
Thus E(uS) = E(mSg). The rest of proof is the
same as the proof of Theorem 4.3 of Newey (1990).

O

A direct implication of the lemma is the following.

Theorem 5. Suppose Assumptions 1 and 2 are
satisfied and 3 is regular. If Vi 7, € 7, then

V(v/nB) < V(vnpd)

and a strict inequality holds when Proj(m|7) # 0

As noted before, Assumption 2 is required only for
establishing (5). Thus, another method for (5) is
available, Theorem 5 does not require Assumption 2.



4 EXAMPLES
4.1 Kaplan-Meier integral

Kaplan-Meier integral is an estimator of

/ (w)dF (z)

where ¢(z) is a known function and F(x) is
an unknown distribution function of non-negative
random variable z. When z is randomly right
censored, a natural estimator of [ ¢dF is obtained by
plugging the Kaplan-Meier estimator F'(z) into F(x),
which is called a Kaplan-Meier integral.

Let us define some notations for explaining this
example. Let {X;|: = 1,...,n} be ii.d. positive
random variables with a distribution function F. Let
{Y:li = 1,...,n} be i.i.d. positive random variables
with a distribution function G and independent of X’s.
The Y’s represent censoring time and G is a censoring
distribution. In the randomly right censored data, the
pairs (X;,Y;), i = 1,...,n are not observed. One
observes the pairs (Z;,0;),7 =1,...,n, where

Z; = min(X;,Y;) and 6; = 1(X; <Y;),

with 1(.) denoting the indicator function.

Suzukawa (2004) found that the Kaplan-Meier
integral could be represented as follow,

[ vt - Ly~ _bwlZ)

1 - G(Zz_)
where G is the Kaplan-Meier estimator of G. So, if G
is known, we could utilize this information and could
construct an estimator

1 n
= ey =

Suzukawa (2004) investigated the estimator 3 and
found that 3 has the smaller bias, however, it has the
larger variance than 3. He constructed the following
numerical example. Let F(z) = 1 — exp(—z),
G(y) = 1 — Aexp(—2Ay) and ¢(z) = =. Denote ¢
be the censoring probability ¢ = P(6 = 0), then g =
A/(1+ A). Figure 1 shows the asymptotic variances
of 3 and {3 in this settings. It might be surprising that
the asymptotic variance of the estimator with know G
is about 10 times lager than the asymptotic variance
of the estimator with unknown G.

=3,

(10)

Based on the Suzukawa’s representation, define the
following two step estimator which satisfies

1o 5 A
—Zm(Zi,(Si,ﬂ,G) =
[t
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Figure 1. Asymptotic Variance of 3 and 3

20

T
Asym. V(B) ——
sl Asym. V(B) - /|

. .
0.15 0.2
Probability of Censoring (q)

where m(Z;,6;, 8, G) = (0:(Z))/(1 — G) — B and
R n 1 o 5(1) 1(Z(i)SZ)
1- = .
G(2) E < n—1+ 1>
is the Kaplan-Meier estimator of G. Hence,

the Kaplan-Meier integral is included in our two
step estimator framework. We examine that the
Suzukawa’s Kaplan-Meier integral estimator satisfies
the conditions for Theorem 5.  The following
conditions are assumed.

Assumption 3: (i) the supports of X and Y
are both [0,00) and F and G have den-

sity functions f and g, respectively.  (ii)
El(oy(2)/(1 — G(z—)))*] < oo, (iii)
[ ¥(2)|CY2(x)dF () < oo, where
= 1
- T e

and H(z) is the distribution function of the
observed Z’s.

Condition (i) is just for simplicity and it is easy
to weaken. Condition (ii) is corresponding to the
existence of variance of v(z). Condition (iii) controls
the bias, and Stute (1994) gives a detailed account of
this issue.

Basically we need to check the following conditions,

1 the linearity of  /nE(m(z,B,G)):
\/?E)‘(m(ziaﬁmG)) = 1/\/_ 21 1T T
op(1),

2. the efficiency condition: 7, € 7g, where 7g is
the tangent set with respect to G.

The form of 7g is well known (for example see
Chapter 6.6 of Bickel, Klassen, Ritov and Wellner



(1993)) and it is

1
Iz'g =

Vb(x) /b(m)dG(m) = 0}

C LQ(G)

First, we examine the linearity condition. Let H(z)
denote the distribution function of the observed Z’s.
Thus, H satisfiesthat 1 — H = (1 — F)(1 — G). An
important role in our analysis will be played by the
subdistribution functions

H(z) =
Hl(z) =

Let HO(z) and H,(z) denote the empirical version of
HO(z) and H!(z), respectively,

HY(2) = —zﬁ— 1(Zi < 2)
E(m(z,6,8,G)) could be decomposed as the
following,

En(z,0,6,6) = + > {(1=0)(n(Z) - n(Z)
—6:72(Zi)} + 0p(n™1/?),
where v1 (Z;) and v2(Z;) are
Wz = #Z) / 1(Zi < 2)0(=ho(=)dH' (2
4 x < Z (x < 2)Y(2)y0(2)
wz) = [ 5 (@)
dH( )dH'()
and 70(2) = 1/(1 - G(=-)).

With simple integration, it could be shown that

/{71
and

1 o0
e /Z ()

It also possible to show that E[7/7;] < co. It implies

that 7; = (1 — 0:)(11(Zs) — 72(Zi)) — 0iv2(Z) is
included in 7g. Thus, we could apply Theorem 5.

) }dG(x) =

{(1 - M)+ g /:o b(x)dC(z)

Pzzsi=0= [ (1 F(y)dc(y

)

Pz <20=1= [ 0= GO-)ire)

—72(w))dG(w) = —y2(Z;).
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4.2 Average treatment effect

Hirano, Imbens, and Ridder (2003) proposed a
semiparametrically efficient estimator for the average
treatment effect. Their estimator used the propensity
score, and they found that their estimator was
more efficient when a nonparametrically estimated
propensity score rather than the true propensity score
was used.

Suppose we have a random sample of size n. For each
sample, we observe (T;,Y;, X;). T; indicate whether
the treatment of interest was received (7; = 1) or
not (I; = 0). Let Y;(0) denote the outcome for i
under control and Y;(1) under treatment. We are not
able to observe both Y;(0) and Y;(1), we can only
observe Y; = T;Yi(1) + (1 — T3)Y;(0). In addition,
we observe a vector of covariates denoted by X;. To
solve the identification problem, the unconfoudedness
assumption is assumed.

Assumption 4 (Unconfounded Treatment Assign-
ment)

T L (Y(0),Y(1)X.

For estimating the average effect of the treatment
E[Y (1) — Y(0)] = Bo, Hirano, Imbens and Ridder
(2003) suggested the following semiparametric esti-

mator
=3 (s o)

i=1

where p(xz) was a nonparametric estimator of the
propensity score p(x)

p(x) = P(T =1|X =z) = E[T|x].

Let 3 denote a estimator that uses the true propensity

score,
-T)
1 —P(Xi)> .

Their estimator is included in the class of our two step
semiparametric estimators with a moment condition

Y;T;
m((Tz,}/“Xz);ﬂaﬁ) = ﬁ(X) o

Y;i(1-1T;)
1 —p(X;)

— 8.

The influence function of 3 was shown in Appendix
B of Hirano, Imbens, and Ridder (2003) and it is

V(3 — Bo) = — \/lﬁ é(mz +7i) + 0p(1),



where

(ﬂanLXXd

p(X5)
EY;(0)|T =0, X = X,]
* 1= p(X,) >

x (T — p(Xi)).

On the other hand, Hahn (1998) examined the
semiparametric efficiency bound of this model and
characterized the tangent space with respect to p(x).
Itis

7, = {a(z)(T = p(2))},

where a(z) is any square integrable measurable
function. Thus 7; is included in the tangent space and
it implies

7 = —Proj(m;|T,).
Theorem 5 could be applied.

5 CONCLUDING REMARKS

This paper investigated the paradoxical phenomenon
that the efficiency of estimator increased when the
nuisance parameters are estimated. We found that the
paradox might occur even if the nuisance parameters
were infinite dimensional. We obtained the necessary
and sufficient condition of the paradox, and showed a
sufficient condition in an easy-to-understand way. Our
sufficient condition depended on the relation of the
projection of the estimating function on the tangent
set.

The stochastic equicontinuity condition was used for
linearizing the moment condition with respect to
infinite dimensional parameter. It might be possible
to utilize other linearization methods, for example
Fréchet Differentiation.

Only two example, the Kaplan-Meier integral and the
average treatment effect, are explained in the paper.
It might be interesting to inspect how popular is this
paradoxical phenomenon.
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