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EXTENDED ABSTRACT 

An Unmanned Aerial Vehicle (UAV), like any 
other aircraft, represents a complex non-linear 
system with, generally, high degree of coupling. It 
is anticipated that the most effective control on 
such a system can be gained with an appropriate 
non-linear controller. However, design of a non-
linear flight controller is a demanding task which 
usually requires deep engineering knowledge of 
intrinsic aircraft behaviour. A traditional approach 
is to linearise the aircraft model (and all linked 
models such as wind disturbances model) about 
the average ‘trim’ conditions and to apply one of 
various well developed linear design techniques. 
Although in many cases this approach is reason-
able, it may not deliver enough robustness when 
the aircraft model has significant uncertainties 
and/or when substantial non-linear effects are 
expected.  

This paper presents a successful implementation 
of a design approach which does not require lin-
earisation nor decomposition of any sort of the 
aircraft model. A combination of evolutionary 
methods is used to evolve a non-linear controller 
which fulfils the predefined task. 

The engineering problem being addressed is re-
covery (landing) of a small fixed-wing UAV on a 
frigate ship deck. The designed controller is ex-
pected to guide the aircraft from a point in vicin-
ity of the glidepath to a narrow area near the deck 
where successful recovery is possible. The task is 
complicated by various types of disturbances: 
uncertainty of the starting point, turbulence, sen-
sor noise, ship motion. 

The whole system is implemented in MAT-
LAB/Simulink environment. The ‘driving’ part 
consists of a set of programs which compose and 
encode controllers and employ Evolutionary Strat-
egy algorithms geared with Genetic Programming 
approach to evolve a capable and robust controller. 
The evolution starts from the control laws as simple 
as y = const and require no a priori knowledge 
about the controlled system. Such evolutionary de-
sign is performed step by step, gradually complicat-
ing the task and thus allowing the controller to gain 
experience effectively. In the process of complica-
tion need for full convergence is initially relaxed. 

The ‘simulation’ part represents a group of non-
linear Simulink models used to estimate the capa-
bilities of the controllers. They are employed both 
in evolutionary search to estimate the fitness of a 
particular controller, and later to verify and validate 
the designed controllers through extensive simula-
tion in various conditions. 

It is demonstrated that effective design is possible 
using essentially only the simulation data from a 
comprehensive fully coupled non-linear model. 
This allows treating the target system as a ‘black 
box,’ without applying sophisticated system identi-
fication techniques. However, it is noted that tailor-
ing the controllers representation and evolutionary 
algorithms utilising the basic flight control knowl-
edge significantly improves efficiency of the design 
process. 
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1. INTRODUCTION 

Over the hundred years of aviation history, various 
linear control methods were successfully used in 
aerospace area due to their simplicity and validity 
which can be mathematically determined. Despite 
their natural limitations, linear control techniques 
still remain as one of the most accepted design 
practices. However, growing demands on the per-
formance of aircraft and, on the other hand, re-
markable increase of available computation power 
over the last years have led to significant growth of 
the popularity of non-linear control techniques. 

A principal difficulty of many non-linear control 
methods, which potentially could deliver better 
performance, is impossibility or extreme difficulty 
to theoretically predict the behaviour of a system 
under all possible circumstances. In fact, even de-
sign envelope of a controller often remains largely 
uncertain. Therefore, it becomes a challenging task 
to verify and validate the designed controller under 
all possible flight conditions. A practical solution 
to this problem is extensive testing of the system 
(or rather of its mathematical model), which is a 
computationally and time demanding engineering 
task. The design process itself is often built around 
the continuous testing of the controller in loop 
with a real system or its mathematical model rather 
than relies on theoretical analysis only. It becomes 
clear that there is a need to develop a non-linear 
design methodology, especially in application to 
such a complex system as a UAV controller. 

Evolutionary Algorithms (EA) is a group of sto-
chastic design and optimisation methods which 
combine such important characteristics as robust-
ness, versatility and simplicity. They are inspired 
by the power of natural evolution and, indeed, 
proved the success in many applications, such as 
neural network optimisation (Sendhoff and Kreuz 
1999), finance and time series analysis (Mahfoud 
and Mani 1996), aerodynamics and aerodynamic 
shape optimisation (McFarland and Duisenberg 
1995; Olhofer et al. 2001), automatic evolution of 
computer software (Koza 1992) and, of course, 
control (Chipperfield and Flemming 1996). How-
ever, the majority of applications of EAs is fo-
cused on optimisation task. In contrast, this work 
proposes a design methodology in which EAs are 
used as a core of the design process. A set of dif-
ferent EAs is used to develop and optimise the 
control laws of the UAV recovery controller. 

In order to allow the evolutionary methods to es-
timate the fitness of a controller, they need a 
mathematical model of the target system. The fit-
ness of the controller is evaluated through a simu-
lation run (or several runs) of the model with the 

controller in the loop. The controller is assigned 
with a fitness measure taking into account both 
mission fulfilment and quality of control. There-
fore, the mathematical model is used in a ‘direct’ 
way, without linearisation, decomposition of any 
kind, obtaining derivatives, etc. This is a very con-
venient feature, because it allows using third-party 
models in out-of-the-box fashion. 

However, EAs require a large number of fitness 
evaluations (i.e. simulation runs). For some com-
prehensive models, this may be computationally 
too expensive. There are several techniques that 
deal with this problem, for example, metamodel 
strategies (Emmerich et al. 2002). In this work, a 
classic approach is used: during evolutionary 
search (design stage), the target system is simu-
lated with lesser precision and several modules are 
excluded. When a set of candidate solutions is 
found, they are thoroughly tested in ‘full’ mode. 

Another issue is optimisation of the evolutionary 
methods themselves. Unfortunately, EA theory is 
still in its early stages of development and has little 
predictive power. Most of the findings in this area 
are based on empirical data and engineering intui-
tion. There are three areas in which the EAs are 
tailored in this work: adaptive encoding of the con-
trol laws, which allows them to change the size 
and structure during evolution; decoupled evolu-
tion of the numeric coefficients and the structure of 
the laws; and multi-stage evolution, aimed at grad-
ual ‘learning’ of the controllers. 

This paper demonstrates how EAs can be used for 
controller design. The design process consists of 
iterative application of the EAs to the UAV model 
linked with the controller, and the following test-
ing of the best controllers. 

2. UAV RECOVERY PROBLEM 

The problem being addressed is recovery (landing) 
of a small fixed-wing UAV (Unmanned Aerial 
Vehicle) on a confined space such as frigate-size 
ship deck. The proposed recovery method involves 
capture of a damped arresting wire, stretched over 
the deck between two poles or in a similar manner, 
by an onboard flexible trailing line with a self-
locking hook attached at the end. The method is 
somewhat similar to that used in conventional air-
craft landings on a carrier, but the UAV is slowed 
down in the air without using valuable deck space 
as a runway (Crump et al. 2003). 

Only final approach is considered, i.e. the last 8–
20 seconds of the flight. The mission controller is 
supposed to pilot the aircraft to the point approxi-
mately 300 metres before the ‘touchdown’ point 
on a perpendicular to the arresting wire, with 0–
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20 m elevation relative to the wire and with normal 
flight airspeed and attitude. 

The controller being designed guides the UAV 
from this point to the recovery point, set 1.5 m 
above the middle of the arresting wire. There are 
several challenges that make the approach not as 
trivial as the flight along a straight glidepath line. 
First, the requirements to the precision are quite 
high: 2.5–3 m for elevation and ±2.5 m for side-
ways displacement. Meanwhile, the number of 
available sensors is very limited; for example, no 
accurate altitude sensor is available onboard. Sec-
ond, the whole system is affected by different 
types of disturbances. Apart from the random start-
ing point, the aircraft is subjected to wind turbu-
lence during the flight, including ship airwake; 
sensor noise; ship motion. 

To allow the EA to work, the models of both the 
UAV and the environment must be implemented. 
The models are build so that they can be connected 
or disconnected at any time, allowing testing of the 
UAV in various conditions. 

3. THE UAV AND ENVIRONMENT 
MODELS 

3.1. The Ariel UAV 

The aircraft chosen as a prototype for the research 
is the UAV Ariel (Newman and Wong 1993), 
which is an unmanned aircraft developed by the 
UAV group in the Department of Aeronautical 
Engineering at the University of Sydney. The Ariel 
is a relatively small aircraft (35 kg maximum take-
off weight and 3 m wingspan), manufactured pre-
dominantly from fibreglass and foam components. 
The UAV has three main control surfaces (eleva-
tor, ailerons and rudder), plus flaps and throttle 
control. Flaps have only fixed settings and are set 
to the specified landing position. The remaining 
four controls are under full authority of the landing 
controller. 

A six degree-of-freedom non-linear model of the 
UAV has been implemented in MATLAB/Simu-
link programming environment. This model is a 
further development of the model by (Crump 
2002), which was used for the design of a take-off 
controller for the same aircraft. The model takes 
into account all measurable dependencies such as 
control surfaces deflections on moments and 
forces, propeller torque, etc. Most of the aerody-
namic data, used by the model, are taken directly 
from lookup tables, which have been obtained 
through wind tunnel testing of a prototype aircraft. 
Although fairly complicated, the model is built 
upon directly measured data and common rigid 
body dynamic models, and thus simple enough to 
design. The model has been validated (within the 

normal operating envelope) against the prototype’s 
flight test data and the reference model (Newman 
and Wong 1993). 

The UAV model also includes linear models of the 
onboard sensors and actuators, which optionally 
allow simulate sensor noise. 

The model of the onboard winch, and, in particu-
lar, of the flexible line with the arresting hook, has 
been implemented as a plug-in module to the main 
UAV model. The line can be ‘deployed’ at any 
time by enabling this model. The model uses 
lumped mass method and Kane’s dynamic equa-
tions (Trivailo et al. 2002), with several modifica-
tions that allow realistic simulation of highly flexi-
ble slack lines. 

However, as the line is not supposed to be very 
elastic (slowing down is provided mostly by the 
shipboard arresting wire), its natural longitudinal 
frequency is quite high as compared to the short-
period UAV motion. Therefore, it requires very 
small time steps for accurate simulation and thus a 
lot of computation resources. For that reason, this 
model has been used, in the first place, to estimate 
the sag of the line in various flight conditions and, 
therefore, the allowed elevation of the UAV rela-
tive to the arresting wire at the moment of capture. 
In addition, the drag of the line has been obtained. 

At the design stage, the winch model was not em-
ployed. Instead, the pre-calculated parameters (line 
sag and aerodynamic drag) were used in simula-
tion and to determine if the recovery was success-
ful. Later, the winch model was used for verifica-
tion of the designed controllers: a part of the veri-
fication runs were made with the full model simu-
lation. 

3.2. Wind Models 

The wind model is divided into five separate mod-
ules. The first model calculates standard atmos-
pheric parameters (temperature, air density, air 
pressure) at a given altitude. Steady wind model 
calculates wind magnitude at a given level. The 
calculations are based on a given wind direction 
and mean wind magnitude at 6 m of altitude. It 
also takes into account statistical dependency of 
wind magnitude on altitude for wind shear. 

The von Kármán wind turbulence model is build 
for low altitude profile. The required disturbances 
are obtained by passing white noise through third-
order shaping filters. Gust model employs ‘1–
cosine’ model from the same standard. It is used 
only at the verification stage to estimate the UAV 
behaviour in presence of random gusts. 

The ship airwake model required more customisa-
tion. With no appropriate airwake model available 
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in the public domain, the carrier airwake model 
has been used as the basis. However, the latter was 
designed for normal carrier-based operation of 
piloted aircraft. It needed downscaling to a frigate-
size ship and, more importantly, incorporating 
varying possible glidepaths, including down- and 
crosswind cases. 

3.3. Ship Model 

The last model used in the simulation environment 
is the model of ship motion. The motion consists 
of two motions: steady, or commanded, motion, 
which is set as an external condition before land-
ing, and uncommanded oscillatory motion, caused 
by the wind and waves. As a human being is not 
involved in the control loop, nor a motion predic-
tive system is installed, a simple one-mode har-
monic approximation has been used to simulate 
wave motion. The amplitude and frequency of the 
oscillations for each of the six motion components 
– bank, yaw, pitch, surge, heave, sway – were ob-
tained using statistical data for FFG Sydney from 
(Hope 1996). These parameters depend on the Sea 
state and the heading of the ship relative to the 
waves direction. The objective of the research is to 
provide a good recovery success rate up to Sea 
state 6 (Fleet Oceanographic and Acoustic Refer-
ence Manual 1999). 

4. THE CONTROLLER 

The controller being designed is an offline control-
ler with a fixed structure once designed and in-
stalled. Because the final approach is very short (8 
to 20 seconds), no requirements of on-the-fly 
(online) self-adaptation are set forth. 

The controller directly links the input signals, 
measured by onboard sensors, with control surface 
deflections: 

δi = fi(u), 

where δi is the ith control surface deflection and u 
is the vector of input signals. 

The controller can be fed by 36 input signals, of 
which 12 come directly from the onboard flight 
sensors, 8 from the short-range radio positioning 
system, and the rest forms particularly valuable 
derivatives and combinations of the former pa-
rameters, such as, for example, no-wind climb rate 
Vyg = V sin θ (see (Khantsis et al. 2005) for de-
tails). Although these combinations may emerge 
naturally during evolutionary search, pre-
calculating them appeared to be highly effective. 

On the most stages of the design, only two of the 
four control surfaces available are used as the main 
outputs for both longitudinal and lateral control. 
The elevator is used in longitudinal control to-

gether with a fixed throttle setting; and the ailerons 
are used to produce turns in conjunction with the 
rudder working as a simple damper. This allows 
reducing the dimensionality of the problem in half, 
as only two control laws are designed instead of 
four. At the later stages, the other two control laws 
may be included, allowing greater flexibility and 
higher degree of coupling. 

5. EVOLUTIONARY DESIGN 

The aim of the design methodology considered 
here is to provide the potential ability of automatic 
or semi-automatic development of the control laws. 
Not only numeric coefficients must be optimised, 
but also the whole structure of the control laws 
should be designed automatically, with as little a 
priori knowledge about the system as possible. 

Evolutionary algorithms (EAs) (Holland 1975), 
(Bäck 1996), (Goldberg 1989) is a powerful and 
flexible tool that can handle many hard-to-solve 
problems, including those with large amount of 
uncertainty, noise, discontinuities, complex con-
straints. However, the great majority of the works 
in this area is focused on function optimisation 
problems. Nevertheless, EAs can be extended to 
the area of structure optimisation and program 
development, one of the most successful examples 
being Genetic Programming (GP) (Koza 1992). 

Unfortunately, GP can not be applied directly to 
flight controller development. This area has sev-
eral distinctive characteristics that make it harder 
to evolve a control law using a classic GP method. 
First, the typical control laws are continuous equa-
tions which usually require fine tuning of its nu-
meric coefficients. This is a work for a conven-
tional EA such as Genetic Algorithm (GA) or Evo-
lutionary Strategies (ES), but not for GP. Second, 
classical GP approach with random initial popula-
tion and tree-based crossover requires large popu-
lation sizes to be effective. Meanwhile, each fit-
ness evaluation requires at least one simulation 
run, which takes up to 1 second on a 2 GHz PC. 
Therefore, the number of fitness evaluations 
should be minimised as much as possible. In addi-
tion, large population sizes appear to be excessive 
for numeric coefficients optimisation. 

To circumvent these problems and to make use of 
what is known about the aircraft control, an EA 
has been developed, which combine three main 
features: 

• Automatic gradual complication of the task, set 
forth before the algorithm. This represents an at-
tempt to introduce gradual ‘learning’ of the 
evolving controllers. First, they ‘learn to fly’ in a 
calm weather; when they can keep in the air for 
the normal duration of approach, the controllers 
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are evaluated against a more complicated task: 
flying towards the target point along a straight 
line. On the third stage, the full set of require-
ments is applied. When a significant portion of 
the population succeeds the task, disturbances 
are gradually introduced. All the adjustments are 
made within the fitness evaluation function 
separately for each individual. 

• Adaptive encoding of the control laws, which 
allows them to develop from the simplest possi-
ble law y = const at start to complex non-linear 
equations. The encoding (see (Khantsis et al. 
2005) resembles Polish notation, traditionally 
used in GP, but with implicit mathematical op-
erations. This became possible because most of 
the physically sensible combinations of the sen-
sor measurements were already included in the 
controller inputs (see Section 4), allowing sig-
nificant simplification of the control law struc-
ture. In particular, each input (variable) is al-
ways accompanied by a coefficient and an added 
value (free term). Any variable, together with its 
two terms, can replace any term of any other 
variable, thus forming nested expressions. 
The genetic operator, affecting the structure 
(structure mutation) is implemented so that its 
effect is non-destructive, unlike classical tree-
based crossover in GP. It does not have immedi-
ate effect, but rather adds a new dimension to 
the expression. This helps to preserve the infor-
mation, gained so far by gradual learning. 

• Separate evolution of the control laws structure 
and its numeric coefficients. As mentioned 
above, control laws require fine tuning of the 
coefficients. This is achieved by applying an ES 
algorithm with individual step size adaptation. 
Structure mutations occur at a slower rate, let-
ting the current structures to be (roughly) nu-
merically optimised. 

The controller design process starts from configu-
ration of the Simulink model of the UAV. Typi-
cally, disturbances and the winch model are dis-
abled by default. The integration time step should 
be set to a maximum possible value that allows 
fairly precise simulation: calculation speed is the 
most important factor at this stage. At least 
100,000 simulation runs should be allocated for 
full controller evolution. If no disturbances are 
involved, the time step up to 0.1 s and the 4th or-
der Runge-Kutta integration algorithm showed 
good results. Turbulence models require reduction 
of the time step to about 0.02 s. 

The evolution proceeds automatically when 
started. However, no termination criteria have been 
set apart from the number of generations. As 
shown in (Khantsis et al. 2005), the convergence 
behaviour may be significantly different even for 

the same initial conditions. For instance, Figure 1 
illustrates the evolution of the current-best fitness 
across the population, 5 consecutive runs with the 
best found algorithm settings (no disturbances). It 
can be seen that the convergence time varies more 
than twice between the runs. More importantly, 
except for the final stage, it appears to be unneces-
sary to wait for full convergence: the next level of 
disturbances can be added after a reliable progress 
is observed. 
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Figure 1. Convergence of the best fitness 

In addition, the algorithm was considered rather as 
a research and engineering tool. As a result, termi-
nation and changing the environment settings was 
handled manually. The algorithm allows interrupt 
and resume the evolution at any point. 

The principal set-up of the experiments, performed 
by the fitness evaluation function, is illustrated on 
Figure 2. For each evaluation, three simulations 
are executed from randomly chosen positions, with 
a bias to the left, right and down from the refer-
ence point (the ‘ideal’ point to which the mission 
controller is supposed to guide the UAV for recov-
ery). This is done to estimate the ability of the con-
troller to cope with different situations. The initial 
airspeed varies as well. The function, as noted be-
fore, takes into account both mission completion 
(the aircraft enters the target window with normal 
flight parameters) and the flight quality, and as-
signs a penalty score according to the current level 
of success of this particular individual.  

When a reliable progress on the first stage of evo-
lutionary design is achieved, disturbances are 
added one by one: turbulence, sensor noise, ship 
motion, and the process repeats. In this work, it 
was done manually at the discretion of the re-
searcher, although this can be easily programmed. 

The final population is then analysed. As a rule, 
about 10% of the population demonstrate compa-
rable score and can be considered for verification. 
Although the EA discourages so called ‘code 
bloat,’ common for GP, the solutions are nearly 
always far from parsimony and are incomprehen-
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Figure 2. Experiment set-up (distance ΔX is not to scale). Three solid ellipses represent 1σ-, and three dash-dot 
ellipses – 3σ-lines of equal probability density of three independent starting position distributions. L1 = 6 m. 
ΔX = 300 m on average and varies with σ = 20 m. Dotted lines represent possible successful trajectories. 

sible. Any attempt of manual tuning is usually 
worthless. Even the example of an intermediate 
controller (after about 65,000 objective function 
evaluations, 900 generations), shown on Error! 
Reference source not found., is fairly complex. 
This is normal in evolutionary computation, see, 
for example, (Langdon and Poli 2002). Obviously, 
analytical analysis of such complex laws is not 
possible, therefore extensive testing is the only 
possibility to verify the controller. 

Testing is performed on the same model. The inte-
gration step size should be set to obtain the optimal 
precision, in this research 0.01 s was used (0.002 s 
when the winch model was employed). Testings 
were done in separate series for calm weather, sea 
state 1, sea state 2 and so on up to the highest re-
quired level (6). The waves heights, wind speed 
and turbulence intensity are linked for a given se-

ries according to the UK Defence Standard 00-970 
or MIL-STD-1797. In each series, statistics of suc-
cessful recoveries is gathered. The controller may 
be considered successful, if the recovery success 
rate is not worse than a specified level for each sea 
state. Below are examples of control laws δe is the 
law for elevator, δa is the law for ailer-
ons
δa = ((-2.6193 (ψ-ψ0) – 5.0003) (ψ-ψ0) + 0.8304 (d1-d2) + 1.5972 nz

2 ...
    + (1.534 (1/d2) + ((-0.90373 nz + 0.076235) ωx + 0.33578) V ...
    + 1.6151) ωy

2 + (-1.0412 nz + (2.8318 nz + 0.10118) (d1-d2) ...
    + 7.0475) γ + 3.5991 ωx + 0.2673)

δe = (-6.1752 (1/d2) + 1.3064 (d3-d2) – 3.9956 (1/V) + ((4.9783 nx ...
    + 3.6957) (1/d2)2 + 22.9016) θ + 2.1812 (1/V)2 + ((((-0.36455 (1/d2) ...
    – 1.8637) Vyg + (-4.9151 θ + 0.092625) ωz + 3.8462) V ...
    + 0.24908) nx – 0.79592 (d3-d2) – 2.8818 (1/d2′) + 1.4698) ωz ...

    + 9.117)  
The typical trajectories are presented on Figure 3. 
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Figure 3. Flight paths (five independent runs). The bar at the finish (X = 0) illustrates the allowed error. 
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6. CONCLUSIONS 

Evolutionary methods can be successfully used not 
only for function optimisations, but also for auto-
matic development of such complex structures as 
aircraft control laws. Unlike traditional methods, 
evolutionary algorithms require little or no a priori 
knowledge about the controlled system. At the 
same time, they demonstrate very high robustness, 
handling non-linear systems in presence of various 
random disturbances. 

This paper presents an integrated design environ-
ment which incorporates evolutionary algorithms 
as a main design tool. The approach is successfully 
applied to a practical task in the area of system 
control. As the considered system is complex and 
non-linear, the environment includes not only de-
sign part as such, but also the means to verify and 
validate the designed controller. It is demonstrated 
that such ‘artificially intelligent’ environment is 
capable for automatic or at least semi-automatic 
design process. At all stages of design, the system 
is evaluated by its actual performance. This does 
not require decomposition or any deep analysis of 
the system and thus allows applying design in out-
of-the-box fashion. 
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