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EXTENDED ABSTRACT

Since the seminal work of Becker (1968), a
large empirical literature has developed around the
estimation and testing of economic models of crime.
Recently, spatial interactions of crime incidents have
become one of the research areas in economics in
connection with the progress of spatial econometrics.
But these models of crime based on aggregated
data relied heavily on cross-sectional econometric
techniques, and therefore previous attempts do not
control for unobserved heterogeneity.

Cornwell and Trumbull (1994) show that using panel
data gives us a large model class for criminal data.
Although there also exist several works on spatial
panel models, homogeneity of variance across time
is assumed in these models. But with the
progress of Bayesian techniques such a model with
heteroscedastic variances can be estimated. For
example, LeSage (1997) proposes the Bayesian
estimation of spatial autoregressive model with
heteroscedasticity. In this paper, we extend the
approach by LeSage (1997) to spatial Bayesian panel
models, using a spatio-temporal heteroscedasticity
approach, and examine Japanese criminal time series
data. As explanatory variables we use income,
the unemployment rate, the number of registered
foreigners and the police force. We also use the arrest
rate there, since the occurrence of crimes might be
related to the apprehension rate. Additionally, the
relationship to tourism is modelled by a proxy variable
counting hotel nights.

We estimate the model via the Markov chain Monte
Carlo (MCMC) method i.e. we sample sequentially
through the complete set of full conditional distribu-
tions of the parameters. To implement the MCMC
sampling approach we need to derive the complete
conditional distributions for all parameters in the
model. This procedure produces a set of estimates that
converges in the limit to the joint posterior distribution
of the parameters.

We analyze the development of 18 types of criminal
records in Japan for the period 1990 to 2001

1The research for this work was supported by Grants-In-Aid for
Scientific Research (A)(1) 15200022.

across 47 prefectures with spatial lag and spatio-
temporal heteroscedasticity. We explore the spatial
interaction of crime incidents and the hypothesis that
crime data are related to socio-demographic variables
in Japan. We extend the Bayesian approach of
LeSage (1997) for spatio-temporal Bayesian models.
Additionally we analyze unobserved heterogeneity
and heteroskedasticity in the panel model by variance
factors as in Geweke (1993). We can find four
major tendencies: (1) We cannot confirm the spatial
interaction for any type of crime incidents. (2) The
criminal rate becomes high when the Gross Regional
Product (GRP) per capita, the unemployment rate
and the arrest rate are low (across prefectures) and
increases with the number of foreigners (per capita),
the police force (per capita) and the number of hotels
(per capita). (3) The relative variance of metropolitan
areas like Tokyo and Osaka is much larger than
in other prefectures. And finally (4) The relative
variances increase over time.

Finally, some open issues remain: In this paper,
we concentrated on the estimation of spatio-temporal
models with heteroskedasticity by an univariate
approach. But there may exist the possibility that
unobservable factors –not covered by our set of
variables– could influence the estimation results. We
think that the one of reason that the R2 is low
comes from the choice of explanatory variables. In
addition, as future applications, we also want to
consider correlations among crimes, because some
kinds of crimes could happen simultaneously. Thus,
a more elaborate version of these spatio-temporal
panel models could include Seemingly Unrelated
Regression (SUR) models. Nevertheless, for the
Japanese prefectures our modelling results for 18
crime rates represent a promising first step for more
elaborate econometric models to understand the socio-
economic background of crimes.

The paper is organized as follows. In the next
section, we introduce our heteroscedastic panel
model to examine the spatial interaction of crime
incidents and the prior distributions to implement
Bayesian estimation. Section 3 derives the conditional
distributions for our model. Section 4 presents the
empirical results based on 18 types of criminal records
in Japan from 1990 to 2001. Section 5 summarizes the
results with concluding remarks.
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1. INTRODUCTION

Since the seminal work of Becker (1968), a
large empirical literature has developed around the
estimation and testing of economic models of crime.
Recently, spatial interactions of crime incidents have
become one of the research areas in economics in
connection with the progress of spatial econometrics
(see e.g., Anselin (1988)). But these models of
crime based on aggregated data relied heavily on
cross-sectional econometric techniques, and therefore
previous attempts do not control for unobserved
heterogeneity.

Cornwell and Trumbull (1994) show that using panel
data gives us a large model class for criminal data1.
Although there also exist several works on spatial
panel models, e.g., Elhorst (2003), homogeneity of
variance across time is assumed in these models.
But with the progress of Bayesian techniques such
a model with heteroscedastic variances can be
estimated. For example, LeSage (1997) proposes the
Bayesian estimation of spatial autoregressive model
with heteroscedasticity. In this paper, we extend the
approach by LeSage (1997) to spatial Bayesian panel
models, using a spatio-temporal heteroscedasticity
approach, and examine 18 types of criminal time
series in Japan for the period 1990 to 2001 across 47
prefectures. As explanatory variables we use income,
the unemployment rate, the number of registered
foreigners and the police force. We also use the arrest
rate there, since the occurrence of crimes might be
related to the apprehension rate. Additionally, the
relationship to tourism is modelled by a proxy variable
counting hotel nights.

From our empirical results, we can find four major
tendencies: (1) We cannot confirm that the spatial
interaction for any type of crime incidents is different
from previous studies e.g., Anselin (1988) and so
on. (2) The criminal rate becomes high when
the Gross Regional Product (GRP) per capita, the
unemployment rate and the arrest rate are low
(across prefectures) and increases with the number of
foreigners (per capita), the police force (per capita)
and the number of hotels (per capita). (3) The relative
variance of metropolitan areas like Tokyo and Osaka
is much larger than in other prefectures. And finally
(4) The relative variances increase over time.

This paper is organized as follows. In the next
section, we introduce our heteroscedastic panel
model to examine the spatial interaction of crime
incidents and the prior distributions to implement
Bayesian estimation. Section 3 derives the conditional

1The Cornwell and Trumbull’s (1994) approach is a little bit
different from our approach in so far as they also focus on
simultaneity. But it is notable that they address the fact that the
panel data gives us a large modeling variety for criminal models.

distributions for our model. Section 4 presents the
empirical results based on 18 types of criminal records
in Japan from 1990 to 2001. Section 5 summarizes the
results with concluding remarks.

2. MODEL

We have introduced spatial interaction terms in our
model and we consider the fixed effect model with
spatial lags and spatio-temporal heteroscedasticity.

Suppose Y = (Y ′
1 , · · · , Y ′

t , · · · , Y ′
T )′ denote a depen-

dent variable where Yt = (Y1t, · · · , Yit, · · · , YNt)′

and X = (X ′
1, · · · , X ′

t, · · · , X ′
T )′ denote a

set of k independent variables where Xt =
(X ′

1t, · · · , X ′
it, · · · , X ′

Nt)
′. i(= 1, · · · , N) refers

to a spatial unit, t(= 1, · · · , T ) refers to a given
time period and β = (β1, · · · , βk)′ are fixed but
unknown parameters. Then, the fixed effect model
with spatial lag and spatio-temporal heteroscedasticity
is represented as follows;

Yt = ρWYt + Xtβ + μ + εt

εt ∼ N(0, σ2Vt)
Vt = diag(v1t, v2t, · · · , vNt)

where εt = (ε1t, · · · , εNt)′ and μ = (μ1, · · · , μN )′.
Vt is unknown diagonal matrix and μi are the effect of
the omitted variables that are specific to each spatial
unit. W is the known N × N spatial weight matrix,
describing the first-order contiguity relationship (it
can be also a function of distance). It is assumed
that W is a weight matrix of known constants, with
all diagonal elements set to zero, and that it is row
stochastic matrix; that is, the row sum is 1: Wι = ι,
where ι denotes a vector of ones. Then, the likelihood
function of this model is given as

L(Y |σ2,β, ρ, X, W )

=
1

√
2πσ2

N ·T |In − ρW |T |V |−1/2

exp
(
− 1

2σ2
(e′V −1e)

)
,

where e = (e′1, e′2, · · · , e′T )′, et = (In − ρW )(Yt −
Ȳ ) − (Xt − X̄)β, Ȳ = (Ȳ1, · · · , Ȳi, · · · ȲN )′, X̄ =
(X̄ ′

1, · · · , X̄ ′
i, · · · X̄ ′

N )′, V = diag(V1, V2, · · · , VT ),
Ȳi and X̄ ′

i means the average of ith unit through time
1 to T in each variables and In denotes the N × N
identity matrix.

While this model could be estimated using the
maximum likelihood method like e.g. in Elhorst
(2003), if V is known, the following Bayesian
approach allows a numerical analysis of the joint
parameter distribution including the estimation of the
variance factors vit(i = 1, · · · , N, t = 1, · · · , T ) by
simulating the posterior distribution of the model.
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Assume that π(σ2, β, V, ρ) = π(σ2)π(β)π(V )π(ρ);
that is, the prior parameter distributions are indepen-
dent. Following Geweke (1993), independent priors
π(vit) are also assigned for all of the relative variance
parameters vit, i = 1, · · · , N and t = 1, · · · , T . This
leads to the distribution

π(vit|q∗) = (q∗/2)q∗/2[Γ(q∗/2)]−1v
−(q∗+2)/2
it

exp(−q∗/2vit)

which implies that π(v−1
it |q∗) ∼ χ2(q∗)/q. Next, the

hierarchical prior distribution is specified as

π(σ2) ∼ Ga−1(NT, s2
∗)

π(β) ∼ N(β,H) with β = 0, H−1 = In/1000

π(v−1
it |q∗) ∼ χ2(q∗)/q∗

(iid for i = 1, · · · , N, t = 1, · · · , T )
π(ρ) ∼ Unif (−1, 1)

The prior hyper-parameters s2
∗ are specified in

advance, e.g. q∗ = 5 and s2∗ close to zero. Then the
joint posterior distribution of the parameters is given
by

p(σ2,β, Vn, ρ|Y, X, W )

∝ L(Y |σ2, β, ρ, X, W )π(σ2)π(β)π(Vn)π(ρ)

∝ σ−(N ·T+1)|In − ρW |T
T∏

t=1

N∏
i=1

v
−(q∗+3)/2
it exp(−q∗/2vit)

exp
(−σ−2e2

it/2vit

)
, (1)

where eit is the ith element of the residual vector et =
(Yt − ρWYt − Xtβ). This density is used to derive
the full conditional posterior distributions (fcd’s) for
all the parameters in the model.

3. ESTIMATING THE MODEL

We estimate the model via the Markov chain Monte
Carlo (MCMC) method i.e. we sample sequentially
through the complete set of full conditional distribu-
tions of the parameters. To implement the MCMC
sampling approach we need to derive the complete
conditional distributions for all parameters in the
model. This procedure produces a set of estimates that
converges in the limit to the joint posterior distribution
of the parameters (see Gelfand and Smith (1990)).

The full conditional posterior distributions for each
parameter are described in section 3. Details of the
sampling algorithm are given in section 3.5. (see also
Tierny (1994)).

3.1. The Full Conditional Posterior Distribution
for σ2

From the joint distribution (1) it follows that

p(σ|β, V, ρ) ∝ σ−(N ·T+1) exp
(
− 1

2σ2
(e′V −1e)

)
,

i.e. it follows the inverse chi distribution with
scale parameter N ·T

2 and e′V −1e
2 degrees of freedom.

Therefore, σ2 follows the inverse gamma distribution,
Ga−1(N ·T

2 , e′V −1e
2 ).

3.2. The Full Conditional Posterior Distribution
for β

From the joint distribution (1) the kernel of the
distribution of the regression parameter is given by

p(β|σ, V, ρ) ∝ exp
(
− 1

2σ2
(e′V −1e)

)
.

Thus, the parameter vector β conditional on the other
parameters in the model, σ2, V , ρ, is normally
distributed:

p(β|σ, V, ρ) ∼ N(β̂, σ2H), (2)

β̂ = (X ′V −1X)−1X ′V −1(IT ⊗ (In − ρW ))Y,

H = (X ′V −1X)−1,

where IT and ⊗ denote the T × T identity matrix
and the Kronecker product, respectively.Note that
given the parameters σ, V and ρ, the vector (IT ⊗
(In −ρW ))Y and X ′V −1X can be treated as known,
making this conditional distribution easy to compute
and to sample from. This is often the case in MCMC
estimation, which makes the method attractive.

3.3. The Full Conditional Posterior Distribution
for V

From the joint distribution (1) we find that

p(V |σ, β, ρ) ∝
T∏

t=1

N∏
i=1

v
−(q∗+3)/2
it exp(−q∗/2vit)

exp
(−σ−2e2

it/2vit

)
,

Following Geweke (1993), the posterior distribution
of the elements of V , i.e. v11, v21, · · · , vit, · · · , vNT ,
(conditional on σ, β and ρ) is chi-squared distributed

(σ−2e2
it + q∗)/vit ∼χ2(q∗ + 1), (3)

i = 1, · · · , N, t = 1, · · · , T.

The (positive) hyper-parameter q∗ controls the
amount of dispersion in the vit across observations.
Alternative values for this parameter produces
different families of prior densities vit, with small
values of q∗ producing leptokurtic distributions and
large values (q∗ → ∞) imply homoscedasticity.

409



3.4. The Full Conditional Posterior Distribution
for ρ

From the joint distribution (1) the spatial correlation
parameter follows the kernel

p(ρ|σ, β, V ) ∝ |In − ρW |T exp
(
− 1

2σ2
(e′V −1e)

)
.

As is ρ is contained in the determinant, it is difficult
to sample from the conditional posterior distribution.
Therefore, we adopt a Metropolis step with rejection
sampling.

3.5. The MCMC Sampler

The MCMC estimation scheme can be started with
arbitrary initial values for the parameters which are
denoted by σ0, β0, V 0 and ρ0. Then we sample
sequentially from the following set of conditional
distributions for the parameters:

1. p(σ|β0, V 0, ρ0) ∼ Ga− 1
2 (N ·T

2 , e′V −1e
2 ). This

new drawn value for the parameter σ we label
σ1.

2. p(β|σ1, V 0, ρ0), which we sample from multi-
variate normal distribution in (2) with mean β̂
and variance σ2H . We label these new drawn
parameters β1.

3. p(vit|σ1, β1, v−it, ρ
0), which is chi-square

distributed with q + 1 degrees of free-
dom as shown in (3), where v−it =
(v11, v21, · · · , vi−1t, vi+1t, · · · , vNT ).

4. The following Metropolis step is used: Sample
ρ from

ρ = ρ0 + cθ, θ ∼ N(0, 1).

where c is called tuning parameter2. Next, we
evaluate the acceptance probability

α(ρ0, ρ) = min
(

p(ρ)
p(ρ0)

, 1
)

,

and finally set ρ1 = ρ with probability α(ρ0, ρ),
otherwise ρ1 = ρ0. If λmin and λmax denote
the minimum and maximum eigenvalues of W ,
it is well known that λmin < 0 and λmax > 0
and ρ must lie in the interval, ρ ∈ [λ−1

min, λ−1
max]

as is shown in Sun et al.(1999). Therefore,
we adopt the rejection sampling to constrain
ρ to the desired interval using the Metropolis
algorithm (see Smith and LeSage (2004)).

2As is mentioned in Roberts et al. (1997), it is desirable to select
c as the acceptance rate becomes about 25%. We choose c = 0.05
to make the acceptance rate about 25% in this paper.

We now return to step 1 employing the updated
parameter values in place of the initial values σ0,
β0, V 0 and ρ0. On each pass through the iteration
we collect the parameter draws which are used to
construct a posterior distribution for the parameters in
the model.

4. EMPIRICAL RESULTS

4.1. Data Base

First we would like to explain the data set used
in this paper. The criminal records are obtained
from the (annual report on) Crime Statistics prepared
by the National Police Agency of Japan, which
reports 18 types of crimes. In this paper, we
explore the hypothesis that crime data are related
to socio-demographic variables, like e.g. income,
unemployment, foreigners and the size of the police
force. For income, we use the Gross Regional Product
(GRP) from Vital Statistics prepared by the Cabinet
Office of Japan, for the unemployment rate (UNEMP)
the Basic Survey on Wage Structure prepared by the
Ministry of Health, Labour and Welfare of Japan, for
the registered foreigners (FOREIGN) we use Statistics
on Immigration Control prepared by the Ministry of
Justice of Japan and for the number of policemen
(POLICE) the Survey on Wages of Local Government
Employees prepared by the Ministry of Internal
Affairs and Communications of Japan. Crimes might
also depend on the arrest rate (ARREST), which
is calculated as the number of arrests ARREST by
criminal records. Additionally, the relationship to
tourism is explored. Since there are only a few
statistics available on tourism in Japan, we use the
number of hotels (HOTEL) from the Reports of Health
Administration prepared by the Ministry of Health,
Labour and Welfare of Japan as a proxy variable for
tourism. All the data are annual data and obtained
for the period 1990 to 2001 across 47 prefectures.
Following the previous literature we use standardized
(per capita) data: all dependent and independent
variables except the UNEMP and ARREST variables
are divided by the population in each prefecture (from
Vital Statistics of Japan provided by the Ministry of
Health, Labour and Welfare).

As the weight matrix W we use the contiguity
dummy variables (see Anselin, 1988). All except
one (Okinawa) Japanese prefectures are situated on
the four major islands, Hokkaido, Honshu, Shikoku
and Kyushu. But these four islands are connected
by train and roads, despite the fact that islands are
separate geographical entities. But for example, the
most northern island Hokkaido is connected by the
Seikan railway tunnel to Honshu. And Honshu is
connected by the Awaji and Seto Bridge to Shikoku,
and the southern island of Kyushu is also connected
by the Kanmon Tunnel and Bridge to Honshu.
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Therefore, considering such connections we could
build a contiguity weight matrix in which Okinawa is
the only prefecture which is independent of all other
prefectures.

4.2. Estimation

We ran the MCMC algorithm for 5000 iterations
following a burn-in phase of 1000 iterations. The
chain was considered to have practically converged
after 1000 iterations based on a diagnostic proposed
by Geweke (1992). Table 2 shows the regression
estimates for the 18 types of crimes. We have marked
the significance of estimated parameters, by indicating
if zero is included in the 95% (posterior) credible
interval or not. First of all, we notice that the spatial
correlation coefficient is not“ significant”, i.e. zero
is included in all 95% (posterior) credible intervals of
the 18 models. Interestingly, all spatial correlations
but 1 (for assembly crimes) are negative. High (or
low) crime rates in the neighboring prefecture do not
show a spill-over into other prefectures. For example,
Anselin (1998) uses only the simple autoregressive
model, but our model is more complex because we
use panel data with heteroskedastic variance factors.

4.3. The Socio-Economic Profiles of Crimes

We found the following tendencies: In general,
negative job market conditions and poorer macro-
economic conditions do not lead to more crimes in
Japan. High crime rates are also associated with
a large police force, but nothing can be said for
the causality, except that EMBEZZLE, TRUST and
GAMBLING seem to be difficult to be deterred by
a large police force. A higher foreigner rate is
connected with a higher crime rate. In 50% of the
crime types the variable hotel (and therefore tourism)
is connected with a higher crime rate. In both cases
it is difficult to say something for the direction of
the causality. The results for the arrest rate are
very mixed. In 5 types of crimes the arrest rate
helps to drive down the crime rate, but in 6 types of
crimes (one third of the crime types) the association is
positive.

Finally, we have examined the estimated relative
variances to study heteroskedasticity effects. Figure
2 shows the relative variance factors’ dynamics for 4
types of crimes through 1990 to 2001 as examples.
From the figures we can identify the prefectures
where the relative variances are large. These are
the metropolitan areas of Tokyo and Osaka, together
with their neighbors. Note that there exists the
possibility that unobservable factors –not covered by
our set of variables– could influence the estimation
results. We also see from the figures that there
exists something like a variance inflation trend over
time, i.e. that the relative variances become larger

over time except for those prefectures that started
out with large relative variances. Also, it could be
that unobservable factors become larger over time.
These results indicate that we might need to consider
more socio-economic variables for explaining crimes
in Japanese prefectures.
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Figure 1. Heteroscedastic Variance Factor

5. CONCLUDING REMARKS

We analysed 18 types of crimes in a spatial Bayesian
panel model, and found some interesting socio-
economic profiles for crime incidents in Japan. The
results indicate that (1) Significant spatial correlation
is not present in any of the 18 types of crimes;
(2) The crime rate of many crime types correlates
negatively with UNEMP, GRP and ARREST and
positively with FOREIGN, POLICE and HOTEL; (3)
the relative variance of the crime rate in metropolitan
areas like Tokyo and Osaka is much larger than in
other prefectures and (4) the relative variance becomes
larger over time in non-metropolitan areas.

Finally, some open issues remain: In this paper,
we concentrated on the estimation of spatio-temporal
models with heteroskedasticity by an univariate
approach. But there may exist the possibility that
unobservable factors –not covered by our set of
variables– could influence the estimation results. We
think that the one of reason that the R2 is low
comes from the choice of explanatory variables. In
addition, as future applications, we also want to
consider correlations among crimes, because some
kinds of crimes could happen simultaneously. Thus,
a more elaborate version of these spatio-temporal

411



panel models could include Seemingly Unrelated
Regression (SUR) models. Nevertheless, for the
Japanese prefectures our modelling results for 18
crime rates represent a promising first step for more
elaborate econometric models to understand the socio-
economic background of crimes.
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Table 1. Empirical Results

MURDER ROBBERY ARSON RAPE

UNEMP −0.019409 −3.253784* −0.054559 −0.167609*
GRP 0.002446 −0.093299* −0.02254* −0.01914*
POLICE 0.319037* 41.959406* 0.723155* 1.041594*
FREIGN 0.008965 −0.20146* 0.265883* 0.044833*
HOTEL 0.047167* 5.610594* 0.740068* 0.663923*
ARREST −0.001559 −0.035291* −0.000978 −0.004631*
ρ −0.094884 −0.319345 −0.192507 −0.012878
σ2 0.000003 0.003024 0.000068 0.00002
R2 0.001159 0.094146 0.015462 0.003384
Acceptance Rate 0.398667 0.45400 0.452833 0.420167

ASSEMBLY VIOLENCE INJURY THREAT1

UNEMP −0.002103 −5.487127* −6.246853* −0.722797*
GRP 0.000273* −0.125186 −0.484947* −0.013954
POLICE 0.037628* 169.808691* 140.057932* 20.037478*
FREIGN −0.002237* 0.172961 2.063419* 0.007531
HOTEL −0.015742* 0.34648 7.82711* 0.319702
ARREST −0.003447* 0.029328 −0.58045* 0.000171
ρ 0.053158 −0.166463 −0.10684 −0.286933
σ2 0.000000 0.020682 0.025783 0.000325
R2 0.004202 0.14393 0.037301 0.16355
Acceptance Rate 0.368667 0.477667 0.438833 0.478167

THREAT2 THEFT FRAUD EMBEZZLE

UNEMP −5.248931* −241.219631* 4.841015* −0.075494*
GRP −0.275541* −12.191975* 0.775502* −0.013705*
POLICE 137.985763* 6317.108179* 45.668489* −0.743869*
FREIGN 0.576213* 92.473666* 3.854738* 0.10021*
HOTEL 6.072843* 368.082088* −19.497665* 0.459769*
ARREST 0.008086 −7.547919 0.064349 −0.003443
ρ −0.351197 −0.107379 −0.04907 −0.015662
σ2 0.015613 56.043289 0.034241 0.000028
R2 0.04992 0.014146 0.02657 0.006907
Acceptance Rate 0.471333 0.427167 0.461833 0.388333

FORGERY GRAFT TRUST GAMBLING

UNEMP 2.252524* −0.018131* 0.031681* 0.429011*
GRP 1.008859* −0.001439* −0.002285* −0.003837*
POLICE 74.497379* 0.039778 −0.34323* −1.772045*
FREIGN −0.653028 0.0056* 0.019604* 0.325259*
HOTEL −24.205143* −0.002505 0.012847 −0.717944*
ARREST 0.024102 0.000011 −0.000365* −0.001765
ρ −0.076822 −0.022695 −0.201864 −0.066182
σ2 0.018943 0.000001 0.000000 0.000084
R2 0.1449 0.002857 0.11182 0.061021
Acceptance Rate 0.455333 0.391667 0.453333 0.438333

OBSCENITY OTHERS

UNEMP −3.495648* −38.529497*
GRP −0.120715* −3.678495*
POLICE 39.444951* 472.010882*
FREIGN −0.045988* 10.099957*
HOTEL 7.02894* 141.211472*
ARREST −0.044106 −0.454228
ρ −0.162731 −0.16691
σ2 0.003365 0.866288
R2 0.094814 0.014493
Acceptance Rate 0.446833 0.421667

Note: * means that the 95% credible interval does not include zero.

413


