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EXTENDED ABSTRACT

The Black-Scholes(BS) model has been widely
and successfully used to model the return of
asset and to price financial options. Despite
of its success the basic assumptions of this
model, that is, Brownian motion and nor-
mal distribution are not always supported by
empirical studies. Those studies showed the
two empirical phenomena: (1) the asymmetric
leptokurtic features, (2) the volatility smile.
The first means that the return distribution is
skewed to the left and has a higher peak and
two heavier tails than those of normal distri-
bution, and the second means that if the BS
model is correct, then the implied volatility
should be flat. But the graph of the observed
implied volatility curve often looks like the
smile of the Cheshire cat. One of the causes
for such phenomena is jumps in assets price
processes. Figure 1 shows time series of 1
minute tick data of Yen/$ exchange rate be-
tween 15:00 and 24:00 on 21st of July 2005
when Chinese Yuan was revaluated. It seems
obvious that there was a jump at the time
of the revaluation. Many models were pro-
posed to explain the two empirical phenom-
ena. For example popular ones are normal
jump diffusion model(Merton(1976)), stochas-
tic volatility models(Heston(1993)), ARCH-
GARCH models(Duan(1993)), etc. For other
models see references in Kou(2002)). Among
others we focus on a double exponential jump
diffusion model proposed by Kou(2002) in this
paper. Kou’s model is very simple and has rich
theoretical implication as described below:
The logarithm of the asset price is assumed to
follow a Brownian motion plus a compound
Poisson process with jump sizes double ex-
ponentially distributed. This model has the
following advantages: (1) it can explain the
two empirical phenomena, that is asymmet-
ric leptokurtic feature and the volatility smile,
(2) it leads to analytical solutions to many
option-pricing problems. Despite of these ad-
vantages there are not many empirical stud-
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Figure 1. Jump effect of Chinese Yuan reval-
uation on Yen/$ exchange rate

ies based on this model partly because prob-
ability distribution function derived from this
model is rather complicated and difficult to
be estimated. However we fit Kou’s model
to Japanese stock data. Before doing so we
applied Bipower test proposed by Barndorff-
Nielsen and Shepard(2004) to see if Japanese
stock price process contain jumps. After con-
firming jumps were existed we calculated op-
tion prices by the estimated Kou’s and BS’s
model and compared those prices with the
market price. As a result we found that Kou’s
model outperformed BS model.

The plan of this paper is as follows. In Sec-
tion 2 we introduce the Barndorff-Nielsen and
Shephard (2004), BN-S, hereafter, test which
is a test to the adequacy of pure jump diffu-
sion model (with no jumps) and we apply their
test to real Japanese stock data in the sub-
section 2.2. In Section 3 we introduce Kou’s
model and its theoretical background in the
subsection 3.1, and apply it to Japanese stock
data to calculate option-prices in the subsec-
tion 3.2. In Section 4 we compare pure- and
jump-diffusion models by observing volatility
smile and other statistics and conclude this
paper.
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1. INTRODUCTION

It has been observed that structural changes
and/or jumps often occur in financial time se-
ries data due to the policy changes and so-
cial events (see, for example, Wichern, Miller
and Hsu (1976), Picard (1985), Inclán and
Tiao (1994), Lee, Ha, Na and Na (2003), Lee
and Na (2004), Lee, Tokutsu and Maekawa
(2004) ). In particular, if there is such a
structural change, it is well known that a
pure diffusion model does not provide a bet-
ter fit to the financial data such as stock re-
turns and interest rates. For this reason, jump
diffusion models and Levy processes have re-
cently applied to financial time series data.
See Barndorff-Nielsen, Mikosch and Resnick
(2001), Kou (2002), Shoutens (2003) and Cont
and Tankov (2004). Recently BN-S proposed
a new test for jump diffusion process based
on bipower variation. In this section we ap-
ply their method to test whether an observed
process is a jump diffusion process or a pure
diffusion process(without jumps).

2. TESTING H0: NO JUMP vs H1:
JUMP

2.1. Bipower Variation (BV) Test

Before we apply a jump diffusion model to real
data we test the normality of return distribu-
tion for stock data contained in Nikkei 225 by
using two tests, that is, Lilliefors test (abbre-
viated L-test hereafter) and Anderson-Darling
test (abbreviated AD test hereafter). By con-
ducting these two tests to 214 time series out
of Nikkei 225 stock prices the normality as-
sumption of the return distributions are not
accepted by both of the tests. The results
strongly suggest that those series may have
jumps. Therefore we want to test if there
are jumps in these series. As a test for the
jump processes, we describe the method of
Barndorff-Nielsen and Shephard (2004) test
based on bipower variation. Their idea for
constructing the test for jumps is based on
the fact that the quadratic variation process
of a semimartingale can be divided into the
two parts: the continuous and discontinuous
parts.

Let Y denote a semimartingale, and let Y c

and Y d be the continuous part and the dis-
continuous part of Y , respectively.

The definition of quadratic variation process
of Y is given by

[Y ]t = p− lim
n→∞

n−1∑
j=0

(Ytj+1 − Ytj
)2, (1)

for a sequence of partitions t0 = 0 < t1 <
· · · < tn = t such that supj{tj+1 − tj} → 0
and n → ∞. Then the following equation is
known to hold

[Y ]t = [Y c]t + [Y d]t, (2)

where [Y d]t =
∑

0≤u≤t

ΔY 2
u , where ΔYt = Yt −

Yt− are jumps in Y . BN-S (2004) construct
the test for jumps by checking whether [Y ]t =
[Y c]t holds or not. Namely, they consider the
following hypothesis test:

H0: Y is a member of the Brownian semi-
martingale (BSM) class:

Yt =
∫ t

0

asds+
∫ t

0

σsdWs, vs.

H1: Y is a member of the BSM plus jump
(BSMJ ) class:

Yt =
∫ t

0

asds+
∫ t

0

σsdWs +
Nt∑
j=1

cj , (3)

where as and σs are càdlàg. Wt is a stan-
dard Wiener process, Nt is a counting process,
which shows the number of jumps in the time
interval [0, t], and the jump size cj is nonnega-
tive random variables. It is worth mentioning,
for later calculation, that the quadratic varia-
tion process of Y which belongs to BSMJ is
given by

[Y ]t =
∫ t

0

σ2
sds+

Nt∑
j=1

c2j = [Y c]t + [Y d]t. (4)

To make the test feasible for the actual data,
they introduce Yδ�t/δ� as the discretized ver-
sion of Y , where δ > 0 is a time interval, and
�t/δ� is the largest integer that dose not ex-
ceed t/δ. For simplicity of the notation, let Yδ

stand for Yδ�t/δ�. Let us consider Yt to be the
log-price of an asset, then the log return can
be written as

yj = Yjδ − Y(j−1)δ, j = 1, 2, · · · , �t/δ�. (5)

BN-S (2004) shows that the 1, 1-order bipower
variation process defined by

{Y }[1,1]
t = p− lim

δ↓0

�t/δ�∑
j=2

|yj−1| |yj |, (6)
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can be expressed as

{Y }[1,1]
t = μ2

1

∫ t

0

σ2
sds = μ2

1 [Y c]t, (7)

if Y ∈ BSMJ , where μ1 = E[|u|] =
√

2/π �
0.79788, u ∼ N(0, 1). Therefore, we can
see that μ−2

1 {Y }[1,1]
t = [Y c]t and [Y ]t −

μ−2
1 {Y }[1,1]

t = [Y d]t (see (4) and (7) ).
In calculating the quadratic variation [Y ]t by

[Yδ]t =
�t/δ�∑
j=1

y2
j , (8)

and the bipower variation {Y }[1,1]
t by

{Yδ}[1,1]
t =

�t/δ�∑
j=2

|yj−1| |yj |, (9)

[Yδ]t and {Yδ}[1,1]
t are said to be the realized

quadratic variation and the realized bipower
variation, respectively. Under the two as-
sumptions: (a) The process σ2 is pathwise
bounded away from 0, and (b) The joint pro-
cess (a, σ) is independent of the Wiener pro-
cess W , they proposed the three kinds of test
statistic for the above null hypothesis and cal-
culated their asymptotic distributions as be-
low.

Ĝ =
δ−1/2

(
μ−2

1 {Yδ}[1,1]
t − [Yδ]t

)
√
μ−4

1 {Yδ}[1,1,1,1]
t

L→N(0, ϑ),

(10)

Ĥ =
δ−1/2

(
μ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

)
√
{Yδ}[1,1,1,1]

t /
{{Yδ}[1,1]

t

}2

L→N(0, ϑ),

(11)

Ĵ =
δ−1/2

(
μ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

)
√

max
(
t−1, {Yδ}[1,1,1,1]

t /
{{Yδ}[1,1]

t

}2
)

L→N(0, ϑ), (12)

where ϑ is given by ϑ = π2

4 + π − 5 � 0.6090
and

{Yδ}[1,1,1,1]
t

=
1
δ

�t/δ�∑
j=4

|yj−3| |yj−2| |yj−1| |yj | P→μ4
1

∫ t

0

σ4
sds,

(13)

which is called the realized quadpower vari-
ation. If Y ∈ BSMJ , it is shown that

μ−2
1 {Yδ}[1,1]

t − [Yδ]t ≤ 0 and μ−2
1 {Y }[1,1]

t

[Yδ]t
−1 ≤ 0

(For details see Barndorff-Nielsen and Shep-
hard (2004) ). Hence, we reject the null hy-
pothesis if the test statistic is significantly neg-
ative.

As asymptotic normality of Bipower variation
test is valid for very large sample size such
as a sample size in high frequency data we
have to confirm if it is applicable to a medium
sample size data such as daily data. To do
so we performed the following simulation. We
generated 1000 jump diffusion processes with
250 observations by Kou model and applied
BV test to test null of no-jump. As a result
we correctly rejected the null more than 950
times out of 1000 iterations. From this simu-
lation experiment we may say that BV test is
applicable to our daily data of Japanese stock
data.

2.2. Empirical Study Using Japanese
Stock Data

In this subsection, we perform the BN-S test
for the Nikkei 225 index. Consequently, we
obtain the result that the null hypothesis is
rejected at the 5% significant level. There-
fore, it is appropriate to consider a jump dif-
fusion process for the Nikkei 225 index. This
can be confirmed from the return distribu-
tion. In general, it is known that the distri-
bution of empirical returns has two character-
istics; fat tail (or excess kurtosis) and asym-
metry. In particular, we can mention the exis-
tence of jumps in price processes as one of rea-
sons why fat tail distribution can be observed.
Here we employ a jump diffusion model pro-
posed by Kou(2002) because it can capture
two such characteristics and provide analyti-
cal formulas for prices of options. The model
consists of two parts: (1) a geometric Brow-
nian motion.(2) a compound Poisson process
with jump sizes following a double exponential
distribution. Using the approximate density
of returns given by Kou’s model, we show the
goodness of fit of the density to actual returns
along with the normal density in Figure 2. We
can see that the density given by Kou’s model
shows better fit than the normal around the
center and in tails(see Figure 3).

3. KOU MODEL

In this section we describe Kou’s jump diffu-
sion model.
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3.1. Model Specification

Under probability measure P we assume that
underlying asset price process S(t) follows

dS(t)
S(t−)

= μdt+ σdW (t) + d

⎛
⎝N(t)∑

i=1

(Vi − 1)

⎞
⎠ ,

(14)
where W (t) is standard Brownian motion,
N(t) is a Poisson process with intensity λ and
{Vi}Y is a i.i.d. nonnegative stochastic se-
quence. Again Υ = log(V ) is an asymmetric
double exponential distribution with density

fΥ(y) = p · η1e−η1y1{y≥0} + q · η2eη2y1{y<0},
η1 > 1, η2 > 0,

where p, q ≥ 0, p + q = 1 are up-move jump
and down-move jump respectively. Put an-
other way,

log(V ) = Υ
d=

{
ξ+, with probability p
−ξ−, with probability q

(15)
where ξ+ and ξ− is exponential random vari-
able with mean 1/η1 and 1/η2. Note that
d= denotes identically distributed. In this
model we assume that stochastic element
N(t), W (t), ΥS are independent. For nota-
tional convenience and explicit solution for op-
tion price we assume that drift term μ and dif-
fusion term σ are constants and restrict our-
selves to one dimensional case. However these
assumptions are easily generalized to more
complex case.

Given a solution of SDE(14), then we obtain
asset price dynamics

S(t) =S(0) exp
{(

μ− 1
2
σ2

)
t

+ σW (t)
} N(t)∏

i=1

Vi, (16)

where E(Υ ) = p
η1

− q
η2

, Var(Υ ) = pq( 1
η1

+
1
η2

)2 + ( p
η2
1

+ q
η2
2
) and

E(V ) = E(eΥ )

= q
η2

η2 + 1
+ p

η1
η1 − 1

, η1 > 1, η2 > 0.

Again η1 > 1 guarantees E(V ) < ∞ and
E(S(t)) < ∞. This means that average rate
of up-jump does not exceed 100%.

Rate of return on Δt is given by (16) and

ΔS(t)
S(t)

=
S(t+ Δt)
S(t)

− 1

= exp
{(

μ− 1
2
σ2

)
Δt

+ σ(W (t+ Δt) −W (t))

+
N(t+Δt)∑
i=N(t)+1

Υi

⎫⎬
⎭ − 1.

If Δt is sufficiently small, by omitting higher
order term than Δt and using expansion ex ≈
1 + x+ x2/2, one can approximate rate of re-
turn to the distribution

ΔS(t)
S(t)

≈ μΔt+ σZ
√

Δt+B · Υ

where Z and B are random variable of stan-
dard normal and binomial respectively, and
P(B = 1) = λΔt, P(B = 0) = 1− λΔt and Υ
is given by (15). The density function is

g(x) =
1 − λΔt
σ
√

Δt
φ

(
x− μΔt
σ
√

Δt

)

+ λΔt
{
pη1e

(σ2η2
1Δt)/2e−(x−μΔt)η1

× Φ
(
x− μΔt− σ2η1Δt

σ
√

Δt

)

+ qη2e
(σ2η2

2Δt)/2e−(x−μΔt)η2

× Φ
(
−x− μΔt+ σ2η2Δt

σ
√

Δt

)}
(17)

where φ(·) is density function of standard nor-
mal and Φ(·) is its distribution function.

3.2. Option Pricing by Kou Model

In this subsection we demonstrate Kou’s for-
mula of option pricing for European call given
in Theorem 1 below. For obtaining option
price we need to consider the sum of normal
and double exponential distributions. Fortu-
nately we can compute explicitly the distribu-
tion by using Hh function, which is a special
function of mathematical physics, for more
detail see Abramowitz and Stegun (1972, p.
691).

For a probability P we define

Υ(μ, σ, λ, p, η1, η2; a, T ) := P{Z(T ) ≥ a},

where Z(t) = μt+σW (t)+
∑N(t)

i=1 Υi , Υ follows
double exponential distribution with density
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fΥ (y) ∼ p · η1e−η1y1{y≥0} + q · η2eyη21{y<0}
and N(t) is a Poisson process with intensity
λ. This Υ is the formula for European call
option, which given by the sum of Hh function.
As for the explicit form of Υ, it is given by the
following theorem:

Theorem 1 (Kou (2002)) The European
call price is given by

ψc(0) =S(0)Υ(r +
1
2
σ2 − λζ,

σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), T )

−Ke−rT Υ(r − 1
2
σ2 − λζ,

σ, λ, p, η1, η2; log(K/S(0)), T ), (18)

where

p̃ =
p

1 + ζ
· η1
η1 − 1

, η̃1 = η1 − 1, η̃2 = η2 + 1,

λ̃ = λ(ζ + 1), ζ =
pη1
η1 − 1

+
qη2
η2 + 1

− 1.

Note that when substituting Φ for Υ the equa-
tion (18) seems like Black-Scholes formula for
European call. For the proof of Theorem 1,
see Theorem 3 in Kou and Wang (2004).

4. COMPARISON OF OPTION
PRICES: BS vs. KOU

In this section we compare option prices de-
rived from BS formula and Kou’s formula
(18) as well as implied volatility derived from
BS model and Kou’s model by using 214 se-
ries with more than 1000 observations out of
Nikkei 225 from 1 June 1992 to 31 December
2002. We estimated parameters of Kou’s den-
sity function (17) by MLE and substituted the
estimators to (18) to obtain the European call
option prices for each stock. We also calcu-
lated the option price for each stock by BS for-
mula. Finally we compared the three prices:
the market price (MP), theoretical prices de-
rived by BS and Kou’s models. We used
the market prices of European call option for
Nikkei 225 from September 10, 1999 to De-
cember 12, 2002 with various strike prices and
times to maturity. The relative differences of
theoretical and market prices divided by mar-
ket prices are shown in the figures 4-5. In each
figure the vertical axis denotes the difference
between the two prices and horizontal axes de-
note strike price and time to maturity. Figures
4 and 5 show the differences between the mar-
ket price and theoretical price by Kou’s mode

and the differences between the market price
and theoretical price by BS model. These fig-
ures show that the calculated prices by Kou’s
model are much closer to the real data than
calculated prices by BS model. To see this we
calculated a measure of distance, i.e., average
relative percentage error(ARPE) defined by

ARPE =
1
M

M∑
i=1

∣∣∣∣∣ Ĉi − Ci

Ci

∣∣∣∣∣ ,
where M is the number of options, and Ci

and Ĉi denote market price and model price,
respectively. Table 1 shows the results.

Table 1. Distances from the market price

BS Kou sample size

ARPE 0.3646 0.2895 50955

5. CONCLUSION

In this paper we apply bipower test proposed
by Barndorff-Nielsen and Shephard (2004) to
Japanese stock data and the test shows that
null of no jump is often rejected in Japanese
stock price series. Many jump diffusion mod-
els are studied in the literature. Among others
we choose Kou’s jump diffusion model by rea-
sons mentioned in Kou (2002) and we fit the
model to Japanese data. To see the perfor-
mance of this model we compare option prices
by Kou’s and Black-Scholes model with the
market prices. From our data analysis we con-
clude that Kou’s model is fitted better than
Black-Scholes model to Japanese market.
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Figure 2. The densities of Empirical, Kou
model and Normal for the Nikkei 225 index
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Figure 3. The log-densities of Empirical, Kou
model and Normal for the Nikkei 225 index

Figure 4. Relative Difference between MP
and BS Price

Figure 5. Relative Difference between MP
and Kou Price
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