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EXTENDED ABSTRACT 
 
The development of new hydrological models and 
the enhancement of the existing models are needed 
for water management. For instance, increasing 
rainfall may accelerate water erosion in watersheds 
and raise the probability of flooding events in the 
urban areas. The impacts include environmental and 
social-economic conditions. The hydrologic models 
SEADS, a physical process based model and 
GURUH, an algebraic model based on statistical 
relationships, are being used to predict the 
hydrologic impacts of urbanization. These models 
need to be fully tested so that they can be used with 
confidence. The implementation of sensitivity 
analysis to these models is a useful tool in the 
calibration of the models, in their applications to 
different catchments, and to urban change in 
catchments, and also to investigate climate change 
over the catchments. 

This study uses the New Morris Method to conduct 
the sensitivity analysis (SA) of two hydrological 
models the SEADS (a soil erosion and deposition 
model) and GURUH (a rainfall-runoff model) 
models. The New Morris Method is an extended 
version of the Morris method that was proposed by 
Morris (1991). The New Morris Method, in addition 
to the ‘overall’ sensitivity measures already 
provided by the Morris method, offers estimates of 
the two-factor interaction effects (Campolongo and 
Braddock 1999). The method retains the 
computational efficiency of the OAT scheme, 
applying an efficient sampling strategy in the 
parameter space. The strategy is based on concepts 
of graph theory and on the solution of the 
‘handcuffed’ prisoner problem.  

The New Morris Method produces sensitivity 
measures including the mean ‘μ’, and standard 
derivation ‘σ’ for the first order effects. Similar 
results are obtained for the second order effects 
where two factors at a time interact. They are the 
mean ‘τ’, and standard derivation, ‘η’ of the second 
order interaction. The sensitivity outputs are 
functions of the number of runs (denoted by ‘runs’) 
and resolution (denoted by ‘res’), which are 
algorithm parameters of NMM. These parameters 
govern how many trajectories through parameter 
space are calculated and at what resolution the 
parameter space is sampled. The sensitivity 
measures are obtained with respect to each pair of 

values of the New Morris Method parameters, runs 
and res. 

In the case of a simple analytic function, the 
sensitivity may be evaluated by analytical or 
numerical methods and is called the ‘true value’. 
However, for a complex function (the mathematical 
hydrologic models), an analytic solution is not 
available. Consequently a pseudo-analytical solution 
is obtained with parameter values of runs = 200 and 
res = 100, and is used in place of the analytic 
solution. The difference of the SA output measures 
relative to the ‘pseudo-analytical solution’ is called 
the relative error and is examined for various values 
of runs and res. Each input factor contributes its own 
relative error. The average of the relative errors due 
to all factors is called as the average relative error 
(ARE) with respect to the set of parameters. The 
values of ARE with respect to the parameters of 
‘runs’ and ‘res’ can be plotted as a 3D surface.  

The roughness of the ARE surfaces reflects the 
variation of the ARE with respect to the number of 
runs and resolution. Based on the algorithm derived 
by Clarke (1986), the fractal dimensions of the ARE 
surfaces are evaluated and used to describe the 
overall properties of the highly structured 3D 
surfaces. This approach obviates the need to use 
images of the surfaces and avoids making subjective 
judgements, which may be affected by scale in a 
diagram. 

The results revealed some differences in the fractal 
dimension of the error surfaces between the types of 
models, i.e. physically based differential equation 
model SEADS and the more heavily parameterized 
compartment model GURUH. The results are not 
extensive enough to draw definitive conclusions 
relating to the nature of the models. A great deal 
more work is required in assembling results across 
models of different types, before any definitive 
conclusions can be made. Naturally, there can be 
“good” and “bad” models of the same physical 
system, and this will need to be addressed in future 
work.  
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1.   INTRODUCTION 
 
Hydrology plays a fundamental role in 
environmental planning, management and 
restoration (Singh 1995). The rainfall-runoff model 
typically modeling continuous flow with a long time 
step is one of the fundamental models used in 
hydrology. One of its applications is to predict the 
hydrologic impacts of urbanization such as flooding. 
Water erosion is the detachment and transport of soil 
from the land by water, including rainfall and runoff 
and is the main source of sediment that pollutes 
streams and fills reservoirs (Ward and Trimble 
2004). A soil erosion and deposition model is an 
important tool to predict the environmental impact 
due to water erosion.  

Sensitivity analysis (SA) is a fundamental tool in the 
building, use and understanding of models of all 
forms. Tarantola and Saltelli (2003) concluded that 
“SA can get useful information regarding the 
behaviour of the underlying simulated system.  This 
information can range from the identification of 
calibration variables to model reduction or 
simplification, better understanding of the model 
structure for given components of a system, model 
quality assurance, and model building in general.”  

The New Morris Method (NMM) is a type of 
screening method based on the one-at-a-time (OAT) 
design (Morris 1991).  SA techniques also 
incorporate their own parameters, which govern the 
accuracy of the analysis (Campolongo and Braddock 
1999; Cropp and Braddock 2002). NMM has two 
important parameters, the number of runs (denoted 
by ‘runs’) and resolution (denoted by ‘res’) that 
govern how many trajectories through parameter 
space are calculated and at what resolution the 
parameter space is sampled.  

The difference of the sensitivity measures with 
respect of runs and res relative to the ‘true value’ is 
termed the relative error. The average of the relative 
errors due to all input factors is the average relative 
error (ARE). The values of ARE with respect to the 
parameters of ‘runs’ and ‘res’ can be plotted as a 3D 
surface. The technique of fractal analysis is used to 
measure the ARE surfaces by a single figure, fractal 
dimension, in order to describe the overall properties 
of the highly structured 3D ARE surfaces. 
 
The aim of this work is to investigate possible 
linkages between the fractal dimension of the 
average relative error surfaces and the nature of the 
models in order to determine the optimum values of 
runs and res. This will be addressed by using the 
NMM to conduct SA on two different algorithm 
hydrologic models to construct the ARE (average 
relative error) surfaces with respect to the NMM 
parameters; runs and res.          
 
 
 

2.   THE TWO HYDROLOGIC MODELS 
 
Two hydrologic models were studied. The SEADS 
(Soil Erosion And Deposition System) model is a 
mathematical model used to predict soil 
erosion/deposition (Yu 2003). The Griffith 
University Representation of Urban Hydrology 
(GURUH) model is a daily rainfall-runoff model 
developed by Newton et al. (2003). These models 
represent very different approaches to the problem 
as the algorithm of the SEADS model involves the 
solving of the governing partial differential 
equations whereas the GURUH model formulates 
the linear relationship among the parameters. Both 
the number of input factors and model outputs of the 
GURUH model are greater than that of the SEADS 
model. 
 
2.1   GURUH Model 
 
The GURUH model models the relationship 
between the rainfall and runoff to investigate the 
impact of urbanization for small urban catchments 
(Newton et al. 2003). The surface runoff component 
of the GURUH model is based on the conceptual 
description of rainfall response given by Boyd et al. 
(1993). 
 
Table 1. Input parameters and outputs of the GURUH model
 Nine input parameters and their ranges:
1. Capacity of effective impervious store C1 ( 0 – 4 mm)
2. Capacity of other impervious store C2 ( 5 – 100 mm)
3. Average capacity of pervious stores C3 ( 15 – 200 mm)
4. Proportion of effective impervious A1 ( 0 – 0.67 )
5. Loss factor FL ( 0.5 – 5 )
6. Proportion of RO to interflow 
    store recharge RIF ( 0 – 1 )
7. Max recharge rate to baseflow store Rmax ( 0 – 5 mm.d-1)
8. Interflow store linear recession constant KIF ( 0 – 1 d-1)
9. Baseflow store linear recession constant KBF ( 0 – 1d-1)

Seven outputs:
1. Median runoff (RO) for days 
    with RO > 0.01 ROmed

2. Maximum daily runoff ROmax

3. Coefficient of total runoff to total rainfall Cro

4. Sum of squares of runoff 
    differences to basecase SLS
5. Percentage of days on which RO > 10mm RO10 

6. Percentage of days on which RO > 1mm RO1 

7. Percentage of days on which RO > 0.1mm RO0.1  
 
The catchment is assumed to consist of three types 
of surfaces with increasing initial loss before runoff 
commences; effective impervious, other impervious, 
and pervious surfaces. Effective impervious areas 
are defined as areas which produce virtually 100% 
runoff after some small initial loss. The effective 
impervious area is often similar to the impervious 
area that is directly connected to the drainage 
network and may be obtained from examination of 
the recorded rainfall-runoff response (Boyd et al. 
1993).  The total impervious area includes the 
effective impervious area plus other impervious 
areas which do not contribute immediately to runoff 
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(Newton, Jenkins et al. 2003). The GURUH model 
has nine input parameters and seven model outputs. 
The nine parameters of describe the properties of 
catchments (Newton, Jenkins et al. 2003). Some 
assumptions are made so that a linear relationship 
among the parameters is established. The nine input 
parameters, with ranges used in the SA, and the 
seven outputs are presented in Table 1. 
 
2.2   SEADS Model 
  
There are two approaches to mathematical 
modelling for an erosion/deposition prediction. One 
is to use a large data base collected from a particular 
system and to derive an equation empirically 
(Semple 1991). The second approach is to formulate 
the model from theoretical relationships to 
mathematical modelling, although data will be 
required to determine the value of the parameters 
(Rose 1985). The SEADS model is the second type 
and it is based on the concept of simultaneous 
erosion and deposition (Rose et al. 1983; Rose 1985; 
Hairsine and Rose 1991; Hairsine and Rose 1992). 
Yu (2003) pointed out that the framework considers 
three continuous physical processes of rainfall 
detachment, flow detachment, and sediment 
deposition simultaneously. Yu ( 2003) noted that 
this approach has received experimental support and 
is used to model multi-class sediment deposition. 
The SEADS model has six input factors describing 
the properties of the soil and returns three outputs 
(Table 2). 
 
Table 2. Input parameters and outputs of the SEADS model
Six input parameters and their ranges:
1. sediment wet density ρs :( 1500 – 2500 kg/m3 ) 
2. flow entraiment parameter F :( 0.01 – 0.1 )
3. soil erodibility parameter J :( 0.5 - 50 kg/J )
4. soil detachability parameter Ed :( 0.008 – 0.08 kg/m3) 

5. stream power Ω :( 100 – 105 W/m2) 
6. particle size scaling parameter Ps :( 0.2 – 5 ) 

Three outputs:
1. total erosion (t/ha) , Te

2. sediment delivery ratio Del
3. cumulative sediment distri- (mm), Csd

     bution at 50%  
 
3.   METHODOLOGY 
 
3.1   SA Measure 
 
The NMM is used to conduct the sensitivity analysis 
on the two hydrologic models, SEADS and 
GURUH. The Morris method provides sensitivity 
estimates of the ‘overall’ influence of a factor on the 
output and is an ‘overall’ or average sensitivity 
measure of curvature and interaction between factors 
where the average is taken over a section of 
parameter space (Morris 1991; Campolongo and 
Braddock 1999). The new method, in addition to the 
‘overall’ sensitivity measures already provided by 

the Morris method, offers estimates of the two-factor 
interaction effects (Campolongo and Braddock 
1999).  The method retains the computational 
efficiency of the OAT scheme, applying an efficient 
sampling strategy in the parameter space 
(Campolongo and Braddock 1999).   
 
The New Morris Method produces sensitivity 
measures with respect to a specific pair of NMM 
parameters, runs and res. Higher value of runs 
means larger sample size and sample space increases 
with the value of res. Obviously, high value of runs 
with high value of res returns higher accuracy output 
(by the Central Limit Theorem). However, it means 
longer computation time and then higher 
computation cost. Basically, computation time is a 
function of number of runs, but is independent of 
res.  While both values of runs and res are low, the 
output has low accuracy, since both the sample size 
and sample space is small. In case of low value of 
runs (small sample size) and high value of res (large 
sample space), the output can only cover a small 
area (local effect) of the large parameter space.  
When using NMM, the determination of the 
optimum pair of values of runs and res for a specific 
model is important to improve the efficient. 

The NMM produces the sensitivity measures with 
respect to the NMM parameters, runs and res. They 
include the mean ‘μ’, and standard derivation ‘σ’ for 
the first order effects and the mean ‘τ’, and standard 
derivation, ‘η’ for the two-factor interaction effects.  
 
3.2   Average Relative Error 
 
In the case of a simple function, the sensitivity 
measure (first or second order) evaluated by 
analytical methods is called βanalytic, where β is one 
of the sensitivity measures ‘μ’, ‘σ’ ‘τ’, and ‘η’. The 
difference of the SA output measures βij sampled in 
parameter space, with runs = i and res = j, relative to 
the βanalytic is called the relative error (Cropp and 
Braddock 2002). Each (or each pair) of model input 
factor(s) contributes to the relative error and the 
average of the relative errors due to all factors is 
termed the average relative error (ARE). For 
example the AREij , runs = i and res = j is defined 
as:   

n
ij analytic

ij
n 1 analytic

1ARE
n =

β −β
=

β∑ ,                         (1)  

 

where n is the number of the factors or pairs of two 
factors ( e.g. for the SEADS model, n = 6 and 15 for 
first order and two-factor interaction respectively). 

However, analytical estimates of β are not readily 
obtained for the SEADS and GURUH models. 
Instead, Matthews, et al. (Mattrews et al. 2003) 
proposed the use of a pseudo-analytical solution 
βpseudo to evaluate the average relative error. The 
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βpseudo is obtained with parameter values of runs = 
200 and res = 100, and replaces βanalytic in equation 
(1). 

Note that β can be applied to all SA measure: μ, σ, τ, 
and η, and the corresponding measures are denoted 
by AREμ ; AREσ for first order effects, and AREτ ; 
AREη for second order interact effects. The values 
of ARE with respect to the parameters of ‘runs’ and 
‘res’ can be plotted as a 3D surface. 

3.3   Fractal Analysis 
 
The surface roughness reflects the variation of the 
ARE surfaces with respect to the number of runs and 
resolution. Fractal dimensions can provide an 
objective means for comparing surfaces (Barnsley 
and Rising 1993).  The triangular prism surface area 
method derived by Clarke (1986) was used to 
calculate the fractal dimension of a geographical 
surface. He claimed that his method provided a 
technique with the simplicity of the ‘walking 
dividers’, which used geometry alone in the 
computations. In this study, the geographical 
elevations were replaced by the ARE with respect to 
runs and res. The triangular prism surface area was 
calculated using Heron’s Formula.   

The values of ARE of the SA measures for runs = 1 
to 17 and res = 2 to 18 were computed. The surfaces 
for 289 ARE of SA (17 x 17 grids) with respect to 
runs and res were obtained for each model output. 
The fractal dimension of the surface plots are 
denoted by  
      
     Dμ :  fractal dimension of the AREμ , 
     Dσ :  fractal dimension of the AREσ , 
     Dτ :  fractal dimension of the AREτ , and 
     Dη :  fractal dimension of the AREη . 
 
The values of the fractal dimension were 
investigated to find the possible linkages between 
the fractal dimension of the average relative error 
surfaces and the nature of the models. 
 
4.   RESULTS 

The results (Ho 2004) shows that the input Ps yields 
the highest value of either μ or σ for all outputs of 
the SEADS model for the first order effects of 
sensitivity measures, while the factor Ω has the 
greatest value of μ for the output Del and the 
greatest value of σ for the output Csd. The high 
ranking of Ps in particular, and Ω in terms of the 
standard deviation, suggests that these factors are 
likely to be involved in second order interactions. 
For the GURUH model, the factor A1 appears to be 
the most important factor with a high ranking on μ 
for five out of seven outputs. However, the factor A1 
is not as highly ranked with respect to σ values, and 
this an indication that it does not interact 
significantly with other factors.  The factors C2 and 
C3 also have several first rankings with respect to 

both u and σ values, and have a first ranking 5 times 
with respect to σ.  This suggests that C2 and C3 will 
participate in significant second order interaction. 
For the second order effects, none of 15 pairs of 
two-factor interactions has a highest ranking for 
more than one output, thus indicating a more even 
sensitivity pattern in the SEADS model. However, 
the factors Ps and Ω, participate in nearly all of the 
highest ranked interactions.  Among the 36 pairs of 
two-factor interactions, the interacting pair C2_C3 is 
the most outstanding one with a high ranking on 
both τ and η, and a slightly lower ranking based on η 
for the median runoff output. The second important 
interacting pair is C1_C2, where it has a high ranking 
on τ for 5 outputs, and a high ranking on η, for 2 
outputs.   
 
The fractal dimensions of the ARE surface plots 
were evaluated and these are listed in Table 3 and 4. 
The fractal dimension of the ARE surfaces for the 
three outputs of the SEADS model are given in 
Table 3, for both the first order and second order 
effects.  The rank is given according to the fractal 
dimension of the three outputs, for each of Dμ, Dσ, 
Dτ and Dη and rank 1 corresponds to the highest 
value. The output Te gives the largest fractal 
dimension, and hence the greatest surface roughness 
of all the outputs, and this holds for both first and 
second order effects. The fractal dimension outputs 
for Del and Csd are significantly less than those for 
Te, with the exception of the Dτ for Csd. The fractal 
dimension Dτ of the AREτ surface for the second 
order is smaller than AREμ for first order, except for 
Del, where the difference is marginal. The fractal 
dimension of the second orders AREη surface is also 
less than the corresponding first order AREσ surface 
for each output. 
 
Table 3. Summary of Fractal Dimensions for the SEADS model

output Dμ rank Dτ rank Dσ rank Dη rank
Te 2.0129 1 2.0030 1 2.0219 1 2.0025 1

Del 2.0007 3 2.0009 3 2.0051 2 2.0007 3
Csd 2.0034 2 2.0030 1 2.0026 3 2.0008 2

σD 0.00523 0.00099 0.00857 0.00083  
 
The fractal dimensions of the ARE surfaces for the 
seven outputs of the GURUH model are given in 
Table 4.  The results for the output RO10 are not 
given as the algorithm returned a complex number. 
This has no physical meaning as a fractal dimension, 
and arises from the very high values of AREτ or 
AREη on some of the peaks in Figure 1 and 2. The 
output Cro has the highest fractal dimension for ARE 
surfaces. The output SLS also shows relatively high 
rankings for all categories. Generally the values of 
Dμ are larger than Dτ for each out put, except for 
Rmax and Cro.  Generally the values of Dσ are greater 
than the value of Dη with the only exception being 
for Cro. The results for RO10, RO1 and RO0.1 are 
similar, showing some evidence of increasing fractal 
dimension from RO10 to RO0.1: note the anomalous 
results for RO10. The difference between RO1 and 
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RO0.1 are small. 
 
Table 4. Summary of Fractal Dimensions for the GURUH model

output Dμ rank Dτ rank Dσ rank Dη rank
ROmed 2.0049 5 2.0002 4 2.0043 4 2.0001 4
ROmax 2.0043 7 2.0136 2 2.0014 6 2.0008 2

Cro 2.0997 1 2.2714 1 2.0135 1 2.3002 1

SLS 2.0068 4 2.0003 3 2.0050 2 2.0002 3
RO10 2.0047 6 N/A N/A 2.0014 6 N/A N/A
RO1 2.0109 2 2.0002 4 2.0021 5 2.0001 4

 RO0.1 2.0073 3 2.0001 6 2.0045 3 2.0001 4

σD 0.03269 0.10019 0.00390 0.11178  
 
The variation of the fractal dimensions among the 
outputs can be measured by calculating the standard 
deviation (σD). On the whole, the values of σD for the 
SEADS model are smaller than that of the GURUH 
model, except for σD of Dσ. The values of σD are in 
the range of several thousandths for the SEADS 
model, while that of the GURUH model can be 
greater than one tenth. The variance is mainly due to 
the output Cro having the highest fractal dimension.  
 

 
Figure 1.  AREτ surface for RO10 

 
 

 
Figure 2.  AREη  surface for RO10 

 
 
5.   DISCUSSION 

The first order sensitivity effect of all the outputs 
from SEADS, are dominated by the two parameters 
Ps, and Ω. The outputs were less sensitive to the four 

other parameters of the model. The parameters Ps 
and Ω also played a major role in the second order 
sensitivity interactions, with other parameters, and 
are likely to be involved in third order effects. For 
the GURUH model, the sensitivity analysis suggests 
that the seven outputs are sensitive to a range of 
parameters with FL, C3, C2, A1 and KIF being 
prominent in providing sensitivity effects to several 
outputs. These constants all arise in the GURUH 
model, and are trying to represent the pervious and 
impervious compartments of the model. These 
factors are also well represented in the second order 
interaction and second order sensitivities of the 
GURUH model. 
 
The SEADS model is based on solving the one 
dimensional transport equation, that govern the 
movement of suspended particles. This is a physical 
process model using a one-dimensional partial 
differential equation, which incorporates a given 
hydrological flow. The model incorporates a 
numerical solution process for the partial differential 
equation, and it is the most sophisticated of the 
models, in term of its physics and physical 
processes. Mathematically it is the more complex 
model, although its parameterisation is not as 
extensive as the GURUH model. 

 The GURUH model is a relatively highly 
parameterised model based mainly on algebraic 
functions to model the runoff features in urban areas. 
GURUH has flow processes incorporated as 
algebraic models, and based on observation. It is 
more alike to an observational simulation using 
statistical relationships, than the physical process 
modelling incorporated in SEADS model. Thus 
GURUH model presents complexity in its 
parameterisation and outputs, rather than in its 
mathematical sophistication. Boughton (2004) noted 
that the more parameters used, then the better is the 
fit to rainfall and runoff data, but the increase in the 
number of parameters lessens the reliability in the 
calibration of each parameter.  This is because more 
parameters produce more interactions among 
parameters and less clarity in the definition of each. 

Some of the error surfaces showed the presence of 
large peaks, and the GURUH output for RO10 is a 
prime example. According to the definition of 
relative error, there are two possibilities giving rise 
to the huge number. This is either obtaining an 
extremely large value of a numerator, or an 
extremely small value of the denominator. For the 
output RO10, the value of τ for the second order 
interaction C2_Rmax is 2.27 x 10-15 (which is very 
insensitive) and this is the result from the pseudo-
exact solution and the denominator of the equation 
(Ho 2004). On the other hand the mean effects of the 
interacting factors C2_Rmax for 1runs and 14res is 
26.81 returned by NMM. It was found that the 
location of the peak is at the point of run = 1 and res 
= 14, the problem must be arisen from this output. 
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By definition, the mean relative error is: 
 

15

15

26.81 2.27
MRE

2.27

−

−

−
= ,  

 
= 1.18 x 1016    

 
Compared with this huge value of MRE, the other 
35 estimates of MRE are neglected, and thus 
 
     AREτ = 1.18 x 1016 / 36 
               = 3.28 x 1014     

which is about the value of the peak as shown in Fig. 
1. In the other words, if the output is insensitive to 
the input factors, the extremely small value of the 
βpseudo, as a denominator cause the ARE to fail as a 
metric. Thus the pseudo analytical solution can lead 
to some difficulties in constructing the error surfaces. 

The fractal dimension seeks to compact information 
about a surface, and reduce it to a roughness 
measure. It obviates the need to use images of the 
surfaces and avoids making subjective judgements, 
which may be affected by scale in a diagram. In the 
results, two fractal dimensions were not given as the 
algorithm returned a complex number for the surface 
area. This requires study to clarify the reliability of 
the algorithm. The problem is due to the presence of 
the unacceptable peak in the response surface. As 
the algorithm includes a square root computation in 
the iteration, the huge value of the peak and the 
rounding error involved result in the algorithm 
attempting to take the square root of a negative 
number during the iteration. The problem was tested 
and found it is solely the occurrence of the 
anomalous peaks, and apart from this, the algorithm 
is reliable. 
 
Tables 3 and 4 show the fractal dimensions for the 
SEADS and the GURUH models. The SEADS 
model has smaller range in roughness than the 
GURUH model. In fact, it is also reflected by the 
values of the σD. The surface of output Cro is the 
roughest for all columns. The values Dτ (second 
order mean effects) are generally less than the values 
of Dμ, for the SEADS model with the exception of 
the outputs Del. The same pattern holds for GURUH 
with the exception of the outputs ROmax and Cro. The 
spread of these fractal dimensions illustrates the 
difficulty in arriving at values for runs and res to 
obtain a specified accuracy.  
 
The value of σD is a useful indicator. It indicates the 
variation of ARE among outputs. If the value of the 
σD is small, the ARE for all outputs are likely 
controlled at an approximate range. On the other 
hand, the larger the value of σD suggests the need to 
investigate if some outputs are producing 
unreasonable ARE surface patterns (e.g. the 
GURUH model). The sensitive measure of that 

output should be interpreted with care. A larger 
value of number of runs (a larger sample size) or 
higher resolution (the larger sample space) may be 
required to control the desired level of ARE (i.e. 
accuracy). 
 
On the whole, the physical models in SEADS are 
providing a more uniform pattern than the more 
highly parameterised GURUH. This is perhaps a 
little surprising given the mathematical complexity 
of the modelling of the physical processes in 
SEADS. Moreover, the results are not extensive 
enough to draw definitive conclusions relating to the 
nature of the models. 
 
6.   CONCLUSION 
 
The SA was conducted on two hydrologic models, 
SEADS and GURUH models by using NMM. The 
four sensitivity measures: μ, σ, τ, and η were 
estimated with respect to the ‘runs’ and ‘res’ which 
are the important parameters of NMM. The concept 
of a pseudo-exact solution was adapted to calculate 
relative errors. Average relative errors of all 
sensitive measures were evaluated and plotted on the 
surfaces of the ‘runs’ and ‘res’. By means of the 
fractal technique derived by Clarke (1986), the 
fractal dimensions of each surface were calculated. 
The fractal dimensions provide an objective means 
for comparing the surface plots, and of assessing the 
model. The results did show some differences in the 
fractal dimension of the error surfaces between the 
types of models, i.e. physically based differential 
equation model SEADS and the more heavily 
parameterized compartment model GURUH. The 
results are not extensive enough to draw definitive 
conclusions relating to the nature of the models. On 
the other hand, the results, particularly the fractal 
dimension can help to determine the optimum NMM 
parameters, runs and res. Here, a great deal more 
work is required in assembling results across models 
of different types, before any definitive conclusions 
can be made. Naturally, there can be “good” and 
“bad” models of the same physical system, and this 
will need to be addressed in future work. 
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