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ABSTRACT

Maximum likelihood (ML) estimates of the param-
eters of SDEs are consistent and asymptotically
efficient, but unfortunately difficult to obtain if a
closed form expression for the transitional probability
density function (PDF) of the process is not available.
One popular way to obtain the transitional PDF
is to solve the Fokker-Planck equation numerically.
However the treatment of the delta function initial
condition and zero-flux boundary conditions, both of
which are necessary to implement these numerical
schemes, is not straightforward. By reformulating
the problem in terms of the transitional cumulative
distribution function (CDF), it is shown that these
conditions are handled easily. The transitional PDF is
subsequently computed by numerical differentiation
of the transitional CDF and used to construct a
likelihood function in the usual way.

Consider the general one-dimensional, time-
homogeneous stochastic differential equation
(SDE)

dX = µ(X; θ) dt +
√

g(X; θ) dW

whereX is a stochastic Markov process,µ(x; θ) and
g(x;θ) are respectively the instantaneous drift and
instantaneous diffusion ofX, dW is the differential
of the Wiener process andθ is a vector of parameters
to be estimated. The aim of ML estimation is to
minimise the negative log-likelihood function with
respect to the parameter vectorθ. ML estimation
relies on the fact that the transitional density ofX at
time t is the solution of the Fokker-Planck equation

∂f

∂t
=

∂

∂x

[ 1
2

∂(g(x; θ)f)
∂x

− µ(x; θ)f
]

satisfying a delta function initial condition and
gradient-like boundary conditions.

This paper is concerned with an equivalent statement
of this problem in terms of the transitional CDF,
F (x, t) , which is defined in terms of the transitional

PDF,f(x, t), by

F (x, t) =
∫ x

f(u, t) du .

When expressed in terms ofF (x, t), the Fokker-
Planck equation takes the form

∂F

∂t
=

1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x

with a step function initial condition and Dirichlet
boundary conditions.

Both the PDF and CDF approaches to the solution
of the Fokker-Planck equation are implemented using
a finite-difference method. The latter is easier
to implement than the former, because the initial
condition is more amenable to numerical work and
the gradient-like boundary conditions associated with
the Fokker-Planck equation are replaced by Dirichlet
boundary conditions in the modification.

The efficacy of the numerical solution is evaluated
by means of two Monte Carlo exercises based on
simulating the CIR equation

dX = α(β −X)dt + σ
√

X dW

with α = 0.2, β = 0.08 andσ = 0.1, using Milstein’s
scheme with 1000 time steps of size0.001 between
observations. The first experiment compares the PDF
and CDF approaches in terms of the accuracy of log-
likelihood computation, while the second simulation
experiment involves the estimation of the parameters
of the underlying CIR model.

The most significant finding is that the CDF
approach using the step function initial condition
can be implemented successfully in practice. By
contrast, there is no equivalent result for the PDF-
based procedure, because it is always necessary to
approximate the initial condition. The main empirical
result to emerge from the simulation exercises in this
paper is that, given equivalent starting information,
the CDF approach is always superior to the PDF
approach in terms of the accuracy of likelihood
evaluation.
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1 INTRODUCTION

The problem of estimating the parameters of stochas-
tic differential equations (SDEs) from discretely-
observed time-series data has received much attention
of late. If the state variable of an SDE satisfies the
Markov property, the transitional probability density
function (PDF) from the last known state encodes the
history of the process. Furthermore, this transitional
PDF is a solution of a partial differential equation
known as the forward Kolmogorov or Fokker-Planck
equation. Maximum-likelihood (ML) estimates of
the parameters of the SDE therefore requires solution
of this equation, a fact recognised in the context
of financial econometrics by Lo (1988). If there is
a closed-form expression for the transitional PDF,
then obtaining the ML estimates of the parameters
is straightforward. Unfortunately such an expression
is usually unavailable1 and therefore ML estimation
requires numerical integration of the Fokker-Planck
equation.

Most applications in financial econometrics ignore
measurement error and so the appropriate initial
condition for the Fokker-Planck equation is a delta
function located at the last known state. A delta
function is, however, not representable within a
numerical scheme and therefore causes immediate
difficulty for any numerical procedure to compute
transitional density. The central idea of this
paper is to reformulate the problem in terms
of the transitional cumulative distribution function
(CDF) for the Fokker-Planck equation instead of
the transitional probability density function (PDF).
The result of this reformulation is that the delta
function initial condition in the traditional approach
is replaced by a step function initial condition. Not
only can this initial condition be represented within a
numerical framework but this approach also delivers
an additional benefit through the simplification of the
boundary conditions.

The remainder of this paper consists of four sections.
Section 2 provides a brief description of ML
estimation of the parameters of SDEs. Section 3
outlines the finite-difference procedure for both the
PDF and the CDF approaches. Section 4 details the
results of a simulation experiment investigating the
efficacy of the approaches and the concluding remarks
are made in Section 5.

1The most common exceptions in financial modelling are
geometric Brownian motion, the square root or CIR process
(Cox, Ingersoll and Ross, 1985) and the Ornstein-Uhlenbeck (OU)
process, often associated with Vasicek (1977).

2 MAXIMUM LIKELIHOOD FRAMEWORK

Consider the general one-dimensional, time-
homogeneous stochastic differential equation
(SDE)

dX = µ(X;θ) dt +
√

g(X;θ) dW (1)

whereX is a stochastic Markov process,µ(x; θ) and
g(x; θ) are respectively the instantaneous drift and
instantaneous diffusion ofX, dW is the differential of
the Wiener process andθ is a vector of parameters to
be estimated. Furthermore, suppose thatX0, · · · , X T

is a sample of(T+1) observations of the state variable
at the timest0, · · · , t T. The negative log-likelihood
function of the sample is

− log f0(X0|θ)−
T−1∑
s=0

log f(Xs+1|Xs; θ)

wheref0(X0|θ) is the density of the initial state and
f(Xs+1|Xs; θ) is the value of the transitional density
at (Xs+1, ts+1) for a process starting at(Xs, ts) and
evolving to(Xs+1, ts+1) in accordance with equation
(1). The Markovian property of equation (1) ensures
that the transitional density ofX at timets+1 depends
only onXs.

The aim of ML estimation is to minimise the negative
log-likelihood function with respect to the parameter
vector θ. ML estimation relies on the fact that the
transitional density ofX at time t is the solution of
the Fokker-Planck equation

∂f

∂t
=

∂

∂x

[ 1
2

∂(g(x; θ)f)
∂x

− µ(x; θ)f
]

(2)

satisfying a suitable initial condition and boundary
conditions. Suppose, furthermore, that the state space
of the problem is[a, b] and the process starts atx =
Xs at timets. The initial condition is now

f(x, ts) = δ(x−Xs) (3)

and the boundary conditions required to conserve unit
density within this interval are

lim
x→a+

(1
2

∂(gf)
∂x

− µf
)

= 0 ,

lim
x→b−

(1
2

∂(gf)
∂x

− µf
)

= 0 .

(4)

This paper is concerned with an equivalent statement
of this problem in terms of the transitional CDF,
F (x, t) , which is defined in terms of the transitional
PDF,f(x, t), by

F (x, t) =
∫ x

a

f(u, t) du . (5)
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When expressed in terms ofF (x, t), equation (2)
takes the form

∂2F

∂x∂t
=

∂

∂x

[ 1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x

]
(6)

which can be integrated with respect tox to give

∂F

∂t
=

[ 1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x

]
+ C(t). (7)

where C(t) is an arbitrary function of integration.
The boundary conditions for this equation require that
F (a, t) = 0 andF (b, t) = 1 which in turn require
thatC(t) = 0. ThereforeF (x, t) satisfies the partial
differential equation

∂F

∂t
=

1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x
(8)

with Dirichlet boundary conditionsF (a, t) = 0 and
F (b, t) = 1. The initial condition F (x, ts) for
a transition from(Xs, ts) is constructed from the
definition (5) to obtain

F (x, ts) =




0 x < Xs ,

1/2 x = Xs ,

1 x > Xs .

(9)

One important advantage of this approach is that
the delta function initial condition required in the
computation of transitional PDF is now replaced by
a step function initial condition in the computation
of the transitional CDF. The latter has a precise
numerical representation whereas the delta function
(3) must be approximated.

The method of finite differences will now be used
to illustrate the numerical implementation of the
maximum likelihood procedures.

3 FINITE-DIFFERENCE PROCEDURE

The implementation of the finite-difference procedure
in this paper is based on the discretisation of state
space and time. Lettingh andk denote respectively
the units of discretisation of state space and time, the
nodes of the finite-difference scheme are located at
xp = ph, wherep is an integer satisfying0 ≤ p ≤ n,
and the time interval[ts, ts+1] is discretised intom
uniform sub-intervals of durationk.

3.1 Transitional PDF specification

Let f
(q)
p = f(xp, ts + qk) be the value of the

transitional PDF at(xp, ts + qk) whereq is an integer
taking values between0 and m, then integration of

equation (2) over[ts + qk, ts + qk + k] gives

f(x, ts + qk + k)− f(x, ts + qk)

=
1
2

∂2

∂x2

(
g(x)

∫ ts+qk+k

ts+qk

f(x, t) dt
)

− ∂

∂x

(
µ(x)

∫ ts+qk+k

ts+qk

f(x, t) dt
)

.

(10)

Let the auxiliary variables

φp =
∫ ts+qk+k

ts+qk

f(xp, t) dt

be defined, then in the usual notation, equation (10)
has finite difference approximation

f (q+1)
p − f (q)

p =
gp+1φp+1 − 2gp φp + gp−1φp−1

2h2

− µp+1φp+1 − µp−1φp−1

2h
.

The terms in this equation are now regrouped to give

f (q+1)
p − f (q)

p =
(gp−1 + hµp−1

2h2

)
φp−1 − gp

h2
φp

+
(gp+1 − hµp+1

2h2

)
φp+1.

The trapezoidal quadrature is now used to approxi-
mateφp by the formula

φp =
k

2

(
f (q+1)

p + f (q)
p

)
+ O(k3) ,

so that the final finite difference representation of
equation (2) is

−r

4
(
gp−1 + hµp−1

)
f

(q+1)
p−1 +

(
1 +

r

2
gp

)
f (q+1)

p

−r

4
(
gp+1 − hµp+1

)
f

(q+1)
p+1

=
r

4
(
gp−1 + hµp−1)

)
f

(q)
p−1 +

(
1− r

2
gp

)
f (q)

p

+
r

4
(
gp+1 − hµp+1

)
f

(q)
p+1

(11)
where r = k/h2 is the Courant number.
The procedure used to construct equation (11) is
essentially the Crank-Nicolson algorithm, and it is
well known that this algorithm is consistent and
exhibits robust numerical properties.

Expression (11) forms the core of the finite-difference
representation of equation (2). It suggest that
the distribution of transitional density at any time
is computed by solving a tri-diagonal system of
equations given an initial distribution of transitional
density and suitable boundary conditions. As has
already been remarked, the required initial condition
is a delta function and is therefore not representable
within the framework of the finite-difference method.
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Jensen and Poulsen (2002) suggest that this difficulty
can be circumvented by starting the finite-difference
algorithm with a specification of the distribution of
transitional density at(ts+k) based on the assumption
that the transitional density at(ts+k) can be expected
to be well approximated by the normal distribution
with mean valueXs + k µ(Xs; θ) and variance
k g(Xs; θ).

The treatment of the boundary conditions is more
technical. Suppose that the solution is sought in the
finite2 interval [x0, xn]. For many SDEs of type (1),
the sample space is the semi-infinite interval[0,∞]
so that the drift and diffusion specifications will often
satisfy g(x0) = 0 and µ(x0) ≥ 0. Under these
conditions the boundary condition atx = x0 is
equivalent to the conditionf(x0, t) = 0, that is, no
density can accumulate at the boundaryx = x0.
However, no equivalent simplification exists for the
boundary condition atx = xn, wherexn is now
suitably large, but finite. The derivation of this
condition is now described.

The backward-difference representation of the bound-
ary condition (4) atx = xn is

1
2

(3 gnf
(q)
n − 4 gn−1 f

(q)
n−1 + gn−2 f

(q)
n−2

2h

)

−µnf
(q)
n + O(h2) = 0 .

(12)
These terms are regrouped and the truncation error
ignored to obtain

(
3gn − 4hµn

)
f

(q)
n − 4gn−1f

(q)
n−1

+gn−2f
(q)
n−2 = 0 .

(13)

This boundary condition is now used at(ts + qk) and
(ts +qk+k) to eliminatef (q)

n andf
(q+1)
n respectively

from equation (11) evaluated atp = n − 1. The final
result is

P f
(q+1)
n−2 − (

Q−R
)
f

(q+1)
n−1

= −P f
(q)
n−2 +

(
Q + R

)
f

(q)
n−1

(14)

where

P = gn−2

(
3hµn − 2gn

)

−hµn−2

(
3gn − 4hµn

)
,

Q = 4gn−1

(
hµn − gn

2
)
,

R =
4
r

(
3gn − 4hµn

)
.

When it is not possible to assume thatf(x0, t) = 0
the lower boundary condition can be derived using

2In this application, the upper limit of the finite interval,xn, is
chosen as the maximum of the sample plus the range of the sample.

a similar procedure. The result is an identical
expression to equation (14) but with the subscriptsn,
n−1 andn−2 replaced by0, 1 and2 respectively, and
the negative sign between the two terms inP changed
to a positive sign.

Assuming thatf(x0, t) = 0, the final specification of
the numerical problem starts with equation

(
1 +

r

2
g1

)
f

(q+1)
1 − r

4

(
g2 − hµ2

)
f

(q+1)
2

=
(
1− r

2
g1

)
f

(q)
1 +

r

4

(
g2 − hµ2

)
f

(q)
2

(15)

which is the particularisation of the general equation
(11) at x1 taking account of the requirement
f(x0, t) = 0, followed by (n − 3) equations with
general form (11) in which the indexp takes values
from p = 2 to p = n − 2, followed finally by
(14). Together these equations form a tri-diagonal
system to be solved for the transitional PDF at time
(ts +qk+k) given the PDF at(ts +qk). Note that the
tri-diagonal system described by equations (11), (14)
and (15) is solved for the transitional density at nodes
x1, · · · , xn−1. Here the transitional density atx0 is
known a priori to be zero, and the final transitional
density atxn may be obtained by means of relation
(13).

3.2 Transitional CDF Specification

The finite difference representation of equation (8)
is constructed by noting that the equation can be re-
expressed in the form

∂F

∂t
=

1
4

[∂2(gF )
∂x2

+g
∂2F

∂x2
−F

∂2g

∂x2

]
−µ

∂F

∂x
. (16)

The motivation for this manipulation stems from the
fact that central-difference expressions for second
differences are readily available. The procedure used
to derive equation (11) from equation (2) via equation
(10) in repeated for equation (16). The calculation is
routine and so the details are suppressed. IfF

(q)
p =

F (xp, ts + qk) denotes the value of the CDF at
(xp, ts + qk), then the finite-difference approximation
of equation (16) is

−
[
gp−1 + gp + 2hµp

]
F

(q+1)
p−1

+
[8
r

+ (gp−1 + 2gp + gp+1)
]
F (q+1)

p

−
[
gp + gp+1 − 2hµp

]
F

(q+1)
p+1

=
[
gp−1 + gp + 2hµp

]
F

(q)
p−1

+
[8
r
− (gp−1 + 2gp + gp+1)

]
F (q)

p

+
[
gp + gp+1 − 2hµp

]
F

(q)
p+1 .

(17)
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However the boundary conditions assert thatF
(q)
0 ≡ 0

and F
(q)
n ≡ 1, and therefore equations (17) can be

expressed in matrix form

TL F(q+1) = TR F(q) + B(q)

where TL and TR are tri-diagonal matrices of
dimension(N − 1)× (N − 1), B is a constant vector
of dimension(N − 1) which differs from the zero
vector only in its last entry andF(q) is the (N −
1) dimensional vector containing the values of the
transitional CDF at the (internal) nodesx1, · · · , xn−1

at time(ts + qk).

In the practical implementation of this procedure,
there is a natural initial condition given in equation
(9), for which there is no equivalent statement in
the transitional PDF formulation of the problem. Of
course, the Jensen and Poulsen (2002) approximation
can also be used in the transitional CDF approach by
initialisingF1, · · · , Fn−1 using the CDF of the normal
distribution. The value of the transitional density
function at (Xs+1, ts+1) is estimated by numerical
differentiation of the transitional CDF at the nodes
to the left and right ofXs+1 followed by linear
interpolation of these values to find the required
transitional density.

4 LOG-LIKELIHOOD COMPUTATION

The efficacy of the new procedure depends on the
accuracy with which the log-likelihood of the data
is computed. This section outlines a simulation
experiment to compare the accuracy of log-likelihood
computation based on the (traditional) PDF approach
with that obtained by using the same finite-difference
configuration to construct the transitional CDF. The
experiment involves the simulation of a CIR process
and the comparison of the log-likelihood of the
resultant sample computed in a variety of ways with
values obtained from the closed-form expression for
the CIR transitional density. In order to ensure a
fair comparison between the PDF- and CDF-based
approaches, the initial condition for the cumulative
approach will be specified with and without the aid
of the CDF of the normal distribution.

The details of the simulation exercise are now
described. For each estimation procedure 2000
repetitions of the calculation of the log-likelihood
for samples containingT = 500 observations were
run. The samples were generated by integrating the
stochastic differential equation

dX = α(β −X)dt + σ
√

X dW

with α = 0.2, β = 0.08 andσ = 0.1, using Milstein’s
scheme with 1000 time steps of size0.001 between

observations. The maximum relative error, mean
absolute relative error and the mean squared relative
error were calculated from the 2000 repetitions and
are presented in Table 1.

The most significant finding is that the CDF approach
using the theoretical step function initial condition
in equation (9) can be implemented successfully in
practice. By contrast, there is no equivalent result
for the PDF-based procedure, because it is always
necessary to approximate the initial condition. This
approximate initial condition is is not as innocuous
as it would appear, since a fine mesh of nodes in the
vicinity of the initial condition is required to resolve
the approximation. As this spatial resolution has to
be maintained over the entire sample space there are
obvious implications for the computational cost.

The main empirical result to emerge from this
simulation exercise is that the CDF approach, using
the cumulative normal initial condition, is always
superior to the PDF approach for all combinations of
h andk. The CDF approach based on the theoretical
initial condition performs with credit and is more
accurate than the probability density approach for
a coarse discretisation3 of state space (e.g. h =
0.005). This is most likely due to the poor resolution
of the initial transitional density when using a
coarse discretisation of state space, since under such
circumstances the function is distinguishable from
zero at a small number of nodes, or perhaps none
at all for a particularly coarse discretisation. By
contrast, the impact of a coarse discretisation of state
space on the cumulative approach is to make the
discontinuity in the initial step function less steep. As
the discretisation of state space is refined, the PDF
approach is more accurate than the CDF approach
starting with the theoretical initial condition.

A final result worthy of passing comment occurs when
the CDF approach starting with the theoretical initial
condition is used with a fine discretisation of state
space and crude discretisation of temporal space, for
example, Table 1 withh = 0.001 and k = 0.02.
Under these circumstances, the method performs
relatively poorly, suggesting that it is important to
ensure that sufficient time steps are allowed in the
integration phase of the calculation to allow diffusion
to smooth the discontinuous initial condition.

As an additional check on the efficacy of the CDF
method a second simulation exercise was undertaken.
In this experiment, the data generated for the

3This may be important when a coarse discretisation of
state space is necessary due to computational considerations,
for example, if the problem requires working in two or more
dimensions.
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Measures of relative error
h Maximum Absolute Mean Absolute Mean Squared

Probability Density Approach
0.005 9.266× 10−3 1.949× 10−3 5.822× 10−6

k = 0.02 0.002 5.177× 10−3 1.441× 10−4 7.603× 10−8

0.001 1.736× 10−3 2.364× 10−5 5.189× 10−9

0.005 1.672× 10−2 5.159× 10−3 3.457× 10−5

k = 0.01 0.002 5.579× 10−3 3.423× 10−4 2.352× 10−7

0.001 2.331× 10−3 3.700× 10−5 8.492× 10−9

Cumulative Distribution Approach
0.005 4.370× 10−3 1.078× 10−3 1.744× 10−6

k = 0.02 0.002 1.612× 10−3 3.376× 10−4 1.809× 10−7

0.001 6.613× 10−2 1.157× 10−3 2.940× 10−5

0.005 4.369× 10−3 1.078× 10−3 1.744× 10−6

k = 0.01 0.002 1.613× 10−3 3.376× 10−4 1.810× 10−7

0.001 9.806× 10−4 1.663× 10−4 4.325× 10−8

Cumulative Distribution Approach with
equally informative initial condition

0.005 2.744× 10−3 4.071× 10−4 2.565× 10−7

k = 0.02 0.002 1.722× 10−3 7.362× 10−5 1.468× 10−8

0.001 9.682× 10−4 2.014× 10−5 1.624× 10−9

0.005 2.809× 10−3 4.154× 10−4 2.652× 10−7

k = 0.01 0.002 1.701× 10−3 7.277× 10−5 1.441× 10−8

0.001 9.797× 10−4 1.950× 10−5 1.614× 10−9

Table 1.Measures of relative error in the calculation of log-likelihood for the CIR process
using the various finite difference procedures and based on 2000 simulations.

Estimation procedure Mean Parameter Estimates
α β σ

Probability density function 0.2095 0.0802 0.1001

Cumulative distribution function 0.2099 0.0802 0.1000
Cumulative distribution function with
equally informative initial condition 0.2096 0.0802 0.0999

Table 2.Mean parameter estimates from 2000 simulations of the processdX = α(β−X)dt+

σ
√

X dW with parametersα = 0.2, β = 0.08 and σ = 0.10 using the method of finite
differences with spatial resolutionh = 0.002 and temporal resolutionk = 0.02.

first simulation exercise was used to estimate the
parameters of the underlying CIR model by both the
PDF and CDF methods. The mean of the parameter
estimates over the 2000 samples are presented in Table
2. Given the small errors recorded in Table 1 in
estimating the likelihoods, it is not surprising that all
of the approaches considered in the paper deliver what
are effectively identical parameter estimates.

5 CONCLUSION

This paper has introduced a robust modification of the
traditional usage of the Fokker-Planck equation in the
maximum-likelihood estimation of the parameters of
stochastic differential equations. Instead of solving
the Fokker-Planck equation for the transitional PDF,
the approach propose here reformulates the problem
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in terms of the transitional CDF. The technique is
illustrated with reference to the method of finite
differences, but it is an analytical procedure and
its usefulness, therefore, extends to other numerical
algorithms which seek to solve the Fokker-Planck
equation. The method is easier to implement than
one based on the direct solution of the Fokker-Planck
equation, first because initial conditions are more
amenable to numerical work, and second, because
the gradient-like boundary conditions associated
with the Fokker-Planck equation are replaced by
Dirichlet conditions in the modification. A parameter
estimation exercise for the CIR process indicates that
the method is both more accurate and more robust than
the traditional method.
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