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EXTENDED ABSTRACT 
 
International tourism is an important source of service 
exports to Spain and its regions, particularly the 
Balearic Islands. Tourism is the major industry in the 
Balearic Islands, accounting for about 85% of GDP 
(see Riera, 2003). This paper examines the time series 
properties of international tourism demand to the 
Balearic Islands. The data set comprises monthly 
figures from two leading tourist source countries, 
namely UK and Germany, for the period January 1987 
to October 2003. Tourist arrivals and the associated 
volatility (or uncertainty) of monthly tourist arrivals 
are estimated for the two data series. The univariate 
models estimates suggest that (log) British tourist 
arrivals are stationary around a linear trend with stable 
seasonal patterns whereas (log) German arrivals are 
non-stationary, both in the trend and in the seasonal 
pattern. Moreover, conditional volatility models 
provide an accurate measure of uncertainty in monthly 
tourist arrivals from the UK and Germany. The 
estimated conditional correlations indicate that the 
two markets were segmented, so that (the logarithm 
of) tourist arrivals from both the UK and Germany 
should be considered in any tourism marketing and 
management plans for the Balearic Islands. 
 
The region of the Balearic Islands is a leading tourist 
destination in Spain, and also one of the most 
important tourist destinations in the Mediterranean 
Sea. Located in the Mediterranean, off the north-east 
coast of mainland Spain, and close to Barcelona and 
Valencia, the region comprises three main islands, 
namely Ibiza, Mallorca and Menorca, and two tiny 
and unspoilt islands, namely Formentera (south of 
Ibiza) and Cabrera (off the southern coast of 
Mallorca). 
 
In the last 40 years, the Balearic Islands have changed 
from a quiet and rural area into one of Spain’s richest 
regions, with GDP per capita on a par with the EU 
average, and well above the Spanish average. Such a 
transformation has been predominantly due to the 
boom in tourism, which now contributes around 85% 
of regional GDP. The Balearic Islands have one of the 
highest tourist rates per capita in the world, with an 

average of 10 million tourists a year for a population 
of less than 1 million (see Riera (2003)).  
 
The traditional tourism source market for the Balearic 
Islands has been Northern Europe, in particular, the 
UK and Germany. More than 95% of the international 
tourists to the Balearic Islands arrive by air. The main 
characteristics of tourism to these Islands have been 
discussed in Capó et al. (2003) and Riera, Rosselló and 
Sansó (2004). A brief account of the characteristics 
discussed in these studies is as follows. 
 
(i) Predominance of “sun and sand” mass tourism 
 
Tourists usually visit Mallorca on a package tour, 
which includes transport, accommodation and some 
board, and remain in the island for about 10.5 days.  
However, the yearly tourist expenditure survey (see 
Aguiló et al. for different years) reflects a downward 
trend of the length of stay length. A new feature of 
tourism to the Balearic Islands is the German tourists 
having bought second residences in Mallorca over the 
past decade. 
 
(ii) High repeat rate  
 
Only 25% of tourists who visit Mallorca are doing so 
for the first time (see the annual tourist expenditure 
survey; Aguiló et al. for different years). 
 
(iii) High degree of seasonality 
 
Tourists visit Mallorca mainly for its beaches and 
pleasant climate. The vast majority of tourists visit 
during the spring and autumn months, and especially 
during the summer months. The months from May to 
September attract about 80% of the total number of 
tourist arrivals. 
 
(iv) Predominance of international tourists 
 
Domestic tourism from Spain represents less than 
15% of the total tourist arrivals. Within international 
tourism, British and German tourists jointly represent 
more than 80% of total tourist arrivals. 
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1. INTRODUCTION 
 

The overwhelming dependence on tourism represents 
a great challenge for the Balearic Islands. Tourism 
revenues are seasonal, create uneven demands on 
infrastructure, cause concerns about environmental 
issues, and fluctuate according to global trends (for 
further details, see Riera 2003). As such, tourism 
shocks do not have the same variability over time. 
Uncertainty may be due to various unexpected factors, 
such as changes in disposable income and wealth, 
advertising campaigns, random events, and social 
factors. 
 
To sum up, monthly tourist arrivals data show the 
predominance of “sun and sand” tourism in the 
passenger data for total international tourist arrivals, 
as well as tourist arrivals from the UK and Germany 
(see Figures 1-3). It is clear that, during July and 
August, the relative importance of tourist arrivals is 
about 14%, but during December or January the 
importance virtually disappears, and is less than 3%.  
 
The data set comprises monthly figures from two 
leading tourist source countries, namely UK and 
Germany for the period January 1987 to October 
2003. This paper is to examine the time series 
properties of international tourism demand to the 
Balearic Islands.  
 
The plan of the paper is as follows. Section 2 
discusses the seasonality in tourism arrivals. 
Univariate and multivariate models of conditional 
volatility for monthly tourist arrivals are presented in 
Section 3. The empirical results for the models and 
some concluding remarks are presented and discussed 
in Section 4.  
 
2. SEASONALITY IN TOURISM ARRIVALS 
 
To test whether the seasonal pattern is constant or not 
over time, the HEGY test can be used. See Hylleberg 
et al (2000) and Haldrup, Montañés and Sansó (2005) 
for more details. To illustrate how the HEGY test 
works, consider the annual difference operator Δ12 ≡ 
(1-L12), where L is the lag operator, and that Δ12yt = 
(1-L12)yt = yt -L12yt = yt - yt-12, that is, the annual 
change in variable yt. The seasonal difference operator 
is commonly used when modeling time series with 
seasonality. This operator can be factorized according 
to its twelve roots as 
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That is, the roots 1, -1 and five pairs of complex unit 
roots, each pair associated to a binomial such as 

( )( )21 2cos / 6j L Lπ− + . Note that all roots have 
modulus one and, in this sense, are called unit roots. 

The first unit root, that is 1, is associated with the 
trend (also known as zero frequency) whereas the 
other eleven (that is, -1 and the ten complex unit 
roots) so are with the seasonality. Specifically, root -1 
is related to the π frequency (a cycle of period two 
months) and the pairs of complex unit roots so are to 
the / 6jπ  ( 1,...,5)j = frequencies, which imply 
cycles of period  12 / j  ( 1,...,5)j =  months. The 
presence of seasonal unit roots implies that the 
seasonal pattern is changing over time whereas their 
rejection implies that the seasonal pattern is constant  
 
The HEGY test consists in checking whether each of 
these unit roots is present in a given time series. The 
auxiliary regression of the test is given by: 
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where tε  is an error tern and ( )j
ty are transformations 

of ty such that all but one of the frequencies are 
filtered out. For instance, in 
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all the unit roots but those related to 

2(1 2cos( / 6) )L Lπ− +  are filtered out, and in  
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all the root but -1 are eliminated. Actually, in our 
empirical application we used a slightly different 
filtration for ( / 6)j

ty π  ( 1,...,5)j = , suggested by 
Beaulieu and  Miron (1993), in order to obtain 
uncorrelated regressors. Nevertheless, this does not 
affect our reasoning. The superscript of each 
transformed variable indicates the frequency which is 
led out. The presence of a unit root in a given 
frequency implies the non-significance of the related 
transformed variables. For instance, if 0 0ρ =  then 
there is a unit root in the zero frequency (the trend), 
and if / 6,1 / 6,2 0π πρ ρ= =  that means that the (complex) 
unit root of frequency π/6 is also present, implying 
that the seasonal pattern of one cycle per year is 
changing continuously. Note that complex unit roots 
are tested with a (pseudo) F-test, because they imply 
the nullity of two parameters, whereas the presence of 
roots in frequencies 0 and π  can be tested using a 
(pseudo) t-ratio.  
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The presence of all the roots implies that neither the 
trend nor the seasonality of ty  is stable and that the 
variable has to be differentiated, 12 tyΔ ,, in order to get 
a stationary variable. If no unit roots are present, both 
the trend and the seasonal pattern of ty are stable.   
 
The auxiliary regression (1) can be generalized to 
include deterministic terms to allow a more general 
model under the alternative hypothesis of stationarity. 
In the empirical application below we specify a 
deterministic trend and a set of seasonal dummy 
variables. The (asymptotic) distribution of the tests, 
which is not standard, can be found in Hylleberg et al. 
(2000) and Haldrup et al. (2005), and the finite sample 
critical values can be found in Franses and Hobijn 
(1997). The autocorrelation of tε  in (1) distorts the 
distribution of the test. To avoid this autocorrelation, 
additional lags of  12 tyΔ  can be introduced. 
 
3. CONDITIONAL VOLATILITY MODELS 

FOR TOURIST ARRIVALS 
 
The purpose of this section is to model the level and 
conditional volatility (or uncertainty) in monthly 
international tourist arrivals from the 2 leading source 
countries, namely UK and Germany, to the Balearic 
Islands. The specification and properties of the 
Constant Conditional Correlation (CCC) GARCH 
model of Bollerslev (1990), which will be used to 
estimate the correlations between the tourist arrivals 
shocks, will be discussed briefly. 
 
Consider the following specification: 
 

( )1|
,

t t t t

t t t

y E y F
D

ε
ε η

−= +
=

           (1) 

 
where ( )1 2, 't t ty y y=  measures the tourist arrivals 
from the 2 leading source countries, 1 2( , ) 't t tη η η=  is a 
sequence of independently and identically distributed 
(iid) random vectors that is obtained from 
standardizing the tourist arrivals shocks, ,tε  using the 
standardization 1/ 2 1/ 2

1 2( , ) 't tD diag h h= , tF   is the past 
information available to time t, and 1,..., 202t =  
monthly observations for the period January 1987 to 
October 2003.  
 
The CCC model assumes the uncertainty in tourist 
arrivals shocks from source i, ith , i = 1,2, follows a 
univariate GARCH process, that is, 

2
, ,

1 1

r s

it i ij i t j ij i t j
j j

h hω α ε β− −
= =

= + +∑ ∑                         (2) 

where ijα  represents the ARCH effects, or the short-
run persistence of shocks to tourist source i, and ijβ  

represents the GARCH effects, or the contribution of 
shocks to tourist source i to long-run persistence. 
Although the CCC specification in (2) has a 
computational advantage over other multivariate 
GARCH models with constant conditional 
correlations, such as the Vector Autoregressive 
Moving Average GARCH (VARMA-GARCH) model 
of Ling and McAleer (2003) and VARMA 
Asymmetric GARCH (VARMA-AGARCH) model of 
Hoti, Chan and McAleer (2002), it assumes 
independence of uncertainty across tourism sources, 
and hence no spillovers in uncertainty across different 
tourism sources, and does not accommodate the 
asymmetric effects on uncertainty of positive and 
negative shocks.  
 

It is important to note that the conditional correlation 
matrix for the CCC model, ,Γ  is assumed to be 
constant, with the typical element of Γ  being given 
by ij jiρ ρ=  for i, j = 1,2. When the correlation 
coefficient of tourism arrivals shocks, ijρ , is close to 
+1, the Balearic Islands should specialize on tourist 
sources that provide the largest numbers and growth 
in tourist arrivals. However, when the correlation 
coefficient of tourism arrivals shocks is close to -1, 
the Balearic Islands should concentrate on 
diversifying the tourism base rather than concentrating 
on sources with the largest numbers and growth in 
tourist arrivals. Independent tourism sources are those 
pairs of countries with a correlation coefficient close 
to zero, in which case neither specialization nor 
diversification in tourism source markets would be 
required for optimal management of tourism arrivals.  
 
When the number of tourism source countries is set to 
m = 1, such that a univariate model is specified rather 
than a multivariate model, equations (1)-(2) become: 
 

 
2

1 1
,

t t t

r s

t j t j j t j
j j

h

h h

ε η

ω α ε β− −
= =

=

= + +∑ ∑
          (3) 

 

and 0ω > , 0jα ≥  for j = 1,…,r and 0jβ ≥  for j = 
1,…,s are sufficient regularity conditions to ensure 
that uncertainty is defined sensibly, namely 0th > . 
The decomposition in (3) permits the uncertainty in 
the tourist arrivals shocks,  ,tε  to be modelled by ,th  
on the basis of historical data. Using results from 
Nelson (1990), Ling and Li (1997) and Ling and 
McAleer (2002a, 2002b), the necessary and sufficient 
regularity condition for the existence of the second 
moment of tourist arrivals shocks, tε , for the case r = 
s = 1 is given by 1 1 1α β+ < . This result ensures that 
the estimates are statistically adequate, for a sensible 
empirical analysis.  
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Equation (3) assumes that a positive shock ( 0tε > ) to 
monthly tourist arrivals has the same impact on 
uncertainty, th  , as a negative tourist arrivals shock 
( 0tε < ), but this assumption is typically violated in 
practice. In order to accommodate the possible 
differential impact on uncertainty from positive and 
negative tourist arrivals shocks, Glosten, Jagannathan 
and Runkle (1992) proposed the following 
specification for th : 
 

( )( ) 2

1 1

r s

t j j t j t j j t j
j j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑ .               (4) 

 
When r = s = 1, 0ω > , 1 1 10, 0α α γ≥ + ≥ and 1 0β ≥  
are sufficient conditions to ensure that uncertainty is 
positive, namely 0th > . The short-run persistence of 
positive (negative) monthly tourist arrivals shocks is 
given by 1α  ( 1 1α γ+ ). Under the assumption that the 
standardized shocks, tη , follow a symmetric 
distribution, the average short-run persistence of 
tourist arrivals shocks is 1 1 2α γ+ , and the 
contribution of tourist arrivals shocks to average long-
run persistence is 1 1 12α γ β+ + . Ling and McAleer 
(2002a) showed that the necessary and sufficient 
regularity condition for the second moment of tourist 
arrivals shocks to be finite, and hence for sensible 
statistical analysis, is 1 1 12 1α γ β+ + < . 
 
The parameters in equations (1), (3) and (4) are 
typically obtained by Maximum Likelihood 
Estimation (MLE). When tη  does not follow a joint 
multivariate normal distribution, the parameters are 
estimated by Quasi-MLE (QMLE).  
 
Ling and McAleer (2003) showed that the QMLE for 
GARCH(r,s) is consistent if the second moment 
regularity condition is finite. Jeantheau (1998) showed 
that the log-moment regularity condition given by 
 

( )( )2

1 1log 0tE α η β+ <                (5) 
 
is sufficient for the QMLE to be consistent for the 
GARCH(1,1) model of uncertainty, while Boussama 
(2000) showed that the QMLE is asymptotically 
normal for GARCH(1,1) under the same condition. It 
is important to note that (5) is a weaker regularity 
condition than the second moment condition, namely 

1 1 1α β+ < . However, the log-moment condition is 
more difficult to compute in practice as it is the 
expected value of a function of an unknown random 
variable and unknown parameters. 
 
McAleer, Chan and Marinova (2002) established the 
log-moment regularity condition for the GJR(1,1) 
model of uncertainty, namely 
 

( )( )( )( )2
1 1 1log 0,t tE Iα γ η η β+ + <                           (6) 

 
and showed that it is sufficient for the consistency and 
asymptotic normality of the QMLE for GJR(1,1). 
Moreover, the second moment regularity condition, 
namely 1 1 12 1α γ β+ + < , is also sufficient for 
consistency and asymptotic normality of the QMLE 
for GJR(1,1).  
 
4. EMPIRICAL RESULTS 
 
Univariate and multivariate uncertainty models are 
estimated for the two tourism source countries for the 
period 1987(1)-2003(10). All the estimates are 
obtained using GAUSS and EViews 4 software 
packages. Virtually identical results were obtained by 
using the RATS 6 econometric software package.  
 
Using the monthly data, we first consider the 
stationarity of the (logs of) two series. Table 1 shows 
the results of the HEGY seasonal unit root test for 
both series. The HEGY test was performed by 
pretesting for the presence of additive outliers, as 
considered in Haldrup, Montañés and Sansó (2005), 
and dropping the insignificant lags in the auxiliary 
regression. A deterministic trend and a set of seasonal 
dummies were included in the auxiliary regression. 
 
As shown in Table 1, we cannot reject some of the 
seasonal and non-seasonal unit roots for German 
tourist arrivals, whereas for British arrivals all the 
seasonal and non-seasonal unit roots are rejected. 
Hence, seasonality for the British data is stable, while 
seasonality for the German data is not. This is 
consistent with the fact that German tourists changed 
their travel patterns in visiting Mallorca over the last 
decade. In particular, German tourists have purchased 
numerous second residence houses in Mallorca, and 
also spread their visits throughout all the months of 
the year (see Riera, Rosselló and Sansó (2004)). 
 
Given these results, the dependent variables are 
defined as the logarithm of the level of British tourist 
arrivals and the seasonally and regularly differenced 
logarithms of the German tourist arrivals. The 
conditional mean for British arrivals is given by: 
 

( ) ( )( )
( )

0 1 1 2 2 12 12

5

1 ,1 ,2
1

6,1

ln ln ln ln

cos / 6 sin / 6

cos / 6

t t t t

j j
j

E t t

y y y y

t j t j t

t East

δ φ φ φ

δ β π β π

β π δ ε

− − −

=

= + + +

+ + +

+ + +

∑            (7) 

 
where the trigonometric terms capture the 
deterministic seasonality, and East is a dummy 
variable for the Easter period. These trigonometric 
terms are the discrete Fourier transformation of a set 
of seasonal dummy variables, so that they expand into 
the same space and are, in this sense, equivalent. 
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However, this representation identifies better the 
seasonal cycles which are present in the data. 
 
Table 2 reports the estimated results for the British 
data, while Figure 4 plots the recursive OLS 
parameter estimates. The British estimates show 
stability. This is consistent with the findings regarding 
the seasonal unit roots reported in Table 1.   
 
Figure 5 shows the recursive OLS estimates of 
equation (7) for German tourist arrivals. These 
estimates show a lack of stability implying that the 
seasonal pattern of German tourist arrivals is not 
constant and confirming the previous findings of 
seasonal unit roots in the German data. 
 
Given the results of Table 1 and the recursive 
estimations concerning German tourist arrivals data, 
we impose the presence of all seasonal and non-
seasonal unit roots, and estimate the following model 
for the conditional mean, for which the estimates are 
shown in Table 3: 
 

( )( )12

12 0 1 12ln 1 1t E t ty East L Lδ δ θ θ εΔΔ = + + − −  
 
The estimated conditional means for the British and 
German tourist arrivals imply that these two variables 
have a completely different long-run behavior. British 
tourist arrivals can be considered stationary around a 
deterministic trend, while German tourist arrivals are 
non-stationary, neither in the trend nor in the seasonal 
frequencies. This implies that the two series are 
uncorrelated in the long-run. 
 
The GARCH(1,1) estimates suggest that the 
conditional variance for British tourists is effectively 
constant (with the ARCH estimate close to 0 and the 
GARCH estimate close to 1), whereas there is only a 
one-period short run effect for German tourists. The 
GJR(1,1) model leads to completely different results. 
The GARCH effect disappears for British tourists, 
while the GJR (or asymmetry) effect, though 
significant for German tourists, is negative. This result 
would be regarded as being contrary to expectations.  
 
As reported in Table 4, the conditional correlation 
between shocks to tourist arrivals from the UK and 
Germany (0.14) is very low. However, the Granger 
causality hypothesis for German tourist arrivals 
causing British tourist arrivals is not rejected (with a 
p-value of 0.373 for two lags), but it is rejected for 
British tourist arrivals causing German tourist arrivals 
(with a p-value of 0.022 for two lags). 
 
Given that the shocks to both series are practically 
independent and that both series are asymptotically 
uncorrelated, the two markets are segmented, so that 
(the logarithm of) tourist arrivals from both the UK 
and Germany should be considered in tourism 
marketing and management plans for the Balearic 
Islands.  
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Table 1: Seasonal Unit Root Tests (HEGY) 

Frequency 0 π/6 π/3 π/2 2π/3 5π/6 π 
British Tourists -4.5** 21.0** 27.7** 6.45* 37.4** 11.8** -5.41** 
German Tourists -1.75 1.79 6.49* 6.77* 6.20† 1.51 -5.49** 

Note: †, * and ** refer to 10%, 5% and 1% significance levels, respectively, using the critical values given in 
Franses and Hobijn (1997).  

 

 

 

 

Table 2: Conditional Mean Estimates 

Parameters British Tourists Germans Tourists 

0δ  3.045 (4.87) 0.002 (1.03) 

1φ  0.377 (5.44)  
2φ  0.224 (4.02)  
1 2φ  0.159 (4.14)  

1δ  0.001 (3.68)  

Eδ  0.318 (4.64) -0.036 (-2.14) 

1,1β  -0.572 (-1.75)  

2,1β  -0.035 (-1.65)  

3,1β  0.288 (11.66)  

4,1β  0.012 (0.77)  

5,1β  -0.140 (-7.79)  

6,1β  -0.010 (-0.99)  

1,2β  0.331 (5.81)  

2,2β  0.136 (7.47)  

3,2β  0.039 (2.02)  

4,2β  -0.040 (-3.12)  

5,2β  -0.231 (-11.75)  

MA(1)  -0.794  (-24.19) 
MA(12)  -0.426  (-7.03) 
SE 0.129 0.132 
Q(12) 15.533 (0.21) 11.162 (0.35) 

Notes:  
(1) t-ratios are given in parentheses; (2) SE is the 
standard error of the residuals; (3) Q(12) is the Ljung-
Box test for non-autocorrelation in the first twelve 
lags; and (4) The entries in parantheses for Q(12) are 
p-values. 
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Table 3: Conditional Volatility Models: GARCH(1,1) and GJR(1,1) 

 British Tourists German Tourists 

Parameters GARCH(1,) GJR(1,1) GARCH(1,) GJR(1,1) 

ω  1.2E-04 0.005 0.012 0.008 
 1.08 4.00 3.88 2.06 

α  -0.020 0.331 0.343 0.179 
 -0.88 1.88 2.72 10.50 

γ   1.032  -0.255 
  2.08  -3.90 

β  0.995 0.02 -0.047 0.397 
 60.63 0.31 -0.31 1.40 

Note: The two entries for each parameter are their respective estimate 
and the asymptotic t-ratio. 

 
 
 

Table 4: Correlations Between the Squared Errors 

Lags, Leads -3 -2 -1 0 1 2 3 
Correlations -0.0251 -0.0402 0.0987 0.1411 0.1622 0.1822 0.0129 

Note: Leads (+) and lags (-) are taken with respect to British tourists. 
 
 
 
 
 
 

 
Figure 1: Monthly International Tourist Arrivals 
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Figure 2: Monthly British Tourist Arrivals 

0

100000

200000

300000

400000

500000

600000

700000

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

 

 
Figure 3: Monthly German Tourist Arrivals 
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Figure 4: Recursive Coefficients Estimates of British Tourists 

(Equation (7)). 

-4

0

4

8

12

16

1990 1992 1994 1996 1998 2000 2002

Recursive C(1) Estimates ± 2 S.E.

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

1990 1992 1994 1996 1998 2000 2002

Recursive C(2) Estimates ± 2 S.E.

-.20

-.15

-.10

-.05

.00

.05

.10

1990 1992 1994 1996 1998 2000 2002

Recursive C(3) Estimates ± 2 S.E.

.16

.20

.24

.28

.32

.36

.40

.44

.48

.52

1990 1992 1994 1996 1998 2000 2002

Recursive C(4) Estimates ± 2 S.E.

-.08

-.04

.00

.04

.08

.12

1990 1992 1994 1996 1998 2000 2002

Recursive C(5) Estimates ± 2 S.E.

-.28

-.24

-.20

-.16

-.12

-.08

-.04

.00

1990 1992 1994 1996 1998 2000 2002

Recursive C(6) Estimates ± 2 S.E.

-.08

-.06

-.04

-.02

.00

.02

.04

.06

1990 1992 1994 1996 1998 2000 2002

Recursive C(7) Estimates ± 2 S.E.

-.1

.0

.1

.2

.3

.4

.5

.6

.7

1990 1992 1994 1996 1998 2000 2002

Recursive C(8) Estimates ± 2 S.E.

.00

.05

.10

.15

.20

.25

1990 1992 1994 1996 1998 2000 2002

Recursive C(9) Estimates ± 2 S.E.

-.10

-.05

.00

.05

.10

.15

.20

1990 1992 1994 1996 1998 2000 2002

Recursive C(10) Estimates ± 2 S.E.

-.16

-.12

-.08

-.04

.00

.04

1990 1992 1994 1996 1998 2000 2002

Recursive C(11) Estimates ± 2 S.E.

-.35

-.30

-.25

-.20

-.15

-.10

1990 1992 1994 1996 1998 2000 2002

Recursive C(12) Estimates ± 2 S.E.

.0

.1

.2

.3

.4

.5

.6

1990 1992 1994 1996 1998 2000 2002

Recursive C(13) Estimates ± 2 S.E.

-.020

-.016

-.012

-.008

-.004

.000

.004

1990 1992 1994 1996 1998 2000 2002

Recursive C(14) Estimates ± 2 S.E.

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

Recursive C(15) Estimates ± 2 S.E.

-.8

-.6

-.4

-.2

.0

.2

.4

.6

1990 1992 1994 1996 1998 2000 2002

Recursive C(16) Estimates ± 2 S.E.

 

Figure 5: Recursive Coefficients Estimates of German Tourists 
(Equation (7)). 
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