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EXTENDED ABSTRACT

The management of hydrologic catchments typically
faces the challenge of keeping a reasonable balance
between water quality demands and farming restric-
tions. In order to handle this problem it is most
important to identify farming areas whose land use
have a high influence on the nutrient leaching into the
receiving stream. This identification can be regarded
as a sensitivity analysis (SA). Changes in the land
use of farming areas with high sensitivity usually
promise an adequate relation between costs and
benefits. In order to indentify sensitive farming areas,
the processes responsible for nitrogen cycling and
transport must be modelled first. Then a sensitivity
analysis of the resulting model can be performed.

Unlike a SA of a model’s output towards a
small number of calibration parameters, this task
is of exceptional complexity. Not only is the
number of parameters that have to be considered
proportional to the number of spatial model entities
and thus possibly much higher. A SA regarding
spatially distributed parameters becomes even more
complicated if dependencies between parameters —
in our case the catchment topology — must be
considered. In this case all parameters have to be
looked at simultaneously which leads to a massively
multidimensional SA. For the catchment the problem
arises when accounting for the lateral transport of
water and nitrogen between farming areas. The
simulation of these tranport processes is of high
importance when looking at water and substances in
mesoscale catchments.

We have developed a neural network based method-
ology (goal directed distributed SA — GDSA) which
is suited to solve this problem. Given a distributed
natural resource model that is suited to simulate
nitrogen cycling and transport our GDSA comprises
two steps: First a representation of the natural
resource model is contributed in the form of a special
neural network (HydroNet). Then the computational
properties of the HydroNet are used to make a
sensitivity analysis of the network model and thus of
the natural resource model.
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In order to show the power of the GDSA approach,
we applied it to the problem of reducing nitrogen
leaching from farming areas into a drinking water
reservoir. As a first step, the model WASMOD (water
and substance simulation model) was used to simulate
the processes responsible for nitrogen cycling and
tranport in a distributed manner. Then the resulting
model was mapped onto the HydroNet in order to
apply our neural network based SA method.

The results of the GDSA application to the WASMOD
model show that our HydroNet is capable of
representing the relationship between the distributed
fertilization inputs to farming areas and the nitrogen
discharge to the receiving stream nearly as well as
WASMOD. The average yearly nitrogen outputs from
single areas and the whole catchment calculated by
the HydroNet deviate only marginally from those
calculated by the physically based model WASMOD.
The GDSA was also able to correctly predict those
model entities that have a high influence to the
nitrogen discharge modelled by WASMOD.

We also compared our GDSA approach to two
conventional approaches for the solution of the above-
mentioned management problem. The comparison
shows that it is necessary to incorporate topological
information because it has a major influence on the
quality of the results. GDSA therefore seems to
be a good choice of method in cases where many
interdependent parameters have to be accounted for.
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1. INTRODUCTION

In regions with little groundwater, reservoirs are a
major resource for the supply of potable water. Before
Germany was reunited, reservoirs in the eastern
part were often built without accounting for the
specific land use conditions in the contributing area.
Reservoirs were even established in catchments which
are mostly used for agriculture. As a consequence,
a water quality problem results which can be traced
back mainly to two influences: diffuse nutrient
leaching from farmland and settlement waste water
that is untreated or clarified inadequately.

A catchment management which is suited to face these
problems must focus on the minimization of nitrogen
discharge as well as on minimizing the resulting costs
(e.g. compensation payments for farming restrictions).
An obvious approach to meet this dilemma is the
concentration on nitrogen reduction measures on
especially sensitive areas, i.e. farmland areas which
have a high influence on the nitrogen discharge to the
reservoir. In order to do this the processes responsible
for nitrogen cycling and transport must be modelled.
Then a sensitivity analysis (SA) of the resulting model
can be performed in order to identify sensitive areas.

This task is of exceptional complexity. A conventional
SA — like the calculation of the sensitivity index
(Nearing et al., [1990) — 1is typically applied to
only a small number of calibration parameters. In
our case the number of parameters that have to be
considered is proportional to the number of spatial
model entities which usually is much higher. A
SA regarding spatially distributed parameters is even
more complicated if the catchment’s topology must
be considered. In this case all parameters have to be
looked at simultaneously which leads to a massively
multidimensional SA. In our case the problem arises
when accounting for the lateral transport of water
and nitrogen between farming areas. The simulation
of these tranport processes is of high importance
when looking at water and substances in mesoscale
catchments (Fink and Kralisch, 2005, [Fink, 2004).

A computational model which is well suited to
perform a SA towards a large number of parameters
with dependencies is an artificial neural network
(ANN, Gallant (1993)). Apart from beeing a flexible
computational model, ANNs are able to

1. perform a SA of their outputs with respect to the
regarding network parameters and

2. based on this SA apply changes to their setup in
order to meet desired properties.

In ANNs these two steps — a SA followed by
a corresponding adaption — are performed in an
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interleaved manner by special learning algorithms.
We have utilized this ability for the development of a
computational model that supports the solution of the
abovementioned catchment management problem.

2. THE GDSA APPROACH

Given a distributed natural resource model that is
suited to simulate nitrogen cycling and transport the
development of the desired computational model was
done in two steps:

1. A representation of the natural resource model
was contributed in the form of a special ANN —
the so called HydroNet (Kralisch et al., 2003).

2. Then the computational properties of the ANN
where used to solve the management problem at
hand.

The subsequent application of these two steps is
referred to as Goal Girected distributed SA (GDSA).

2.1. ANN Design

The HydroNet is an ANN which is suited to represent
distributed hydrological catchments and transport
processes within these catchments. ANNs consist
of simple autonomous processing units (neurons)
which are joined by directed communication paths
(edges). Each edge is parameterised with a numeric
value (weight) which specifies the strength of the
connection between the connected neurons and thus
the ability to pass signals. A so-called activation
function is assigned to each neuron enabling it
to calculate an output signal dependent on signals
received over incoming edges. This output is then
propagated to neighbouring neurons. An ANN can
therefore be seen as a machine which computes a
function that is characterised by a possibly large set
of parameters (represented by the weights). There are
learning algorithms (Gallant, |1993) that can fine tune
these parameters in a way that the function computed
by the ANN approximates a given continuous function
arbitrarily well. ANNs therefore are especially suited
to solve hard optimization problems.

2.2. HydroNet Structure

In the HydroNet, neurons represent management areas
(i.e. farming areas) within the catchment. These
areas are derived via GIS operations. The tranport
of nitrogen within the catchment is represented by
directed edges. The edges represent both vertical
transport from the catchment areas to the groundwater
(groundwater edges) and lateral tranport representing
interflow between areas (interflow edges). The



external input of nitrogen into the managament units
(i.e. fertilization) is represented by edges (fertilization
edges) as well. As an example, figure |1 shows lateral
flow paths between spatial model entities of a small
catchment and the resulting HydroNet with interflow
edges.

Figure 1. Catchment with spatial model entities and
lateral flow paths (left) and corresponding HydroNet
with interflow edges (right)

Each edge is provided with a weight value. This
value corresponds to the amount of nitrogen which is
transported via this edge. In the case of fertilization
edges, the weight is identical to the annual nitrogen
input to the corresponding spatial model entity.
For interflow and groundwater edges, these weights
represent the amount of discharge which leaves a
model entity via the corresponding flow paths. As
an example, a neuron representing an entity with
70 % nitrogen discharge to the groundwater and 30 %
nitrogen discharge to neighboring entities will have
an outgoing groundwater edge with weight 0.7 and an
outgoing interflow edge with weight 0.3.

The HydroNet activation functions characterize the
inidiviual ability of each management area to process
nitrogen which was put into that area from outside.
Figure 2/ shows an example of a HydroNet with
neurons, different types of edges and activation
functions.

0,
0,4
- Fertilization
Interflow
K == Groundwater

Figure 2. Edge types and activation functions of a
HydroNet
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2.3. HydroNet Learning Procedure

In order to identify management areas which have a
high influence on nutrient leaching into the reservoir
learning procedures can be applied to modify the
HydroNet and thus model properties.

The HydroNet learning procedure is basically a
backpropagation algorithm (Rumelhart et al., [1986)
where the backpropagated failure signals are used for
the SA step and corresponding local weight changes
for the model adaption. Backpropagation attempts to
iteratively change the edge weights in an ANN in such
a way that a given error function on the output neurons
of the net is minimised. This error function of course
must be chosen so that it assumes its minimal value
whenever the neural network produces its desired
output. In the case of HydroNet this desired output
is a given value for the maximum allowable nitrogen
discharge to the reservoir. Contrary to standard
backpropagation the HydroNet learning procedure
only adjusts the weights of fertilization edges — all
other weights stay fixed — and comprises specific
stop criteria.

For a more comprehensive description of the
HydroNet and its learning procedure please refer to
Kralisch et al.| (2003) and Kralisch! (2004).

3. GDSA APPLICATION
3.1. Catchment Description

In order to evaluate our GDSA approach we applied
it to a subcatchment of the drinking water reservoir
Weida-Zeulenroda (figure 3). The catchment is
located in the eastern part of Thuringia which is a
federal state of Germany. It covers an area of about
102 km?, its altitude varies between 355 and 565 m
above sealevel. Two thirds of the catchment are
used for intensive agriculture. The annual average
precipitation here is only about 640 mm, the annual
average temperature less than 7 °C.

3.2. Simulation Model

The natural resource model that we used for
the GDSA application was WASMOD (water and
substance simulation model) developed by [Reiche
(1994). WASMOD allows a fully distributed
simulation of the nitrogen discharge from single
spatial model entities (i.e. management areas). These
entities are represented by polygons. The discharge
is described as a function of soil, relief, land use and
climate which are the basic input data. WASMOD not
only accounts for the nitrogen input by fertilization
and atmospheric deposition but also for the input by
lateral inflow from neighbouring model entities.
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Figure 3. Location of the Weida-Zeulenroda catch-
ment (Kralisch et al., 2003)

3.3. HydroNet Setup

In order to map the WASMOD model to a HydroNet
for each spatial model entity of WASMOD a
corresponding neuron was created. The nitrogen
fluxes within the catchment were then represented by
directed edges between the corresponding nodes. The
external nitrogen inputs for the model entities were
represented by directed edges as well. To initially
set up the weights of groundwater and interflow
edges we used the discharge values calculated by
WASMOD. The resulting HydroNet included about
15000 neurons with individual activation functions
and more than 44000 edges.

In order to identify the neuron activation functions
sampling points of the nitrogen discharge function
of each model entity were calculated by WASMOD.
Sampling points represent the entity’s nitrogen output
for a given input. These outputs were calculated with
the help of fertilization scenarios which were applied
to the whole catchment.

The scenarios we looked at represented 13 different
nitrogen inputs on each model entity, varying from
0% to 120% of their standard fertilization. Each
fertilization scenario was simulated for a time period
of five years. This period is a typical planning horizon
for the Thuringian Water Management who manages
the catchment. The choice of five years also made
sure that the scenarios could take effect on the single
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entities.

All sampling points were calculated under the as-
sumption of an average land use and constant general
conditions (i.e. soil, climate and relief). They were
then used to approximate the HydroNet activation
functions.  For these approximations individual
polyline functions (figure 4) were used. Comparisons
with other function types (i.e. polynomial and
exponential functions) had shown that polylines were
especially suited to reproduce the nitrogen discharge
(Kralisch, 2004).
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Figure 4. Polyline activation function based on five
sampling points

3.4. WASMOD vs. HydroNet

In order to test the model qualities of the HydroNet
we initialized the fertilization edge weights with
annual standard fertilization values. After calculating
the activations of all neurons the HydroNet output
accounted for 225 Mg N a~!. The overall nitrogen
discharge to the catchment calculated by WASMOD
accounted for 219 Mg N a~! for the same time period.
The deviation of only 2.9% shows that the HydroNet
results fit those of the WASMOD model very well. A
more detailed comparison of the calculated nitrogen
discharge from single neurons and spatial model
entities is shown in figure |5. The high coefficient
of determination of 0.92 and a gradient of nearly 1
emphasise the high correlation.

3.5. Sensitivity Based Model Adaption

With a good ANN approximation of WASMOD at
hand we then performed the second step of the GDSA
— the goal directed adaption of the HydroNet model.
For this purpose the HydroNet learning procedure
was applied. During this procedure the weights of
the fertilization edges were reduced according to the
influence of the associated neuron on the HydroNet
output. Before the learning procedure could be
applied we needed to specify a value for the maximum
allowable discharge into the reservoir. In order to
see which minimum nitrogen discharge could be
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Figure 5. Deviations between calculated nitrogen
discharge from neurons and spatial model entities

established we chose the following stop criteria for the
learning procedure:

1. The HydroNet output accounts for a value of
OkgNa!or

2. the changes in the HydroNet output between
two consecutive steps of the learning procedure
falls short of a given minimum (1 kg N a—!).

The learning procedure stopped after a total of 518
steps of weight adjustments due to the second stop
criterion. The HydroNet output for the new edge
weights accounted for 168 Mg N a=!. This means
a total reduction of the proposed nitrogen discharge to
the reservoir by 57 Mg N a~! or 25%. Figure 6 shows
the results for all spatial model entities. Here, each
area is colored according to the percentage weight
reduction of the fertilization edge of the associated
neuron in the HydroNet. As can be seen very clearly
the reductions are high especially on those areas that
are situated near riparian zones.

3.6. Evaluating GDSA

In order to assess the quality of the GDSA results
for our Weida-Zeulenroda scenario we used the
calculated fertilization inputs to parameterize the
spatial model entities of the WASMOD model.
Then we again simulated the catchment’s nitrogen
discharge with WASMOD for a period of five years.
During this time the fertilization inputs for the model
entities stayed fixed as calculated with the learning
procedure.

The WASMOD results show that the reduction of
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Figure 6. Results of the sensitivity analysis

fertilization has nearly no effect on the nitrogen
discharge to the reservoir after one year (figure (7).
Starting in the second year of reduced fertilization the
discharge values start to respond. In the fifth year
the nitrogen reduction in discharge reaches a value of
nearly 33%.

In order to compare the WASMOD results to our
predicted discharge reduction we used the five year
average reduction. This is justifiable because we
considered a five year period for the calculation of the
activation functions as well. The average reduction
within five years accounted for about 23%. Compared
to the predicted reduction of 25%, this result shows
satisfactory compliance.
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Figure 7. Reduction of nitrogen discharge to the
reservoir modelled by HydroNet and WASMOD

3.7. Comparison with Conventional Approaches

We were also interested in how our GDSA approach
compares to conventional approaches for the solution
of the nitrogen leaching problem. As pointed out
in the introduction, a conventional SA of a model’s



output towards a large number of spatially distributed
parameters can not easily be done. In the case
of WASMOD about 15000 parameters were to be
considered. Even without taking the topology of the
model entities into account this task cannot be done
with WASMOD alone — it would lead to a very hard
high-dimensional SA.

We therefore decided to compare GDSA to two non-
SA-based conventional approaches that are frequently
used in practice to identify areas that have a high
influence to nitrogen discharge from the whole
catchment. For this purpose we defined the following
task: starting from the standard fertilization the
overall nitrogen input for all spatial model entities
should be reduced by an amount of 10%, 20%
and 30%. The objective was to reach a maximum
reduction in the nitrogen discharge to the receiving
stream.

The first of the compared classical approaches
simply reduces the nitrogen inputs evenly on all
model entities (even reduction). This reflects the
effects of establishing sanctuaries which allow only
reduced fertilizer inputs.  The second classical
approach reduces the nitrogen inputs proportional
to the entities’ nitrogen discharge under standard
fertilization conditions (proportional reduction). Note
that both approaches ignore the lateral nitrogen
transport between management areas. For both
approaches WASMOD was used to predict the effects.

Each of the approaches — the GDSA one and the
two classical — was applied to the abovementioned
task.  Figure |8 shows the results: The overall
nitrogen input which is shown on the x-axis of the
diagramm also includes nitrogen which is inserted to
the spatial entities by atmospheric deposition. For
this reason its values amount to about 8%, 16% and
24% rather than 10%, 20% and 30%. Assuming that
WASMOD delivers correct results the following could
be observed: The worst result was achieved by evenly
reducing the fertilization inputs. The best result was
obtained with the GDSA approach. The approach of
proportionally reducing the fertilization inputs shows
a result that lays in-between the others.

4. CONCLUSIONS

We have presented a new approach for the sensitivity
analysis of spatially distributed parameters of a
natural resource model: the goal directed distributed
sensitivity analysis (GDSA). This neural network
based approach is suited to take into account
not only a large number of parameters. It also
allows considering the topology that underlies the
corresponding natural resource model. Our approach
includes the transformation of a complex natural
resource model into a neural network (HydroNet).
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Figure 8. Comparison of the HydroNets results with
two conventional approaches

The HydroNet is a computational model representing
the relationship between the values of distributed
parameters as inputs and the models output. We
applied the GDSA approach to the model WASMOD
which is able to simulate water and nitrogen fluxes
within mesoscale catchments. The results show that
the HydroNet represents the relationship between the
distributed fertilization inputs into the models spatial
entities and the nitrogen discharge to the receiving
stream nearly as well as WASMOD. Moreover, the
GDSA was able to correctly predict those model
entities that have a high influence to the nitrogen
discharge modelled by WASMOD. The identification
of highly sensitive areas within the catchment as
performed by the GDSA is a major step towards an
integrated catchment management that accounts for
processes on single areas as well as for the transport
of substances between them.
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