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EXTENDED ABSTRACT 
 

A standard problem in the analysis of outputs from 
terminating simulations is the need to determine 
the number of replications needed to construct 
confidence intervals for performance indicators 
from the simulation (Law and Kelton, 2000).  In 
traditional industrial applications of simulation 
such as manufacturing and queuing simulations a 
single mean for each performance indicator is all 
that is needed. In spatial simulations however, the 
problem is more complex as performance 
indicators can vary spatially as in the case of travel 
simulations where performance indicators for each 
destination must be analysed.  This paper presents 
three alternative methods recommended in the 
simulation literature for determining the number of 
replications required to obtain confidence intervals 
based for a given alpha level and user defined 
confidence interval half width or relative 
preceision.  The problem of measuring multiple 
performance indicators is addressed with a short 
discussion of the Bonferroni   Correction.  These 
methods are then adapted to spatial simulations 
using a travel simulation for Banff, Yoho, 
Kootenay and Jasper National Parks as an 
example.  Outputs for daily link Use and daily link 
encounters are examined applying different values 
for absolute accuracy and relative precision. 
Conclusions are then drawn on the relationship 
between the sensitivity of performance indicators 
to random variables in the simulation model and 
the specification of absolute accuracy and relative 
precision for spatial dynamic simulation models.  
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1. INTRODUCTION 

Spatial simulation models use random numbers to 
generate input variables such as arrival times, 
durations at destinations, and trip selection.  
Because of this, it is not recommended to draw any 
conclusions from the output of a single replication 
of a simulation model since it represents only one 
realization of a stochastic process.  This is a 
common characteristic of all simulation models, 
however spatial simulations have added 
complexity because output measures such as 
number of visits or average duration at nodes are 
measured across many different links and nodes.  
To solve the problem of variability in simulation 
outputs from random inputs, the method of 
independent replications (Goldman 1992) is used.  
In this method one observation per replication is 
generated (usually the mean value of the 
performance indicator).   In the case of spatial 
simulations you would have one observation per 
link or node of interest.  The simulation is 
replicated a number of times to generate 
confidence intervals that meet a certain reliability 
(usually 0.90 or 0.95) and a given accuracy 
(measured in the same units as the performance 
indicator).  The problem is how to determine how 
many replications are required to meet the user 
specified reliability and accuracy. 

2. STATISTICAL METHODS FOR 
DETERMINING THE NUMBER OF 
REPLICATIONS FOR TERMINATING 
SIMULATIONS 

The method of independent replications requires 
the model is run for a “small” number of 
replications.  In the case of probabilistic 
simulations, “small” may mean 10 to 15 
replications. 

The next step is to calculate the (1-α) confidence 
interval using equation 1. (See Centeno and Reyes, 
1998 and Law and Kelton, 2000 pp 253-259) 

Equation 1.  
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WHERE X  is the mean of the performance 
indicator for the current replication 

1 / 2t α−  is the is the (1-α) percentile of the t-student 
distribution with n-1 degrees of freedom 

2 ( )S n  is the sample variance 

In equation 1 the expression: 
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referred to as the confidence interval half width.  If 
this value is less than the user specified accuracy 
after the initial n replications for the “short run” 
then there is no need for further replications.  
However if this value is larger then the user 
specified accuracy, then n can be estimated using 
Equation 2. 

Equation 2.     
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WHERE 
*n  is the estimated number of 

replications needed 

h is the half width from the sample run 

h* is the desired half width or absolute accuracy 
specified by the user. 

Law and Kelton (2000, p512) suggest a 
modification of the above estimate in a method 
they call the iterative method.  In this case the 
number of replications is increased by 1 each time 
and the confidence interval is recomputed after 
each iteration until the desired accuracy is 
achieved.  This method assumes that the 
population variance will not change (appreciably) 
as the number of replications increase. 

Equation 3.  

( ) ( )2
*

1,1 / 2min :a i

S n
n i n t

iαβ β− −

⎧ ⎫⎪ ⎪= ≥ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 
WHERE ( )*

an β
is the estimated number of 

replications needed with absolute accuracy 
β  

n is the number of replications from the “short 
run” 

1,1 / 2it α− − is the is the (1-α) percentile of the t-
student distribution with i-1 degrees of 
freedom 

2 ( )S n  is the sample variance from n replications 

i is the iteration (greater than n) 

A third method described by Law and Kelton 
(2000, p. 513) uses a measure called “relative 
accuracy”.  Relative accuracy is the Confidence 
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Interval Half Width from Equation 1 divided by 
X .  is an estimate of the actual relative error.  In 

this method the user specifies a desired relative 
error 'λ . 

Equation 4.  
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WHERE ( )*

rn λ is the estimated number of 
replications needed with relative accuracy 
λ  

N is the number of replications from the “short 
run” 

'λ  is the user-specified relative accuracy 

1 / 2t α−  is the is the (1-α) percentile of the t-student 
distribution with n-1 degrees of freedom 

2 ( )S n  is the sample variance from n replications 

i is the iteration (greater than n) 

3. MULTIPLE PERFORMANCE 
INDICATORS AND THE BONFERRONI 
CORRECTION 

In a typical spatial simulation, there is normally 
more than one performance indicator being 
measured.  If simulations are viewed as 
experiments where we are testing hypotheses about 
the system under study, then the alpha levels of the 
statistical tests applied in the previous section must 
be adjusted using the Bonferroni Correction 
(MathWorld, 2005).  The Bonferroni Correction is 
used when several tests are being performed 
simultaneously.  Where a given alpha level for a 
single performance indictor may be appropriate, it 
is not for the set of all comparisons.  The simplest 
form of the Bonferroni Correction is to take the 
desired alpha level and divide by the number of 
performance indicators being tested.  Thus, if the 
desired alpha level is 0.10 and there are five 
performance indicators, the adjusted alpha level 
would be 0.10/5 or 0.02 for each test. 

Law and Kelton (2000) suggest another approach 
in which the sum of the alpha levels for each test 
equals the desired alpha level, suggesting that each 
performance indicator can have a unique alpha 
level in the statistical test.  They also suggest that 
more than 10 performance indicators is impractical 
and that, given the stochastic nature of simulation 
it may be impractical to meet statistical 
requirements for all performance indicators 
simultaneously and that one must just have to 

accept that some indicators may not be used 
reliably in drawing conclusions from the 
simulation. 

4. DETERMINING THE NUMBER OF 
REPLICATIONS FOR SPATIAL 
SIMULATIONS 

In traditional industrial applications of simulation 
such as manufacturing and queuing simulations a 
single mean for each performance indicator is all 
that is needed.  In spatial simulations however, the 
problem is more complex as performance 
indicators can vary spatially as in the case of travel 
simulations where performance indicators for each 
destination must be analysed simultaneously.  
Essentially, the approach required is to apply the 
same statistical methods described in section 2 to 
each and every location in the spatial simulation 
where performance indicators are to be measured.   
For instance, in travel simulations we may be 
interested in: 

•  the total visits per destination,  

• average visit duration per destination, and  

• average queuing times at parking 
facilities.   

In this case, we have three performance indicators.  
Suppose our network has 10 destinations we wish 
to evaluate.  We must first determine the alpha 
level we wish to test for.  If the overall alpha is 
0.10 then, according to the Bonferroni Correction 
we must use an alpha level of 0.10/3 or 0.03.  

Next we decide which method will be used to 
determine the number of replications either by 
specifying the confidence interval half width for 
equations 2 and 3 or by specifying the relative 
accuracy for equation 4.   

The simulation is then replicated for a “short run” 
of say, 10 replications and the outputs from each of 
the 10 destinations for the 3 performance 
indicators are gathered.  Using this output we then 
apply the corresponding method (equations 2, 3 or 
4) for each of the 10 destinations for the 3 
performance indicators using an alpha level of 
0.03.   

5. EXAMPLE: PATTERN OF USE 
SIMULATION FOR CANADAS 4 
MOUNTAIN PARKS 

A probabilistic spatial simulation of tourist flows 
in Banff, Jasper, Kootenay and Yoho National 
Parks in the Canadian Rocky Mountains was 
developed using RBSim software.  Data from 
independent travelers was collected in 2003 in a 
survey conducted by Parks Canada over the entire 
year.  The 2003 Mountain Parks Study provided 
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the trip itinerary data for a trace simulation. Out of 
the 13,373 first time arrivals to the Mountain 
parks, 9348 respondents agreed to complete the 
questionnaire. Out of the 9348 respondents, 2383 
questionnaires were returned, resulting in a 25.5 
percent return rate. Out of those 2383 
questionnaires, 1982 respondents actually 
completed the trip diary component (necessary to 
develop the trip itineraries for the trace 
simulation), resulting in a 21.2 percent return rate. 

The survey trips represent a “single realization” of 
the full variation of travel patterns in the four 
parks.  To use a pattern of use simulation for 
management, a probabilistic model of travel 
patterns must be developed from analysis of 
survey trips.  Trip itineraries vary within the 
constraints of seasonal patterns, which will 
constrain certain activities and access to 
destinations because of weather.  Trips must be 
grouped or clustered in order to classify trip 
itineraries according to seasonal variations in 
pattern of use.  In order to do this, a number of 
different cluster analysis techniques were applied 
to the 1620 survey trips using a number of 
different clusters and against different definitions 
of a “season”.  The strongest clustering results 
came from a technique called “kmeans”.  In this 
technique, the analyst must nominate the number 
of clusters.  3 and 4 clusters were tested with 3 
clusters differentiating the winter season trips most 
distinctly.  The other trips were clustered on the 
basis of the type of activity: either active (hiking, 
biking etc) or inactive. 

Based on analysis of the survey trips looking at 
sample size during each week of the year and the 
results of the cluster analysis, two periods of the 
year were selected to develop a probabilistic 
simulation from survey trip itineraries and traffic 
counts.  The winter period selected is the month of 
January 2003.  The summer period selected is 4 
weeks beginning June 23, 2003 and ending July 
24, 2003. We report on the January results in this 
paper.   

The next step in the development of the 
probabilistic simulation is to randomly assign, for 
each day of the simulation, the correct number of 
trip arrivals to each day of the simulation and then 
scheduling the exact minute of arrival based on the 
hourly arrival distribution.  A trip itinerary must be 
randomly selected from a pool of trips specified 
from the cluster analysis for the entry gate and 
time of year.  This is done for each gate by 
proceeding from the first day of the simulation to 
the last day of the simulation according to the 
following procedure:   

For each day,  

1. The week of arrival is determined (1 through 
53) 

2. The week day is determined (Monday through 
Sunday).   

3. The total number of arrivals for the week for 
the current gate is determined from the 
weighted traffic count data for the week.   

4. The weekly arrival distribution for the current 
week is selected 

5. The total number of arrivals for the week is 
multiplied by each day in the weekly arrival 
distribution.  This determines the number of 
arrivals for each day of the week.  

6. The hourly distribution is then selected  

7. The exact time of arrival for the current trip is 
selected from the hourly arrival distribution by 
generating a random number and calculating 
the exact minute of arrival by piecewise linear 
interpolation from the hourly arrival 
distribution. 

8. Finally, the trip clusters that occur in this 
week are looked up and then all trips that fall 
in these clusters for the current entry gate are 
selected to create the pool of trips.  Each trip 
in the pool has an equal chance of being 
selected.  A random number is generated and a 
single trip is selected from the pool 

9. The trip selection is now complete and the 
process is repeated for the next trip until all 
trips for the current day are selected.  If all 
trips are scheduled, the process progresses to 
the next day of the simulation and the process 
is repeated until the last day of the simulation. 

The first two weeks of the simulation outputs must 
be discarded because the simulation starts with no 
visitors so any outputs during an initial “warm up” 
period are not representative of system behavior.  
To correct this problem, the simulation is allowed 
to run until the system comes to full capacity.  In 
this case the period that was selected was two 
weeks since the longest visits are 11 days.  The 
warm up period gives the simulation time to 
populate the system to capacity before collecting 
statistics from the simulation.  For the winter 
simulation 1 week of simulation was obtained for 
analysis. 

Two performance indicator were measured for 
links: Link Use and Link Encounters.  Link use is 
a frequency count for the number of parties 
visiting each link for each day of the simulation.  
Link Encounters is the number of direct contacts 
between parties along a link.   
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There were 658 links visited and 493 links with 
encounters recorded in the simulation.  Since daily 
link use and link encounters were generated, there 
were 3799 link use days and 2083 link encounter 
days recorded with confidence intervals calculated 
for each. 

For purposes of understanding the implications of 
the three methods for estimating the number of 
replications needed to obtain user specified 
measures of confidence and reliability from the 
simulation, the results of two links are shown in 
the tables below.  Confidence  intervals for the 7 
replications for daily link use and daily link 
encounters were calculated using different alpha 
values and different user-specified confidence 
half-width values to investigate the impact these 
values have on the three methods for estimating 
the number of replications. 

 Date Link Use Link 
Encounters

Link Jan 03 Mean StDev Mean StDev
116 15 380.71 20.18 2.86 3.23 
116 16 387.00 15.00 3.86 5.64 
116 17 401.57 25.55 3.71 2.86 
116 18 432.86 21.79 3.71 5.31 
116 19 448.71 20.88 6.29 6.82 
126 15 559.14 18.41 32.86 16.23
126 16 580.14 19.73 48.71 31.44
126 17 595.43 28.58 32.29 35.96
126 18 679.00 16.41 86.71 74.31
126 19 670.71 17.73 25.14 28.74

Table 1. Means and Standard Deviations for 
Link Use and Link Encounters 
Table 1 shows the means and standard deviations 
for link use and link encounters for two links.  
Link 116 and Link 26.  Link 116 is typified by low 
number of encounters as compared to Link 126.  
Note that standard deviations for link encounters 
are relatively high compared to link use.  This is 
because link encounters are much more sensitive 
to random variations than link use since small 
changes in arrival times and volumes can change 
the number of encounters on a link. 

Table 2 shows the confidence interval half width 
(CI Half) and relative precision (Rel prec) from 
confidence intervals calculated with an alpha of 
0.10 (90% confidence).  Law and Kelton (2000) 
suggest that an alpha of 0.10 is a reasonable level 
of confidence given that random number are used 
to generate the performance indicators.  Note the 
large values for relative precision for link 
encounters as compared to link use.  Remember 
that the relative precision is the ratio of the 

confidence interval half width with the mean.  This 
shows the value of this measure to indicate the 
amount of variation between simulation runs. 

 Date Link Use Link 
Encounters 

Link Jan-
03 

CI Half Rel 
Prec 

CI Half Rel 
Prec

116 15 14.82 0.04 2.37 0.83 
116 16 11.02 0.03 4.14 1.07 
116 17 18.76 0.05 2.10 0.57 
116 18 16.00 0.04 3.90 1.05 
116 19 15.33 0.03 5.01 0.80 
126 15 13.52 0.02 11.92 0.36 
126 16 14.49 0.02 23.09 0.47 
126 17 20.99 0.04 26.41 0.82 
126 18 12.05 0.02 54.57 0.63 
126 19 13.02 0.02 21.10 0.84 

Table 2. Confidence Half Intervals and 
Relative Precision for Link  Use and Link 
Encounters, Alpha = 0.10 
 

 Date Link Use Link Encounters
Link Jan 

03 
Eq. 
2 

Eq. 
3 

Eq. 
4 

Eq.  
2 

Eq. 
 3 

Eq. 
4 

116 15 1583 1113 7 39 31 156
116 16 850 616 7 120 88 260
116 17 2465 1784 7 31 25 74
116 18 1792 1297 7 106 79 249
116 19 1646 1192 7 176 128 144
126 15 1280 927 7 994 720 32
126 16 1470 1064 7 3731 2701 152
126 17 3084 2232 7 4883 3534 152
126 18 1016 736 7 20848 15089 91
126 19 1187 860 7 3118 2257 159

Table 3. Estimated replications using 
Equations 2, 3 and 4 for Link Use and Link 
Encounters, Alpha  = 0.10, User CI Half Width = 
1, User Relative Precision = 0.15 
 

Table 3 shows the estimated number of 
replications for link use using the three different 
methods described in this paper.  For equations 2 
and 3 an absolute accuracy (the user specified 
confidence interval half width) of 1 is used.  For 
Equation 4 a user specified relative accuracy of 
0.15 is used.  For link use equation 4 shows that 
there is no need for further replications whereas 
equations 2 and 3 show that many more 
replications are needed to reduce the confidence 
interval to a half width of 1.  This is instructive, 
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because it may indicate that the criteria for 
absolute accuracy may be unrealistic given the 
high standard deviations for link use.  Note that 
equation 3 (the iterative method) shows a 
consistently lower estimate for the number of 
replications required to generate confidence 
intervals with a half width of 1. 

In Table 3 the number of replications required for 
link encounters is greater for Equation 4 than 
equations 2 and 3.  This is because there are 
relatively few encounters per link (see Table 1) for 
link 116.  However for relative accuracy, we see 
that we would require anywhere from 74 to 260 
replications in order to reach a relative precision of 
0.15 for link 116.  This reflects the high standard 
deviations as compared to the means for link 
encounters for link 116 and the resulting high 
relative precision.  For link 126 there were many 
more encounters per day than link 116.  The result 
is that we have a larger confidence interval half 
width, which requires many more replications to 
achieve our user specified absolute accuracy of 1.  
This shows how important it is to carefully select 
appropriate standards of accuracy for each 
performance indicator. 

To examine the impact of the Bonferroni 
Correction, we now assume that in order to 
achieve an overall alpha of 0.10 for the simulation, 
we need to estimate replications using an alpha 
level of 0.05 for each of our two performance 
indicators. 

 Date Link Use Link 
Encounters 

Link Jan-03 CI Half Rel 
Prec 

CI Half Rel 
Prec 

116 15 18.67 0.05 2.98 1.04 
116 16 13.88 0.04 5.22 1.35 
116 17 23.63 0.06 2.65 0.71 
116 18 20.15 0.05 4.91 1.32 
116 19 19.31 0.04 6.31 1.00 
126 15 17.03 0.03 15.01 0.46 
126 16 18.25 0.03 29.07 0.60 
126 17 26.43 0.04 33.26 1.03 
126 18 15.17 0.02 68.73 0.79 
126 19 16.40 0.02 26.58 1.06 

Table 4. Confidence Half Intervals and 
Relative Precision for Link  Use and Link 
Encounters, Alpha = 0.05 
 

Table 4 shows, as we would expect, that the 
confidence interval half widths and relative 
precisions have increased because of the lower 
alpha value.   

 Date Link Use Link 
Encounters 

Link Jan-
03 

Eq. 
2 

Eq. 
3 

Eq. 
4 

Eq. 
2 

Eq. 
3 

Eq. 
4 

116 15 24 19 7 7 7 221
116 16 13 12 7 7 7 370
116 17 39 28 7 7 7 104
116 18 28 21 7 7 7 354
116 19 26 20 7 7 7 204
126 15 20 16 7 16 13 44 
126 16 23 18 7 59 41 74 
126 17 49 34 7 77 53 215
126 18 16 13 7 331 200 128
126 19 19 15 7 49 35 226

Table 5. Estimated replications using 
Equations 2, 3 and 4 for Link Use and Link 
Encounters, Alpha  = 0.05, User CI Half Width = 
10, User Relative Precision = 0.15 
 

In Table 5 we see a significant drop in the number 
of replications required from equations 2 and 3 for 
link use because we have now increased the user 
specified half width from 1 to 10.  Equation 4 for 
link use shows no need for more replications 
because of the low relative precision values 
obtained as the result of the high use levels and 
small confidence interval half widths.  For link 
encounters no further replications are required 
from equations 2 and 3 because of the low number 
of encounters and the high user specified 
confidence interval half width of 10.  Equation 4 
for node 116 still shows a large number of 
replications due to the high standard deviations as 
compared to the small confidence interval half 
widths (see Table 4). For Node 126 we see a large 
reduction in the number of replications as 
compared to table 3 primarily because of the 
increase in the user specified confidence interval 
half width of 10.   

Now we look at the estimated replications for the 
entire network. Tables 6 and 7 show the summary 
of results for all links for link use and link 
encounters for an alpha of 0.05, and a confidence 
interval half width of 10.  Note in table 6 it is 
possible to achieve the user desired accuracy for 
90% of the links with less than 60 replications for 
link use whereas in table 7 it takes over 180 
replications to achieve the same coverage for link 
encounters.  
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Link Use Absolute Accuracy = 10 
Reps Count %Links Accum% 

  1: 20 2926 77.02% 77.02%
 21: 40 428 11.27% 88.29%
 41: 60 111 2.92% 91.21%
 61: 80 12 0.32% 91.52%
 81:100 16 0.42% 91.95%
101:120 6 0.16% 92.10%
121:140 17 0.45% 92.55%
141:160 16 0.42% 92.97%
181:200 267 7.03% 100.00%
Total 3799 100.00% 
Number of replications for link use using equation 
3 for alpha = 0.05, CI Half Width = 10 for entire 
network 

Link Encounters Absolute Accuracy = 10 
Reps Count %Links Accum% 

  1: 20 1120 53.77% 53.77%
 21: 40 169 8.11% 61.88%
 41: 60 95 4.56% 66.44%
 61: 80 66 3.17% 69.61%
 81:100 61 2.93% 72.54%
101:120 45 2.16% 74.70%
121:140 36 1.73% 76.43%
141:160 33 1.58% 78.01%
161:180 26 1.25% 79.26%
181:200 432 20.74% 100.00%
Total 2083 100.00% 

Table 6. Number of replications for link 
encounters using equation 3 for alpha = 0.05, CI 
Half Width = 10 for entire network 
 

Tables 7 and 8 show the results of equation 4 with 
a relative accuracy of 0.15.  A similar pattern is 
seen here with less than 40 replications needed for 
link use to achieve the relative precision for 0.15 
for link use and over 500 replications required for 
link encounters.  Since both link use and link 
encounters are generated in the same simulation 
the obvious method for selecting the required 
simulations is simply to take the maximum value 
from all estimates, which is this case is over 500 
replications. However this ignores the costs of 
processing time.  In this simulation, each 
replication takes around an hour to run.  If we run 
the simulation for 500 replications this means 500 
hours of computer time and with limitations on file 
sizes for output databases, it is likely the 
simulation will fail from reaching file size limits. 

 

Link Use - Relative Precision = 0.15 
Reps Count % Accum% 

  1: 40 3493 91.95% 91.95%
 41: 80 87 2.29% 94.24%
 81:120 44 1.16% 95.39%
121:160 23 0.61% 96.00%
201:240 14 0.37% 96.37%
281:320 10 0.26% 96.63%
401:440 30 0.79% 97.42%
481:500 23 0.61% 98.03%
501:    75 1.97% 100.00%
Total 3799 100.00% 

Table 7. Number of replications for link use 
using equation 4 for alpha = 0.05 relative 
accuracy = 0.15  for entire network 
 

Link Encounters - Relative Precision = 0.15
Reps Count % Accum%

  1: 40 57 2.74% 2.74%
 41: 80 92 4.42% 7.15%
 81:120 127 6.10% 13.25%
121:160 139 6.67% 19.92%
161:200 117 5.62% 25.54%
201:240 124 5.95% 31.49%
241:280 117 5.62% 37.11%
281:320 97 4.66% 41.77%
321:360 54 2.59% 44.36%
361:400 28 1.34% 45.70%
401:440 147 7.06% 52.76%
441:480 131 6.29% 59.05%
481:500 48 2.30% 61.35%
501:    805 38.65% 100.00%
Total 2083 100.00% 

Table 8. Number of replications for link 
encounters using equation 4 for alpha = 0.05 
relative accuracy = 0.15  for entire network 
 

6. CONCLUSIONS 

These results show a number of important 
characteristics of performance indicators and the 
impact on the number of replications required to 
meet user-specified reliability measures.  First the 
more sensitive a performance measure is to 
random variation, the higher the variances and the 
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wider the confidence interval and therefore the 
greater number of replications required.  Second, if 
using equations 2 and 3 for estimating the number 
of replications, it is important to carefully select 
the  absolute accuracy (desired CI half width) for 
each performance indicator – it may be helpful to 
use the output analysis for the “short run” to help 
determine reasonable values for each performance 
indicator.  Third, absolute accuracy and relative 
precision are two very different measures yielding 
very different results in terms of calculating the 
number of replications.  It may be useful to 
evaluate both measures when estimating the 
number of replications for terminating simulations 
using the methods described in this paper. 

When estimating the number of replications to 
obtain reliable results for management there is a 
tradeoff between the different performance 
measures described here and the processing time 
and limitations of output file sizes.  The reliability 
of results will therefore vary with each 
performance indicator and with each location.  If a 
trade-offs need to be made between accuracy and 
computing resources it is advisable to map out the 
reliability of the results for each performance 
indicator.  The analyst and manager may simply 
have to live with a degree of uncertainty or accept 
that confidence interval widths will vary across 
space.  At least, the methods presented in this 
paper give the analyst the tools needed to 
accurately measure this variation spatially. 
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