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EXTENDED ABSTRACT

Leaves play a vital role in the development of a
plant, as they are major resource collectors. Adequate
representations of leaves are therefore required for
the modelling of plants. Such representations may
be important to generate a realistic visualisation, or
they may be used to study biological processes such as
photosynthesis and canopy light environment. Highly
accurate leaf surface representations are rarely used
by the plant modelling community. This paper aims
to show how detailed, accurate representations of leaf
surfaces can be created from data; representations
that may then be used as parts of virtual plants
for applications in fields as diverse as the arts,
agriculture or computer games. The techniques used
here are mathematical methods of surface fitting
applied to data that has been sampled from real
leaves with a laser scanner (Polhemus FastSCAN
3D). These methods are interpolating finite element
techniques, one using linear triangular elements, the
other piecewise cubic triangles. The size of a laser-
scanned data set can be enormous and it may be
important to represent the surface with significantly
fewer points. An incremental algorithm is therefore
used to identify significant points that result in a
surface fit that approximates the entire data set to a
pre-specified accuracy.

The algorithms are applied to two examples, a
Frangipani leaf and a Flame Tree leaf. Figure1
visualises results for the Flame Tree leaf. The
images represent (a) a photo of this particular leaf,
(b) the complete set of more than 5000 digitised data
points, (c) positions of data points after application
of the incremental algorithm for the piecewise cubic
approach with an accuracy of 1%, (d) the same
rotated to show the shape of the surface represented
by these points, (e) the resulting triangulation and (f)
the surface fit. From these point locations, guidelines
are deduced describing where data points should be
positioned, for example for measurement by lower
resolution devices such as a sonic digitiser. The
reduced point sets contain about1

10 of the number of

points in the original data set.

The research presented in this paper is the first
to model detailed and accurate leaf surfaces based
on large numbers of three-dimensional data points
captured from real leaf surfaces. It provides a basis
on which further research can be built. For example,
detailed and accurate surface representations may
be used in the simulation of pesticide deposition
on leaf surfaces to determine the effectiveness of
a treatment and help develop improved pesticide
application techniques.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Representation of the Flame tree leaf
surface, and photo and data set for the Frangipani
example. (a) A photo of the Flame tree leaf, (b) the
5607 digitised data points, (c) the reduced point set,
(d) the same set rotated, (e) the resulting triangulation,
(f) the surface fit, (g) a photo of the Frangipani leaf
and (h) the 10473 digitised data point.
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1 INTRODUCTION

Computer models of plants have been developed to
study and to teach about the structure, function and
development of plants as well as their interaction
with the environment. The architecture of a
plant plays a fundamental role in the acquisition
and allocation of resources, tolerance to damage
and competition (Bloomenthal 1985), hence many
modelling approaches concentrate on plant structure
and geometry. Virtual plants in particular
are developmental plant models that incorporate
topological and geometrical information, which can
be used to produce a visualisation (Roomet al.1996,
Prusinkiewicz 1998, Godin 2000). They are tools for
plant scientists and teachers in biology, agronomy,
ecology and pest management (Roomet al. 1996,
Prusinkiewicz 1998).

Leaf models play an important role as part of a plant
model. In the management of crop pests, for instance,
the optimal timing of sprays to minimise the use of
pesticides can be determined by simulation of the
interaction of pesticide application to the surfaces of
individual leaves and response in insect behaviour.

The leaf representations described in this paper
are descriptions of the external architecture of a
leaf. They may be used to generate a visually
correct, realistic model that captures the shape for a
visualisation.

Previous approaches to represent leaf surfaces include
anti-aliased1 disks by Smith (1984) and polygons
and texture maps by Bloomenthal (1985); bicubic
patches (B́ezier patches) were included into L-
system2 models as predefined surface objects, to
which texture maps could be applied; Bézier patches
were also implemented in other plant modelling
environments such as AMAP (Godinet al. 1997)
to represent leaf surfaces. Branching skeletons
were used by Hammelet al. (1992) for compound
leaves, and flat-bed scanner data and a boundary
following algorithm were applied by M̈undermannet
al. (2003). Maddonniet al. (2001) used piecewise
linear triangles, where vertices along the boundary are
estimated by allometric relationships, and España et
al. (1999) modelled the undulations of the boundary.
Finally, Lintermann and Deussen (1999) based their
approach on splines and texture maps.

Note that none of the leaf modelling approaches
mentioned above were based on detailed three-
dimensional real world data; in most cases models

1disks where the colours are drawn blurred along diagonal lines
to soften jagged edges

2L-systems (Lindenmayer-systems) are a formal mathematical
approach to describe branching systems (Lindenmayer 1968,
Prusinkiewicz and Lindenmayer 1990)

were designed to fit visual observations. If data
points were measured, then in general they were used
to determine the position, orientation and size of a
leaf, not to define its surface shape. Although many
of the approaches mentioned above have resulted
in visually pleasing leaf surface representations, no
quantitative assessment has been made to compare
hand-designed models to real leaves. In other words,
accurate representations of leaf surfaces are rarely
found. The object of this study is to close this gap by
applying methods of surface fitting to sets of scattered
data points sampled from leaf surfaces. Rather than
modelling at the cell level, emphasis is placed on
capturing visible surface details.

This paper is structured in the following way. First,
digitising techniques are briefly presented and the
digitised leaf species are described. Then two finite
element surface fitting methods are explained, along
with an incremental algorithm to reduce the size of the
set of data points that needs to be collected. Results
are presented and analysed in the form of data set
sizes, point locations and visualisations of the fits.
Future directions and applications are discussed in the
conclusions.

2 TECHNIQUES

2.1 Digitising

2.1.1 Digitising techniques

Digitising is the process of sampling spatial coor-
dinates of points from an object using a measuring
device. Two digitising techniques suitable for
measuring leaf surfaces are a laser scanner (e.g.
Polhemus FastSCAN 3D) and a sonic digitiser (e.g.
Freepoint 3D). The first is capable of returning very
large data sets from small leaf surfaces, and can be
classified as a multiple-point digitiser. The sonic
digitiser on the other hand is a single-point device;
only one data point can be digitised at a time. This
means that the locations of data points on the leaf
surface are very important, as usually only a small
number of points are collected, which will have to
suffice in describing the surface. More information
on the various digitising techniques as well as issues
arising from specific leaf properties can be found in
Loch (2004) and Hananet al. (2004).

A laser scanner was used to digitise leaf surface data
for this study. Since a plant scientist may be more
likely to have access to a sonic digitiser, recommended
locations for sampling points on a leaf surface are
derived from the laser scanner data in a later section.
These guidelines can be used to help decide where a
smaller set of data points should be located, while still
maintaining reasonable accuracy.
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2.1.2 Digitised leaf types

Two different species are used as examples for which
surface representations are generated. Leaves from
a Frangipani and a Flame Tree have been digitised.
These species are chosen because one has a simple
shape while the other is palmately lobed. Results for
two further leaf types can be found in Loch (2004).

Frangipani (Plumeria japonica) leaves have a
simple, ovate (oval-shaped) boundary and possess
a distinctive mid-vein. They taper to a point at
the base where the leaf is attached to the petiole
(the leaf stalk), and have a broader tip on the
opposite end (Figure1(g)). The blades of Flame Tree
(Brachychiton acerifolius) leaves are simple ovate
or palmately lobed, depending on the age of the
tree (Figure1(a) shows a leaf with the re-entrant
boundary characteristic of the latter). Mid-veins are
dominant in each lobe. Both plants grow in South-east
Queensland.

These two photos show the actual leaves that have
been digitised for this study. Both surfaces were
sprayed with a Kaolin/water mix to change reflective
properties so the laser scanner can capture surface
information. For the Frangipani leaf, more than
10,000 points were collected, compared to about half
this number for the Flame Tree leaf. The two data sets
used here are displayed in Figures1(h) and (b).

2.2 Surface fitting

The mathematical methods of surface fitting applied
to the scattered leaf surface data are interpolating
finite element methods (Lancaster andŠalkauskas
1986). Finite element methods are based on the
concept that the domain on which data points are
provided is divided into subdomains (patches) on
which a function is defined. For scattered data
points, triangular elements are commonly used; this
will also be the case here. For each triangular
segment, a surface function (usually a polynomial) is
then determined that interpolates the vertices and, if
required, derivative information. This function is only
defined for that particular element. Derivatives may
need to be estimated if they are not supplied with the
data. The derivatives required depend on the finite
element used. By joining many polynomial patches
(in a possibly smooth way), the complete surface is
generated. See Lancaster andŠalkauskas (1986) for a
detailed introduction into this area.

Two different triangular finite elements are applied
in this paper, the linear triangle (LIN) and the
piecewise cubic Clough-Tocher triangle (CUB). The
linear triangle requires values at the three vertices
of the triangle to determine the three coefficients
of the bivariate linear polynomial uniquely on each

triangle. For the interpolation approach used here,
data points are the vertices. This results in a planar
surface on each triangle and in a planar faceted
surface overall. The surface over the whole domain
is therefore continuous, in other words there are no
jumps (a C0 surface), and normal derivatives of the
surface function are in general discontinuous at inter-
element edges. This discontinuity can be regarded
as a serious disadvantage of the piecewise linear
method. If the original surface that provided the
data points was smooth, then the interpolant should
preferably be smooth. Note that visually, smoothness
can be achieved by appropriate rendering techniques
but for some simulation problems, such as movement
of droplets over a surface, a smooth surface may
be required. However, piecewise linear polynomials
can deliver a satisfactory fit if sufficiently many data
points are interpolated, and if smoothness is not the
first priority. The piecewise linear approach is widely
used because of its simplicity: no derivatives need
to be estimated and only three nodes are required for
each triangular element.

The piecewise cubic Clough-Tocher triangle (Clough
and Tocher 1965), on the other hand, is an element
resulting in a smooth (C1) surface over the whole
domain. It is a seamed element approach, treating
a triangle as a macro-element by subdividing it into
subtriangles, the micro-elements. An interpolating
cubic polynomial is found on each subtriangle, and
the bivariate piecewise cubic interpolant over the
entire triangle can be constructed as continuously
differentiable from these three polynomials. Only
12 degrees of freedom are required: the function
values and gradient at each vertex, as well as normal
derivatives at the mid-point of each side (see Lancaster
and Šalkauskas (1986) for further details). The
Clough-Tocher approach has the advantage that it
results in a smooth surface over the whole domain.

As is the case for leaf surface data, derivative
information is usually not provided with the data and
needs to be estimated. The normal derivatives at the
side mid-points are often estimated as the mean of the
normal derivatives at the vertices at each end of that
side. This is based on the assumption that the normal
slope along the sides of the triangle changes linearly.
All quadratic but only some cubic polynomials can be
reproduced when the interpolation scheme is reduced
to a nine node scheme in this way. In this context,
directional derivatives at the vertices are estimated
following an approach introduced in Breslin (2001),
which is also described in Appendix B in Loch (2004).

In order to use these techniques of surface fitting a
reference plane is needed. This may be obtained by
making a least squares fit of a plane to the data points.
When this is done we refer to the distancez of the
data points from the reference plane as function (z) of
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the position (x, y) of the data points in the reference
plane, thusz = f(x, y). An interpolation method then
enables construction of an approximantΦ(x, y) such
thatzi = Φ(xi, yi) at each data point.

2.3 Point set reduction

The finite element surface fitting methods described
above interpolate all available data points. Since
it is possible to measure tens of thousands of data
points situated on the surface of a small leaf, data
sets acquired with a laser scanner can be enormous
in size. Fitting an interpolating surface to a very large
set of data points results in an elaborate data structure,
so a more compact representation of the surface
may be desirable. Aside from the computational
aspect, a representation based on all available data
points may not be required if emphasis lies on
just a realistic visualisation of the surface, or if
a less-detailed representation which includes major
surface features is sufficient. Ideally, the number
of interpolated points is reduced to a minimum. It
is usually not practical to determine a minimum set
due to the computational complexity of this problem.
The aim is instead to determine sets of significant
points for particular leaf surface types. Note that
a representation that is based on fewer data points
will approximate the original data, and may be a less
accurate representation of the real surface. A balance
needs to be found between the computational effort,
storage and memory requirements and the resulting
surface quality.

A reduction of the size of the data structure can be
achieved using an incremental method. An initial
surface is fitted to a small subset of the set of data
points. Then, step by step, data points selected from
the total set of data points are added to improve the
surface fit. This adaptive method can be applied
until the discrepancy between each data point and its
approximation on the fitted surface has fallen below
a threshold, in other words until the fit has reached a
certain closeness to the data. See De Florianiet al.
(1985) and Park and Kim (1995) for previous results
with this approach.

To quantify a fit based on a subset of the set of all data
points, theaccuracyof an approximation is measured
in terms of a maximum error associated with the
particular surface fit in relation to the maximum
variation in z for the points. The maximum error
is measured over all remaining points inP , in other
words all points that are not interpolated. It gives
an indication of how well the fit behaves at its worst
point. More formally, letf be a surface function
interpolating the subset of data pointsPf ⊂ P , with
P all available data points. Themaximum error

associated withf will then be defined as

e(f) = max
p∈P\Pf

e(p),

wheree(p) denotes the error associated with a data
pointp = (x, y, z) that is not a vertex, and

e(p) = |z − f(x, y)|,

the vertical distance between pointp and its
approximation on the surface. Note that these
measurements do not give an exact indication of how
good the fit is compared to theoriginal surface from
which data has been collected, since the data points
are sampled.

For a surface with a specific boundary like a leaf
surface, it is reasonable to begin an incremental
point addition method with data points situated on
the boundary of the surface. While there are many
sensible approaches to choose the data point to be
added, one that aims to reduce the maximum error
includes the data point that carries the largest error.
This approach was used for piecewise linear fits in De
Floriani et al. (1985), while in Park and Kim (1995),
k ≥ 1 points were added simultaneously for piecewise
cubic Clough-Tocher surfaces. In experiments with
leaf data sets, the maximum error criterion with
parametersk > 1 generally led to larger point
selections thank = 1. For this reason, the casek > 1
is not considered further.

An interesting observation made in the two aforemen-
tioned papers as well as here is that the method adding
the maximum error point does not monotonically
reduce the resulting new maximum error. It is in fact
possible that the addition of the maximum error point
may lead to an increase in the maximum error for
the fit. This situation often occurs when important
features such as a midrib with a strong curvature are
represented by too few points, and also when points
situated on the midvein are not connected by triangle
edges that are oriented along the vein. It was observed
that the maximum error point is very often located
close to the centres of triangle edges.

For the application of this incremental method to leaf
surface data, the error tolerance limit is the accuracy,
or in other terms the percentage of the maximum
variation pointwise inz over all data points. After the
accuracy has reached a certain percentage of the total
range of surface elevation the algorithm is stopped.

2.4 Results

2.4.1 Point set sizes

Techniques described in the previous section are
applied to data sets of the two species. Boundary
points that are chosen as initial configuration for
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the incremental algorithm are marked with circles in
Figure 1. These points were selected to represent
the boundary in an adequate way, that is to capture
any specific features without leaving large gaps. Two
tolerance limits of the algorithm are compared: the
algorithm is stopped when the surface fit has reached
5% or 1% accuracy compared to the total set of
available data points. Both facetted (LIN) and smooth
(CUB) surfaces are generated.

The resulting interpolation data set sizes are listed in
Table1. Outcomes are similar for both surface fitting
methods, although point positions generally vary.

Table 1.Resulting sizes of point sets for the reduction
approach, for both leaf types.

Frangipani Flame tree
LIN CUB LIN CUB

total points 10473 10473 5706 5706
initial points 17 17 61 61
for accuracy 5% 55 62 127 142
for accuracy 1% 323 327 587 607

For the frangipani leaf, the original data set of more
than 10,000 points can be reduced by several orders of
magnitude if an accuracy of 5% is sufficiently precise.
An accuracy of 1% requires only130 of the original
size.

For the flame tree leaf the reduction is less, though still
significant. More data points need to be interpolated
for this species to capture the surface shape of each of
the lobes accurately. This is also the reason why the
size of the initial (boundary) data set is larger.

Numerous data sets were acquired for each leaf,
varying greatly in size. Application of the incremental
algorithm to each of these leads to similar results in
the order of magnitude of resulting point sets. Table2
displays the point set sizes for three different data sets
of the same frangipani leaf.

Table 2. Comparison of results for three different
scans of the same frangipani leaf.

LIN CUB
total 10473 10473

data set 1 for accuracy 5% 55 62
for accuracy 1% 323 327
total 9208 9208

data set 2 for accuracy 5% 71 87
for accuracy 1% 405 431
total 3402 3402

data set 3 for accuracy 5% 61 58
for accuracy 1% 390 367

Various locations and numbers of initial boundary

points were tested to examine the influence of the
starting conditions on the location and number of
data points resulting from the incremental algorithm.
While positions are similar, large initial point sets
lead to larger total sets due to redundant boundary
information. For smaller initial sets the algorithm
added points along the border to capture the boundary
properly.

2.4.2 Guidelines for the location of data points

Apart from generating representations of leaf surfaces
from available data, the aim of this study is to decide
where data points need to be positioned to capture
important surface features. This information can then
be used to give advice to plant scientists with single-
point digitising devices such as sonic digitisers, to
help decide where surface data needs to be measured.
Locations of data points for the two species are
displayed in Figures2 and 3; these correspond to
results given in Table1. Comparing these sets for each
leaf type leads to the following observations about the
structure of the data sets.

(a) (b)

(c) (d)

Figure 2. Frangipani leaf: point sets. (a) The reduced
set for LIN with 1% accuracy, (b) for LIN with 5%
accuracy, (c) for CUB with 1% accuracy and (d) for
CUB with 5% accuracy. Initial boundary points are
marked in bold.

(a) (b)

(c) (d)

Figure 3. Flame tree leaf: point sets. (a) The reduced
set for LIN with 1% accuracy, (b) for LIN with 5%
accuracy, (c) for CUB with 1% accuracy and (d) for
CUB with 5% accuracy. Initial boundary points are
marked in bold.

For a leaf with an undulate boundary such as the
Frangipani leaf, the surface needs to interpolate a
sufficiently large number of data points along the
boundary. Figure2 (left) shows that the initial set
of 17 points has been complemented by many more
points along the boundary for an accuracy of 1%.
Furthermore, points along the mid-vein have been
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included. This can be observed even for the 5% sets
in Figure2 (right).

Point locations for the lobed Flame Tree leaf are
shown in Figure3. The basal part of the leaf can be
divided into regions that are dominated by the main
veins leading into the lobes. At the interfaces between
those regions, below the “re-entrant”, the surface
forms a crest. Points are selected along all main veins
and also along the interfaces leading towards the re-
entrant points. For a 1% accuracy, this structure is
more pronounced for LIN than for CUB, where the
points are scattered along the veins.

An interesting observation for both species for LIN
and 1% accuracy is that data points are located along
what appear to be double lines following dominant
veins (top left of Figures2 and 3). Comparison of
the 5% to the 1% selections of both leaves reveals
that in fact a second line of points has not been added
next to those on the original vein, but the new points
are scattered around the existing ones along the veins.
This results in a refined triangulation along the veins,
and therefore in an improved representation of the
width of the veins for LIN.

2.4.3 Visualisation - triangulations and surfaces

The triangulations corresponding to the reduced data
sets are shown in Figures4 and 5 (first four plots).
Colour represents the average surface height of the
three vertices of each triangle. By visual comparison
with the original data set (bottom right), the 1%
accuracy surfaces, and even the 5% accuracy fits are
good representations.

A visualisation of the surfaces for LIN can be found
in the first two plots in the two figures. The surface
fit for CUB with an accuracy of 1% is shown in (e),
followed by the complete data sets in (f). Interpolated
shading and a green scale are applied here.

3 CONCLUSION

The research presented in this paper describes an
approach allowing the user to model detailed and
accurate leaf surfaces based on three-dimensional data
points. Mathematical surface fitting techniques are
applied in combination with an incremental algorithm
to reduce the set of interpolated data points to a more
compact size. Resulting surface fits are of satisfactory
quality. After an analysis of the locations of selected
data points, guidelines are given on where data points
should be digitised when a single-point device is used.

The work described here delivers a basis on which
further research can be built. This may be in
applications of detailed models, or into extensions of
the surface representation. Such representations may

(a) (b) (c)

(d) (e) (f)

Figure 4. Frangipani leaf: (a)-(d) Triangulations
corresponding to data sets in Figure2, showing the
level of detail with which the surface is represented for
each point set. Colour stands for the average surface
height of the three vertices of each triangle. (e) The
surface fit for CUB and 1% accuracy and (f) all data
points.

(a) (b) (c)

(d) (e) (f)

Figure 5. Flame tree leaf: (a)-(d) Triangulations
corresponding to data sets in Figure3, showing the
level of detail with which the surface is represented for
each point set. Colour stands for the average surface
height of the three vertices of each triangle. (e) The
surface fit for CUB and 1% accuracy and (f) all data
points.

be used not only to generate realistic and accurate
images of leaves, but also for applications that go
further than visualisation. For example, in the
simulation of pesticide application to plant surfaces
(Hananet al. 2003) it may be important not only to
model splash, but also to find the path that a droplet
of a pesticide sprayed onto the plant follows along
a leaf surface, before it leaves the surface or comes
to a standstill. Knowledge of this behaviour may be
used to determine the effectiveness of a treatment,
and eventually to help evaluate differing pesticide
formulations. A realistic and detailed surface and
boundary shape is a prerequisite for such a simulation.
See Loch (2004) for a prototype simulation.

Another application would be the simulation of light
interception in canopies. España et al. (1999) found
that when ray tracing techniques are applied to
compute the radiative transfer in a canopy of the
maize plant, the level of detail with which the leaves
are represented, expressed by the number of triangles
used, does not influence the estimate. This remains
to be confirmed for other leaf types. More detailed
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models may lead to more accurate results than simple
prototypes like those used in Sinoquetet al. (1998).

The presented surface models contain structural but
no functional information. These descriptive surface
models could be used as a first step to generating
a functional model. From the digitised data sets
and the fitted surface, information about the location
of veins could be extracted, and used, for instance,
to visualise a model of the transport of sugars
produced from carbohydrates that are generated
during photosynthesis from leaves to other parts of the
plant. Another application could be the simulation of
insect-plant interaction, for instance an insect attack
on a leaf, and the consequences to sections of the leaf
surface when veins are severed.

An advantage of the leaf models described in this
paper is that they are not restricted to a particular
software package; they may be used in different plant
modelling environments such as AMAP (Godinet al.
1997), xfrog (Lintermann and Deussen 1999) or L-
Studio (Prusinkiewiczet al.2000).
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