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EXTENDED ABSTRACT

Satellite remote sensing data and purse seining
catch data are used to analyse the ecological
behaviour of tuna in the Indian Ocean. A set
of environmental parameters deduced from satellite
data is extracted at the fishing points by using an
interface developed at the “Institut de Recherche pour
le Développement” (IRD). Statistical analysis were
then carried out and some linear model and nonlinear
models (neural networks) have been set and evaluated.
A methodology based on genetic algorithms is used
in order to avoid overfitting and to obtain suitable
models.

This article addresses the problem of tuna location
modelling by using means of remote sensing for
fishing management purposes. Indeed, tuna tend to
gather in the areas where the environmental conditions
are suitable for their physiology and the probability
of finding foods is high. Similar work using remote
sensing products for estimating tuna positions have
been partially studied, but here we describe a novel
and methodical approach based on a wide variety
of envionmental variables. Remote sensing data
include sea surface temperatures(SST ), chlorophyll–
a concentrations(CHL) and sea level anomalies
(SLA). SST is quite used since 1976 for fishing
management (at least on experimental basis).CHL
is known to be related to primary production (the
food pyramid base). SLA is assumed relevant as
an indicator of geostrophic currents and thermocline
depth.

The data are structured in a database made up of two
main tables: the Catch Data Table which includes the
catches weight at some spatio-temporal coordinates
and the Environment Table which consists of the
values of environmental parameters inferred from the
nearest pixels around the fishing locations. The Catch
Data Table was created by Ifremer from information
given by fishermen. The Environment Table
is automatically filled by querying the Coverages
Database. About 150000 data are referenced in the
Catch Data Table. Unfortunately, due to a lack of

available environment variables (some remote sensing
data are very sensitive to cloud coverage), the number
of useful data, may drastically drop down with respect
to the diversity of model input.

First, we define some features of the oceanographic
conditions (within the Indian Ocean) as a combination
of environmental physical data (such as the tempera-
ture), a transform operator (such as a gradient), and a
relative spatiotemporal position (such as 15 days back
from the fishing day). Then, we estimate the most
relevant features for our problem by computing the
non-parametric correlation method calledSpearman
(a Pearson correlation applied on data ranks). Finally,
we teach a model to be fed by the determined features
and to yield as output a probability ofcatchable tuna
presence or absence. Different models have been
tested, from a basic linear regression to a neural
network modelling.

When applying a neural network approach, we
usegenetic algorithmswhich has been successfully
applied to evolve models for solving a variety of
interesting problems. In this paper we apply the
method to synthesis ofsigma-pi neural networks.
Unlike perceptron architectures,sigma-pi networks
use product units as well as summation units to build
higherorder terms.

The neural network synaptic weights (the parameters)
are obtained by using a gradient descent method
(conjugate gradient) and the structure is optimized by
genetic algorithms.

The most promising model provides an 80% accurate
rate (the model fails to predict the tuna absence or
presence in 20% of the cases) versus 70% for the
best linear regression and 50% for the actual fishing
methodology. Our results show that the relationship
between the environmental conditions and the tuna
behaviour is quite non linear and that simultaneous
use of both chlorophyll–a concentrations and sea level
anomaly increase significantly the average accurate
rate.
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1 INTRODUCTION

About 40 years ago, the real life of tunas striked the
scientific community with amazement when a bluefin
tuna tagged in the Bahamas was caught less than 50
days later off the coast of Norway, 6700 km away
(ref. Mather (1962)). This migratory lifestyle and the
extraordinary anatomical and physiological features
that permit it have interested observers since Aristotle.
Their lives remain largely unknown nowadays but
study of these creatures for their extreme biology
is increasingly overshadowed by concern about their
continued existence in robust and viable populations.

Since the majority of the world ocean is now
visited more often by fishing vessels than by
oceanographic expeditions, Sharp (2001) suggested
encouraging the fishing vessels to participate in ocean
monitoring and data sharing. Indeed, they provide
greatly needed information on a lot more than just
fisheries behaviour, for example, climate change and
ocean dynamics. Seiners and tuna management
in monitoring Indian Ocean fisheries have worked
together in the frame of a regional collaboration as
mentionned by Marsac and Hallier (1990). Fishing
vessel crew measure and report a suit of relevant
environmental observations every day they are at
sea. These informations are archived in logbooks
by the fishermen. The French Research Institute
for Exploitation of the Sea (Ifremer) structured the
informations given by the Indian Ocean fishermen in
a database.

Tuna oceanography studies can provide useful
information for those working to understand tuna
fisheries and related tuna biology. One kind is to
help understand the variations of catch statistics from
various fisheries operating within similar or adjacent
regions on one or more tuna species. Another
kind is to help understand the general shifts in
apparent population abundances over large and small
areas in time. Others include learning more about
the responses of tunas to ocean variability and
production patterns so that forecasts of behaviours,
catch potentials, and status of resource population
might be improved.

Due to their global coverage, satellite remote
sensing data provide a useful tool to describe tuna
oceanography. They provide a continuum in scale
observations for the oceanic structures and their
dynamics. These data are more and more suitable to
describe the oceanic landscape due to the development
of efficient sensors and processing methods. Satellite
remote sensing data and purse seining catch data are
crossed to analyse the ecological behaviour of tunas
in the Indian Ocean. In the first part of this paper,
we will describe the catch data and the remote sensing
data used in this study. Their design in the databases
as well as the informations available will be explained.

Then, we will present the methodology used to carry
out the statistical analysis. To finish, the results will
be analysed and discussed.

2 DATA

Catch data and remote sensing data are archived
in two distinct databases: “Observations” and
“Coverages”. The remote sensing database is global
for several projects whereas the catch data database
can be replaced by a database of observations of
cetaceans or of cholera cases for example. These
databases have several utilities, they can be catalogues
to make an inventory of the available data, search
engines to quickly find images or catch data at
arbitrary spatio-temporal coordinates, organizers to
promptly construct crosstables between fisheries data
and environmental data or recorders to archive results
of costly or laborious calculations.

The Observations Database is made up of two main
tables: the Catch Data Table which includes the
catches weight at some spatio-temporal coordinates
and the Environment Table which consists of the
values of environmental parameters near the fishing
points. The Catch Data Table was created by
Ifremer from information given by fishermen. The
Environment Table is automatically filled by querying
the Coverages Database as will be explained in section
2.2. About 150000 data are referenced in the Catch
Data Table. Unfortunately, due to a lack of available
environment variables (some remote sensing data are
very sensitive to the cloud coverage), the number of
useful data, can drastically drop down with respect to
diversity of the model input.

2.1 Catch Data

The Catch Data Table details the catches weights by
specie and by category. Four species are considered
here: ALB standing for Albacore tuna,BET for
Bigeye tuna,SKJ for Skipjack,Y FT for Yellowfin
tuna. Two categories were proposed according to the
weight of the fishes. Those less than ten kilograms
weight were classified in the first category,c1. Those
more than ten kilograms weight were classified in the
third category,c3. Concerning our catch data, we
had the following groups:Y FT , Y FTc1, Y FTc3,
SKJ , BET , BETc1, BETc3, ALB. The columns
without indication of the category comprised the sum
of the catches for all the categories (e.g.,Y FT =
Y FTc1 + Y FTc3. The recording can refer to a day
without fishing, a prospecting or an attempt of capture
(successful or not). These cases were differentiated
by the columnshFishing, nSennes and nHauls
which can be interpreted as follows:hFishing = 0
means a day without fishing (less than 5% of the
total recording),hFishing > 0 andnSennes = 0
means that the fisherman was prospecting (40% of the
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fishing data),nSennes > 0 andnHauls = 0 means
that the fisherman has made at least one attempt of
capture but none succeeded (12% of the fishing data),
nHauls > 0 means that at least one haul succeeded
(48% of the fishing data). The schools caught by
the fishermen can be associated to a fixed structure,
a floating object or can be free. The free or associated
character of the schools is specified in the table.

The main sources of information were the logbooks of
the fishermen. They indicate their observations on the
prospected areas and the catches weights. The quality
of these data is variable in function of the individuals
and is hard to determine for three main reasons.
Firstly, the positions are quite rough even if most of
the fishermen are equipped with a GPS positioning.
Sometimes, the position mentioned in the logbook
is not the position of the fishing point but rather
the position noted the last time the fisherman took
bearings (generally around twelve o’clock). Secondly,
the species composition given by the skipper is usually
approximate. Thirdly, the fishermen generally tend to
underestimate the catches weight. We cannot make
the catch data totally objective but we can try to reduce
the differences originating from self interpretation.
Two corrections were applied. Firstly, the probable
proportion of the species was estimated by using
the data of sampling campaigns and by taking into
account the season. Secondly, a correction factor was
calculated from the ratio of the landed weight to the
declared weight. This correction was then applied to
the weights declared at each haul.

The Environment Table includes a set of environmen-
tal parameters evaluated for each catch data.SST ,
CHL andSLA were considered at several dates –the
day of fishing, (5, 10, 15, 20, 25 and 30) days before
and 5 days after– at the location of the catch data.
Those environmental indicators values are computed
at the nearest geographical coordinate and the nearest
date, interpolated spatially (bilinear interpolation) and
temporally (linear interpolation). Spatial gradients
calculations with various operators may be applied
before interpolations.

In this paper, we attempt to model the presence or
absence ofcatchabletuna in the indian ocean. In this
context, the termcatchablemeans fishes schools that
can be visually observed by the fishermen and that
are considered valuable to catch. It should be noted
that the tuna may be present but unnoticed by the
fishermen (e.g. they are too deep) or not economically
viable to catch. When we use the term “probability of
tuna presence”, the reader should implictly understand
“probability of catchable tuna presence”.

2.2 Remote Sensing Data

Remote sensing data includeSST , CHL andSLA.
They are archived in the Coverages Database.

Ocean temperature is measured by using thermal-
infrared wavelengths. The need for accurate global
sea surface temperature fields has been receiving
increasing attention, primarily due to its importance in
understanding variability in the oceans’ climate. Since
1981, the National Oceanographic and Atmospheric
Administration (NOAA) series of polar-orbiting
spacecraft have carried the Advanced Very High
Resolution Radiometer (AVHRR), an instrument with
three infrared (IR) channels suitable for estimating
SST. AVHRR SST measurements, besides their
reliability over more than twenty years, are attractive
due to their global, repeated coverage and to their
spatial resolution (1.1 kilometres at Nadir). Data are
also widely used due to their low cost and possible
access in real time thanks to an HRPT antenna.
Multichannel SST estimates are computed from a
combination of two ambient temperature channels
by using the Multi-Channel Sea Surface Temperature
(MCSST) algorithm (see Walton et al. (1998) and
Kilpatrick et al. (2001)). Temperatures are available
on weekly composites with a spatial resolution of 4
km at Nadir.

Figure 1. Example of Sea Level Anomaly image.

Chlorophyl–a concentration were determined by
using visible wavelengths of the National Aero-
nautics and Space Administration’s (NASA’s) Sea-
viewing Wide Field-of-view Sensor (SeaWiFS). Sub-
tle changes in ocean color of deep sea waters signify
various types and quantities of marine phytoplankton
(microscopic marine plants), the knowledge of which
has both scientific and practical applications. Since
1997, SeaWiFS data have provided quantitative data
on global ocean bio-optical properties to the Earth
science community. Blue and green channels of
SeaWiFS were combined using theOC4algoritm (ref.
OReilly et al. (1998)).CHLwere calculated by doing
a weighted mean of the chlorophyll concentrations
over the previous eight days. They were available
on weekly composites with a spatial resolution of 4
km at Nadir. SLA are gridded sea level anomalies,
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computed with respect to a seven-year mean ocean
surface [Aviso,http://www-aviso.cls.fr/ ].
Maps of sea level anomaly were obtained by
merging TOPEX/POSEIDON (T/P)and ERS-1/2
data. T/P has been measuring ocean topography
with an unprecedented accuracy for more than 10
years while ERS-1 and ERS-2 have provided a
very useful complementary sampling. The merging
of T/P and ERS-1/2 has provided, in particular,
a description of the ocean circulation variability
(mesoscale circulation, seasonal variation, El Niño...)
with a resolution never achieved before. More details
can be found in Ducet et al. (2000).

SST , CHL and SLA are known to be relevant
as an indicator of tuna behaviour as indicated by
Desruisseaux (2004). They were selected for their
availability but some other data such as salinity and
dissolved oxygen concentration would probably be
pertinent for our objective.

3 NEURAL NETWORKS APPROACH

Most nonlinear models based on polynoms, wavelets
or neural networks, have the universal approximation
ability. Barron (1993) shows that this ability is
particularly interesting in the case of the class of
function defined by the neural networks. This ability
allows the nonlinear models to outperform linear
models when nonlinear relationship exist between
variables. This could be a strong advantage, if this
feature, plus the infinite variety of model structure,
did not entail a problem calledoverfitting. Significant
low results on the test set can occur when the
generalization capacity of this model for the specific
problem is poor and when the model overfits the
learning set. Estimating the parameters of a model
having a large degree of freedom (in general too many
free parameters) for modeling an insufficient amount
of noisy data, can yield an underestimation of the
noise variance.

Another concern is called model selection. A model
structure suited to the given problem, allows an
easy parameter estimation and easily capture the
underlying data dynamic. If you use nonlinear
models, model selection becomes much more crucial
since they are in general more flexible than linear
models. In this application, we use an automatic
method based on genetic algorithms for detecting the
most suitable model in the class of nonlinear models.

In the frame of this application, we focus on a problem
that can be viewed as a nonlinear regression with
explicative variables.

Yi,j = f(X1
i,j , X

2
i,j , . . . , X

n
i,j) + εi,j (3.1)

Where

• Yi,j denotes the probability of tuna presence at
the coordinates(i, j),

• (Xk
i,j)1≤k≤P denotes theP remote sensing data

processed in order to extract the most pertinent
spatio-temporal information (gradient. . . ),

• εi,j denotes some independant and identically
distributed random variables with zero mean,

• f is the function that represents the underlying
true relationship between the remote sensing
data and the presence of tunas (possibly non-
linear).

In practice, different kinds of neural networks
(multilayer perceptrons, radial basis functions. . . ) can
be used for this purpose. They are all very efficient
for nonlinear modeling and are actually used in many
applications. Since we want to perform automatic
model selection, we choose to select models in a
large class of feedforward neural networks. This
class, named generalsigma–pineural networks (see
for example Rumelhart et al. (1986)) is composed
of networks without layer structure (see an example
figure 3) and includes the multilayer perceptron class.

This kind of neural net connectssigma–piunits (the
neurons) composed ofP input units,N hidden unit
that includeD sigmaunits andpi units and an output
unit. To avoid feedback connection1, we label the
hidden units byh1, h2, . . . , hN , and we decide an
arbitrary order relation:hi can connect tohj , only
if 1 ≤ i < j ≤ N . The input units receive
no connection, but can connect to each hidden unit
and to the output unit, and the output unit can be
connected to any other units. The hidden units sum
the values provided by the previous units, weighted
by the synaptic coefficients (sigmaunit processing),
compute a product of their output (pi unit processing),
and apply a transfer function. Because we perform
regression, we associate linear transfer function to the
input and output units, and a sigmoid transfer function
(such astanh) to the hidden units.

This network (see an example figure 3 with 2sigma
units per hidden unit), fully connected, can be defined
by the following equation:

fθ(x1, . . . , xP ) = φ

(
D∏

d=1

ON+1
d

)
(3.2)

with On
d =

P∑
i=1

θn
i Xi +

n−1∑
j=1

θP+j ψ

(
D∏

d=1

Oj
d

)

where:
1We actually deal with nets without loop. There is no feedback

of information and this type of neural networks can not model
recurrences
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• fθ(x1, . . . , xP ) stands as the neural network
output (assumed here to be scalar),

• P is the number of inputs,
• D is the number ofsigmaunit dedicated to one

hidden neuron,
• N is the number of hidden units,
• ψ is a sigmoid function such astanh,
• φ is either a sigmoid function or the idendity

function (depending on the problem),
• (θn

p )1≤n≤N+1, 1≤p≤P+N denotes the set of
parameters.

The example on figure 3 has 4 input units denoted
{a, b, c, d} and one output unit denotedh3.

Commonly, the last input unitXP denotes a constant
equal to 1. Then the related weights(θn

P )1≤n≤N+1

denote the constants in the frame of the nonlinear
regression. So far, we assume that there exists a set
of parameters(θn

p )1≤n≤N+1, 1≤p≤P+N such thatfθ

matches upf from equation 3.1, and̃θ, an estimation
of θ, is found through optimization2:

θ̃ = argθ

∑
i,j

(
Yi,j − fθ(X1

i,j , X
2
i,j , . . . , X

P
i,j)
)2
(3.3)

Figure 2. Genetic algorithm principle.

Of course, a fully connected architecture with a large
number of hidden units is overparametrized, and this
model can overfit the data. The goal is to find the
most suitable architecture which can approximate the
functionf of the relation defined in equation 3.1, with
the highest accuracy and the weakest overfitting. To
search it within the class of sigma–pi feedforward
neural networks, we use a genetic algorithm as
described in Davis (1991) and Goldberg (1989).

Firstly the data is split into three subsets: a learning
set, a validation set and a test set. To emphasize the
ability of generalization, each architecture is evaluated
following the same scheme:

2If we assume that the noise is gaussian, maximizing the
likelihood of these i.i.d. random variables is equivalent to
minimizing the sum of residual quadratic error.

Figure 3. Example of neural networks coding.

• parameter estimation on the learning set,
• evaluation of the fitness (the sum of residual

error (equation 3.3) on the validation set.

This way, the test set is totally independent of the
parameter estimation and the architecture selection.

Secondly, we encode the neural network architecture
into a chromosome, i.e. a sequence of bits.
Considering the example on the figure 3, the first
sigma unit is denoted (1.a) (hidden neuron (1), sigma
unit (a)). The value 1 undera means that the unit
(a) is connected to the sigma unit (1.a), and 0 under
b means that there is no connection between unit
b and (1.a). The complete chromosome appears at
the very bottom of the figure. Each chromosome
corresponds to a peculiar structure and a peculiar set
of synaptic weights. Those neural network synaptic
weights ((θn

p )1≤n≤N+1, 1≤p≤P+N from equation 3.2)
are obtained by using the gradient descent method
(conjugate gradient).

At last, we genetically select the “best fit” model using
the algorithm described on figure 2. For the model
selection, we use the following operators :

• mutation to 0 (eliminating a synaptic weight),
• mutation to 1 (adding a new synapse),
• multiple random mutation,
• random operator (creating a new architecture),
• crossing over (merging parts of different

architectures). See figure 4 for an example of
crossing over.

Parent selection is made using the “fitness” (per-
formance of accuracy on the validation set) of the
architectures. The more accurate this fitness is,
the higher is the probability of picking up the
related architecture. Following the same scheme, the
probability of choosing an operator depends on the
performance accuracy of the neural models previously
generated by it. The principle is to increase the
probability of picking up an operator (and to decrease
the others) if this one yields performant structures.
This method is highly time consuming, because a
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Figure 4. Example crossing over.

large amount of training is computed. In the field
of previous applications described in Mangeas and
Muller (1996) or Zhang and M̈uhlenbein (1994)) this
algorithm yields very well suitable models.

4 TUNA PRESENCE PROBABILITY

The method consists of learning how to efficiently
estimate the probability of tuna presence. For this
task, the fish catch and the remote sensing data sets
are split into 3 subsets. The first subset (70% samples
randomly extracted) is used to compute the synaptic
weights of the neural networks. Those data are
included in the learning set. From the other data, 15%
are used for evaluating the performance of the model
on novel data (the validation set) and allow to compute
the fitness in the frame of the genetic algorithms. The
remaining (test set) is used for comparing the different
models (linear and nonlinear).

We define some features of the oceanographic con-
ditions (within the Indian Ocean) as a combination of
environmental physical data (such as the temperature),
a transform operator (such as a gradient), and a
relative spatiotemporal position (such as 15 days prior
to the fishing day). The most pertinent explanatory
variables, determined by the means of spearman
correlation, are used in the frame of the linear and
nonlinear modelling. Here is a list of variables that
have been computed to be significantly correlated to
the tuna locating problem (for a locationi, j, the
fishing day is denotedd and∇ stands for the spatial
Sobel’s gradient):

• SLAd,SLAd−20,SSTd,SSTd−20,CHLd−15. . .
• ∇SLAd,∇SLAd−20,∇SSTd,∇SSTd−20. . .
• other combinations (of order 2) of indicators

Due to the lack of available remote sensing data
(CHL andSST can not be scanned if there are clouds
on the specific location at the specific day) we have
at our disposal around 12000 data for designing the
models.

In order to find the most suitable structure of neural
networks able to yield the best indicator of tuna
presence, the first population of neural net architecture
is made of 20 neural networks randomly set up. The
optimization process on the 20 individuals is a highly
consuming process (around one hour of computation
on a 3Ghz PC). After 20 generations (around 20 hours
later), any significant improvement concerning the
fitness of the elite is observed and the process ends.

For this last process, the evolution of choosing the
best operator during the convergence towards the best
architecture is quite informative: we remark that, in a
first phase, the probability of picking the “mutation to
1” opertor significantly increases (this operator yields
more suitable architectures i.e. the set of structure,
initially settled on, needed more connections). In a
second phase, the probability of picking the “crossing
over” operator increases (and so all others decrease).
This behaviour indicates that the set of structures
needed to be combined at some point.

Figure 5. example of family tree of the best neural net
computed by genetic algorithms.

Figure 5 reproduces an example of the family tree
of the generated neural architectures. The different
color variations are related to the operator used. The
children are connected to their parents at each new
generation. We can note that each architecture from
the first generation is involved in the process and
participate to produce the most suitable architecture
(the one on the far right).

linear regression Positive Actual Negative Actual
Positive Predicted 40.96% 16.65%
Negative Predicted 11.68% 30.70%

neural network Positive Actual Negative Actual
Positive Predicted 50.80% 13.34%
Negative Predicted 6.08% 29.78%

Table 1. Confusion matrix – Linear and neural
network models.

The results detailed table 1 show clearly that
the neural network outperforms the standard linear
regression with more than 80% of good estimations.
This result can be compared with the performance
of the fishermen that find tunas 50 per cent of
the time when they use purse seining in the indian
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ocean and with the linear model results that stands at
around 70%. At this stage, it has to be remembered
that only the location of the catch attempts are
available. That means it is not quite the probability
of tuna presence that the results denote but more a
probability of catchable tunas presence with respect
to the fishermen’s criteria.

5 CONCLUSION AND FUTURE WORK

We have presented in this paper a real-world appli-
cation of nonlinear regression by neural networks.
The neural model is used to combine multiple remote
sensing measurements into a single and precise
estimate of the probability of tuna presence. Necessity
and usefulness of higherorder neural networks have
been wellknown. However the increasing number
of terms has hampered the design and training of
higherorder networks. Present work shows the
potential effectiveness of genetic algorithms to handle
this problem. In particular, we show how thesigmapi
neural networks are able to simulate the underlying
relationship between the tuna behaviour as a function
of the data collected by remote sensing techniques.

The results show that the neural model is particularly
efficient in comparison with standard linear regression
and combine data more effectively in order to provide
a good probability indicator.

We are currently attempting to apply a bayesian
network technique to the problem of probability of
tuna presence. The main advantage of such approach
is to overcome the problem of missing data, in
particular in the case of theSST andCHL remote
sensing measurements that are very sensitive about
cloud coverage. In particular, we hope to be able
to estimate the missing data by using other available
data. Indeed, most of the remote sensing data
are highly correlated and can be deduced indirectly
through the means of bayesian techniques.

A deep ecological analysis is also planned, using
catch data from the indian, atlantic and pacific oceans
in order to determine different tuna behaviours in
relation to available remote sensing data.
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