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EXTENDED ABSTRACT 

The initial general security water allocation 
announcements for water users in the 
Murrumbidgee Valley are made during 
July/August. The initial water allocation 
announcement is very conservative as the 
allocations are based on storage levels and 
historic minimum inflows to dams during the 
irrigation seasons. There is a greater than 99% 
chance that the more water allocations would 
be available as the season proceeds. Water 
availability during the cropping season is a 
major factor influencing planting decisions 
made by irrigators and can have a major 
bearing on the financial viability and irrigation 
efficiency of irrigation areas. Increased 
knowledge on the likely end-of season 
allocation can assist in minimising cropping 
risk and can help optimise farm returns and 
achieve better irrigation efficiencies. 

In this paper a water allocation prediction 
framework for the Murrumbidgee Catchment 
is described which learns from results of 
detailed hydrological models and ocean based 
climate forecasts to predict water allocations 
using Artificial Neural Network (ANN) 
method. The ANN was successfully trained 
using hydrological modelling data from 1891 
to 2003, to forecast water allocation for 
October and January months starting with a 
start of the season allocation in August. 
Subsequently Sea Surface Temperature (SST) 
and Southern Oscillation Index (SOI) data 
were added to gain greater lead times for 
forecasts. This network learnt well with 
different network parameters to that of 
previous networks and significantly correlated 
SST and SOI with water allocation. The 
interactive model works in a risk management 
context by providing probability of water 
allocation for the prediction month using 
historic data and/or with the incorporation of 

SST/SOI information from the previous 
months. 

The model has been validated by forecasting 
January allocations from 1999 to 2005. The 
SST and SOI based predictions show good 
correspondence with the actual announced 
January general security allocations. Table A1 
shows a comparison of historic announced and 
model predicted general security allocations 
using the ANN trained on the basis of historic 
data and SOI. A comparison of historic data 
and SOI based data show that at 50% risk 
factor the SOI based model results are very 
close to the actual announced January general 
security water allocations.  

SST incorporated ANN model overestimated 
January water allocations for the 2002-2004 
period. This may be due to exceptionally low 
starting water allocations and borrowing of 
water from the future years which was outside 
the training data sets.  

Table A1. January Water Allocations 
Predictions Based on Historic Data and SOI  

August January Next Year 25% 50% 75%
1999 50 73 50 65 84 -8.0
2000 59 90 62 90 87 -0.2
2001 47 72 47 57 82 -15.1
2002 38 38 38 45 76 7.2
2003 17 41 20 39 69 -1.7
2004 20 39 21 40 71 1.4
2005 21 21 40 71

SOI Incorporated

Year

Actual Water Allocation 
%

Model Predictions of January Allocation
Risk Factor Difference      

@ 50% risk

 
This study has shown that long term 
hydrologic simulation based water allocations 
at the start of the irrigation season and 
incorporation of a risk factor could be utilised 
to forecast water allocation at the end of peak 
irrigation demand season. Furthermore, SST, 
SOI and SST/SOI incorporated ANN models 
have significantly shown the capability to 
forecast end of the irrigation demand season 
water allocation.  
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1. INTRODUCTION 

In a given year irrigation water allocations are 
made as a percentage of licensed entitlements 
based on storage levels in dams and actual 
inflows to dams. Since rainfall in a catchment 
can be quite variable, the initial allocation 
announcements at the beginning of the water 
year are very conservative and are based on the 
storage condition of dams and lowest recorded 
inflows (1 in 100 years) to dams. The initial 
water allocations do not take into account 
seasonal forecasts of likely inflows into dams or 
unregulated flows downstream of dams over the 
forthcoming irrigation season. Water 
availability is a major factor influencing 
cropping decisions made by irrigators and can 
have a major bearing on the financial viability 
and irrigation efficiency of irrigation areas. 
Increased knowledge on the likely end-of 
season allocation can assist in minimising 
cropping risk and therefore help optimise farm 
returns and achieve better irrigation 
efficiencies. 

Due to complexity and the non-linearity of the 
allocation environments and impossibility of 
building linear relationship between water 
allocations of winter and summer periods 
Artificial Neural Network (ANN) method was 
selected to build up model applications to relate 
these problematic water allocations. 

ANN is a proven technology that has solved 
non-linear problems in many applications. 
These networks are collections of mathematical 
models that emulate some of the observed 
properties of biological nervous systems. 
Therefore it learns from past data to get adapted 
to the system and predict for future. Its adaptive 
feature provides facility of accommodating new 
input parameters or more or less data points and 
getting adapted to the new situation. Therefore 
ANN is a promising technology to develop 
relationship between non-linear problematic 
water allocations in different seasons. 

2. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network (ANN), being a 
simple model of biological neuron system, is a 
collection of mathematical models that emulate 
some of the observed properties of biological 
nervous systems such as adaptive learning from 
historic data to seek data patterns and predict 
for the future. ANN are capable of storing data 
as patterns to recall and recognise them in a 
later stage like brain does. 

Due to ANN’s capability of handling non-linear 
relationships, it is suitable for complex 
applications such as forecasting water 
allocations, industrial control systems, financial 
forecasting pattern and voice recognition, and 
health sector, where linear relationships do not 
exist. ‘Neural network practitioners generally 
tackle more complex problems, the 
dimensionality of the models tends to be much 
higher, and methodologies are hand tailored to 
particular applications’ (Holger et al, 2000). 

In ANN there are different network topologies 
and two learning modes are referred as 
supervised and unsupervised. In order to make 
use of an ANN network, it has to be trained 
with available inputs and outputs. When it 
completes its learning it can be assigned to 
forecast for unseen inputs to predict unavailable 
outputs. Non-linearity within input and output 
data sets is solved by introducing hidden layers 
into the network. 

3. TRAINING NETWORKS AND 
DEVELOPMENT OF MODELS 

3.1. Inputs and Input-output relations. 

The month of August has been chosen to 
represent initial general security allocation 
month and January is selected to represent end 
of major water demand period. Hence one of 
the model inputs has been August water 
allocation targeting January allocation. It has 
been found that there is a high level of 
correlation between sea surface temperature and 
inflows (Khan et. al, 2004) to the inflows to the 
Blowering and Burrinjuck dams, through which 
water is supplied to the Murrumbidgee region. 
In the aforementioned study correlation 
between the SST and inflows to dams were 
calculated for each grid point of a global mesh 
of (2º x 2º) on a monthly, three monthly and 
seasonal basis, with lag time of up to 2 years. 
The Sea Surface Temperature (SST) datasets 
were downloaded from the National Climatic 
Data Center, Asheville, North Carolina. The 
August and January water allocation levels for 
the Murrumbidgee Valley with today’s 
environmental flow rules for the years 1890–
1999, were based on DLWC’s IQQM model 
runs. This study has shown that the January sea 
surface temperatures of the cluster points in 
Table 1 (SST1) and as shown in Figure 1 have 
been best correlated with inflows to the 
Blowering dam whilst the January sea surface 
temperatures of the cluster points in Table 2 
(SST2) have been best correlated with inflows 
to the Burrinjuck dam. 
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Table 1. Related cluster points to inflows to 
Blowering Dam  

Blowering Dam 

(-52,72) (-54,64) 
(-52,70) (-54,62) 
(-52,68)  
(-52,66)  
(-52,64)  

Table 2. Related cluster points to inflows to 
Burrinjuck Dam   

Burrinjuck Dam 
(26,210) (26,196) (26,182) (30,214) 
(26,208) (26,194) (28,212) (30,212) 
(26,206) (26,192) (28,210) (30,210) 
(26,204) (26,190) (28,208) (30, 208) 
(26,202) (26,188) (28,206)  
(26,200) (26,186) (28,204)  
(26,198) (26,184) (28,202)  

 
 

 
Figure 1. High correlated sea surface 
temperature clusters related to inflows to 
Blowering dam during May to October  –The 
cluster is coloured in blue. 

Southern Oscillation Index (SOI) was also used 
as an input to networks as SOI is a considerable 
climate factor. The input parameters of the 
models for the sole output ‘January water 
allocation’ are tabulated in Table 3 formulating 
relationships. 

Each of the above data sets were organised in 
row and column-wise matrix for training data 
set. Some of the data rows were used as the 
cross validation dataset which were assigned to 
monitor any possible overtraining. Past January 
allocation data relevant to aforementioned 
training and cross validation data sets, was 
referred to networks as desired data set from 
which networks could calculate the error 
between network output and desired data. Since 
back propagation incorporated topologies were 
used, the error was propagated back through the 
network for error minimisation.  

In the training processes there were 109 rows 
for R1 relationship extracted water allocation 
data from 1891 to 1999. For R2, R3 and R4 
relationship, 53 rows of data from 1947 to 1999 
period, were used in networks since the sea 
surface temperature and southern oscillation 
index data sets were reliable after 1947. 

 

 

 

 

 

Table 3. Input parameters used in ANN models; √ indicates inputs assigned for the relationship. 

Relationship August 
Allocation 

(AA) 

January 
Allocation Risk 
Factor (JAR) 

SST 1 
(Blowering 

Dam 
Related SST) 

SST 2 
(Burrinjik 

Dam 
Related SST) 

SOI 
 

R1: AA JA √ √    

R2: AASST JA √ √ √ √  

R3: AASOI JA √ √   √ 

R4: AASSTSOI JA √ √ √ √ √ 

i.e  
• R1:  JA = f(AA,JAR). 
• R2:  JA = f(AA,JAR,SST1,SST2). 
• R3:  JA = f(AA,JAR,SOI). 
• R4:  JA = (AA,JAR,SST1,SST2,SOI) 
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3.2. ANN Training 

Training started with Generalised Feed Forward 
(GFF) networks that have back propagation-
training rule incorporated into the basic 
topology called Multi Layer Perceptron (MLP). 
The GFF is powerful enough to generalise 
inputs and train networks to find possible 
relationships even in non-linear situations.  

GFF networks were trained and optimised by 
changing the internal parameters. This provided 
a good relationship with better correlation 
coefficients. Similarly this procedure was 
applied for different topologies such as Jordan 
and Elman Networks (JEN), Radial Basis 
Function (RBF) and Self Organising Feature 
Maps (SOFM) etc. 

Among the abovementioned topologies, the 
RBF was found to be the best topology that 
provided significant learning for the 
aforementioned relationships. The RBF has 
been constructed using the mathematical 
function in Equation 1 (Neurosolutions 4.32, 
Lefebvre et al., 2003) in a hidden layer with 
appropriate number of PEs. Inputs are directed 
from the input layer.  
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Equation 1. Radial Basis Function – ith node of 
the hidden layer 0; G - p multivariate Gaussian 
function; σi – variance of p data points, xi

 – 
mean at ith node 

A network with RBF function is illustrated in 
Figure 2. The established networks were trained 
in 50000- 60000 iterations for many runs whilst 
changing network parameters.  

 

Hidden 
layer 1 

Input 

Hidden 
layer 2  

O

O

A

O

Radial 
Basis

Hidden 
layer 3  

Hidden 
layer 0 
(RBF)  

Figure 2. Network used to develop R1 
relationship – Four hidden layers with 25, 25, 
20 and 15 PEs in each layer respectively. 
Hidden layer 0 is with RBF functions. 

3.3. Training Results  

Figure 3 shows that the trained network 
responded progressively on test data set for R1 
relationship and similar results were found for 
rest of the relationships listed in Table 3. 
Relevant performance measures in column R2 
of Table 4 indicate a higher value of correlation 
coefficient (r) about 0.99 between actual and 
network generated January water allocations.  
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Figure 3. Actual and Network forecast January water allocation – plot against August water allocation 
(R1 relationship) 

4. NUMERICAL VALIDATION OF ANN 
MODELS 

Validation of the above ANN models was 
carried out using test data using the historic data 
to generate output. Comparison between actual 
and network output for test data for the R1 

relationship is shown in Figure 4, followed by 
the performance measurements in Table 5. 
Figure 4 shows that the network output and the 
actual January water allocation matched well; 
similar results were found for rest of three 
relationships listed in Table 3. 
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Figure 4. Training performance - Actual January allocation compared with Network output for test 
data set (R1 relationship) 
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In addition to the above plot, correlation 
coefficient above 0.99 and low values of mean 
square error((MSE), normalised mean square 
error(NMSE), and mean, minimum and 

maximum absolute errors, according to Table 5 
support the reasonable validation of these 
models qualifying for forecasting. 

.

Table 4. Performance measures for test data (for all relationships) 

.  

Performance for January allocation of each relationship 
Performance Type R1 R2 R3 R4 
MSE 0.07569 0.01120 0.06209 0.02911 
NMSE 1.03533 0.05410 0.56246 0.40143 
Mean Abs Error 1.23379 0.31821 0.93520 0.77890 
Min Abs Error 0.02552 0.00831 0.01378 0.00464 
Max Abs Error 6.37968 1.95563 8.60058 3.20618 
Correl. Coefficient 0.98771 0.99857 0.99043 0.99485 

 

4.1. Sensitivity analysis 

Sensitivity analysis could be used to ascertain 
the relative loading of each input channel 
contributed to the trained network. Calculation 
of partial derivatives of the output that 
incorporated with chain rule provides the  
output “yk” respect to the input “xi” provides the 
sensitivity component related to input xi.is 
given by Equation 2. Table 5 shows the degree 
of each input contributed in the training of SST 
and SOI incorporated neural network. 
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Equation 2. Sensitivity component of output k 
of input i 

Where   
Sik or 

i

k
x
y

∂
∂   = Sensitivity of output yk 

based on changes in input xi 
f’(netk)  = derivatives of activation function of 
output neuron k 
f’(netj)  = derivatives of activation function of 
hidden neuron j 
wij,  =  weight between input xi and hidden 
neuron j 
vjk  =  weight between hidden neuron j and 
output neuron k. 

 

 

 

Table 5. Parameter contribution measurements 
at training of SST & SOI incorporated network 

Parameter Sensitivity % 
August Allocation 40.9
January Risk Factor 37.3
SST Blowering 14.8
SST Burrinjuck     2.4
SOI     4.6

 
5. FIELD VALIDATION OF ANN 

MODELS 

The model results were tested by predicting 
January water allocations for from 1999 to 2005 
based on the August allocations for the last year 
and the trained ANN described in previous 
sections. Tables 6, 7 and 8 show overall 
performance of models R1, R2 and R3 in real 
situation.  

Table 6. January Water Allocations Predictions 
Based on Historic Data Only – Model R1 

August January Next Year 25% 50% 75%
1999 50 73 50 61 67 -12.4
2000 59 90 66 82 83 -7.7
2001 47 72 47 54 62 -18.0
2002 38 38 55 55 57 16.9
2003 17 41 25 33 37 -7.8
2004 20 39 25 34 37 -5.4
2005 21 25 34 37

Primary

Year

Actual Water Allocation 
%

Model Predictions of January Allocation
Risk Factor Difference      

@ 50% risk

 
Table 7. January Water Allocations Predictions 
Based on Historic Data and SST – Model R2 

August January Next Year 25% 50% 75%
1999 50 73 60 78 95 5.4
2000 59 90 63 79 93 -11.0
2001 47 72 55 76 96 3.8
2002 38 38 57 79 97 40.6
2003 17 41 44 78 93 37.4
2004 20 39 32 68 97 29.5
2005 21 41 75 96

SST Incorporated

Year

Actual Water Allocation 
%

Model Predictions of January Allocation
Risk Factor Difference      

@ 50% risk
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Table 8. January Water Allocations Predictions 
Based on Historic Data and SOI – Model R3  

August January Next Year 25% 50% 75%
1999 50 73 50 65 84 -8.0
2000 59 90 62 90 87 -0.2
2001 47 72 47 57 82 -15.1
2002 38 38 38 45 76 7.2
2003 17 41 20 39 69 -1.7
2004 20 39 21 40 71 1.4
2005 21 21 40 71

SOI Incorporated

Year

Actual Water Allocation 
%

Model Predictions of January Allocation
Risk Factor Difference      

@ 50% risk

 
From the comparison of the above prediction 
results historic data and SOI based ANN model 
shows that at 50% risk factor the model results 
are very close to the actual announced January 
general security water allocations. SST 
incorporated model R2 overestimated January 
water allocations for the 2002-2004 period. 
This may be due to exceptionally low starting 
water allocations and borrowing of water from 
the future years which was outside the training 
data sets.  

The model performance is being further 
improved by retraining the ANN with the latest 
data sets. 

6. DISCUSSION 

All the ANN models performed well with 
appropriate networks. Validity of each model 
has been found to be excellent as it shows very 
low error values and very high correlation 
coefficient within the range of 99-100%, 
between network output and actual values of 
January water allocation. 

Building the R1 model was started with two 
input parameters followed by R2, R3 and R4 
model development with changing inputs or 
increasing number of inputs. In terms of ANN 
technology all models learnt very well from the 
provided inputs. 

Sensitivity analysis (Table 5) provided by the 
R4 case (other cases have less number of input 
parameters) shows the contribution of each 
input parameter to its network. However the 
sensitivity of input parameters could vary 
depending on the network in the same case or in 
different cases. For example although SOI has 
shown lowest contributions in R4 case it has 
shown higher values in different networks. R2 
model has been observed to give lowest errors 
and highest correlation coefficient exists among 
R1, R2, R3 and R4 relationships as depicted in 
Table 3. 

7. CONCLUSIONS 

This study has shown that water allocations at 
the start of the irrigation season incorporating a 
farmer’s risk factor could be utilised to forecast 
water allocation at the end of peak irrigation 
demand season. The SST incorporated model, 

SOI incorporated model and SST/SOI 
incorporated model have shown capability to 
forecast end of the irrigation demand season 
water allocation. The following conclusions are 
drawn from the results of this study: 

• All the relationships that have been 
developed in this study, demonstrated 
ANN capability of forecasting end of 
January water allocation. 

• SOI incorporated R1 model is the most 
promising forecasting tool that shows 
good performance during the field 
testing of the model.  

• The adaptive nature of ANN 
architecture is proven here as networks 
with appropriate additional input 
parameters learnt very well. . 

• High performance indicators proved 
ANN capability of handling non-
linearity. 
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