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EXTENDED ABSTRACT 

This paper introduces a simulation designed to 
test real-time path planning done by single and 
multiple agents. The components of the 
simulation include a road network, several 
Uninhabited Aerial Vehicles (UAVs) with 
electro-optic sensors, a target and an Uninhabited 
Ground Vehicle (UGV). The target and UGV are 
located on the road network. Random blockages 
are placed on the road network, possibly 
preventing UGV traversal to the target. These 
blockages can be detected by the UAVs. Figure 
(i) outlines the components in the simulation. 
 

Figure (i). Components of the simulation 

The task of the UAVs is to scan the road network 
and find the optimal clear path for the UGV. The 
simulation ends when the optimal path is found or 
no clear path exists. An online path planning 
algorithm extended from A* called Online A*, is 
used in the agents which control the UAVs. The 
algorithm is heuristic based and finds the optimal 
path in a dynamically changing environment. 
Results from single-agent trials in the simulation 
showed that in each case, the agent found the 
optimal path through the road network or 
determined that no clear path existed. 

Online A* was extended to coordinate multiple 
agents to perform the path planning task 

collaboratively. Initially a centralized architecture 
for the multi-agent algorithm was developed. The 
architecture consisted of a single online A* 
algorithm which was run by a central UAV agent. 
All new information on the network found by the 
other UAV agents would be returned back to the 
central UAV agent. Similarly all UAV agents 
would request their next best road to check from the 
central UAV agent. This architecture performed 
well in the simulation; however it is prone to 
failure. If the central UAV in this architecture fails 
for any reason, the other UAVs cannot continue 
their task. A more robust distributed architecture 
was created. In this architecture each of the agents 
ran its own search algorithm. However, when a 
UAV starts searching a road it broadcasts this road 
to the other agents in the team, alerting them that it 
is already being searched. Similarly once an agent 
discovers that a road is clear or blocked, it 
broadcasts this information to the other agents. 
Results of trials for this architecture showed that in 
all cases multiple agents performed the path search 
faster than a single agent. The results indicate in 
general that adding more UAVs to the path 
planning task reduces the completion time. 

The second part of the work presented focuses on a 
stochastic dynamic programming formulation of the 
path planning problem. Here, instead of searching 
road paths, as does the previous work, we search 
critical intersections or nodes of the network. The 
optimal policy was calculated via value iteration, 
for two UAVs collaboratively path planning on a 
road network containing ten critical nodes. Monte 
Carlo simulations were conducted to find the 
optimal starting locations for each UAV. The 
results showed that if there is a high probability that 
the network will be blocked, the best strategy to 
minimize the time of finding a clear optimal path or 
blocked network, is to start both UAVs at the 
target. This results in a “breadth-heavy” search. 
However, if you are optimistic and believe the road 
network will be clear, the best strategy is to start 
one UAV at the target and one at the UGV, 
performing a “depth-heavy” search.  
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1. INTRODUCTION 

Multiple uninhabited (or unmanned) aerial 
vehicles (UAVs) working cooperatively have 
significant advantages over single UAV platforms 
when applied to various military applications. 
Advantages include increased speed of task 
completion as well as improved robustness in the 
system. A military application applicable to multi-
UAV platforms is that of path planning. This paper 
introduces a simulation designed to test techniques 
and strategies for multiple UAVs that have the task 
of planning a path for an uninhabited ground 
vehicle (UGV). The problem presented in this 
paper is different to previous research, which 
focuses primarily on robots performing their own 
path planning. UGVs navigating in an environment 
have difficulty detecting holes or ditches (Stentz et 
al 2002). Having UAVs perform path planning for 
UGVs is therefore advantageous.  

In 1994, Stentz introduced the Dynamic A* (D*) 
path planning algorithm. The D* algorithm 
efficiently replans a path for a robot in a 
dynamically changing environment. Stentz (1995) 
further optimized D* to produce the Focussed D* 
algorithm. Other solutions to the path planning 
problem include D* Lite (Koenig and Likhachev 
2002), and more recently the Delayed D* 
algorithm (Ferguson and Stentz 2005), all of which 
perform an initial (offline) path search before the 
robot sets out. Every time an obstacle or 
discrepancy in the path is detected, the algorithms 
efficiently replan a whole new path either from the 
start to the goal or from the agents’ location to the 
goal. While this technique is appropriate for robots 
performing their own path planning, it is 
unsuitable for a team of UAVs performing path 
planning for an UGV. 

The path planning algorithm presented in this 
paper takes advantage of the fact that no initial 
path search is required for the UAVs. In fact, it is 
not crucial for the UAVs to find the optimal path, 
in one go. A reasonable amount of “back tracking" 
is allowed, as long as they find the optimal path. 
The algorithm presented is a simple extension to 
the heuristic search technique A* (Nilsson 1980), 
transforming it to an online algorithm able to adapt 
to a changing environment. 

In the second half of the paper, a stochastic 
dynamic programming formulation (Bertsekas 
2001) of the path-planning problem is outlined. 
Here, instead of searching road paths, as does the 
previous work, critical intersections or nodes of the 
network are searched. From the stochastic dynamic 
program the optimal policy is calculated via value 

iteration. Finally, Monte Carlo simulations are 
conducted to test strategies for two UAVs 
collaboratively path planning. 

2. SIMULATION 

2.1. Outline 

The agents run in a simulation called Tempest 
Seer. The main feature of Tempest Seer is that it 
can run trials hundreds of times faster than real-
time. The components used in the simulation 
include a road network, several UAVs with 
electro-optic sensors, a target and an UGV. Figure 
1 outlines the components in the simulation. Both 
the target and UGV are located on a road network. 
A road in the network can be blocked for any 
reason. These blockages on the roads can be 
detected by the UAVs. The UAVs job is to search 
the road network for an unblocked optimal path 
from the target to the UGV. The simulation ends 
when either an optimal path is found or no clear 
path exists. 
 

Figure 1. Components of the simulation 

On initialization, the team of UAVs has 
knowledge of the topology of the road network 
and knows the location of the UGV and target. The 
road network is represented as a graph, with 
intersections representing vertices and roads 
representing edges. A pre-check is done to make 
sure the graph is connected (i.e. there exists a 
possible path from the target to the UGV). The 
simulation produces a random road network, and 
places the target and UGV at random locations. 
Blockages can occur on roads and intersections, 
possibly preventing UGV traversal. Blockages 
were placed at random locations on the network. 
During a run of the simulation, the blockages are 
stationary and no new blockages are added. The 
locations of the blockages are initially unknown to 
the team of UAVs. 
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2.2. Single UAV Path Planning 

Separate threaded agents control the UAVs in the 
simulation. The UAV agents use an extended 
version of the A* algorithm (Nilsson 1980) to 
search the road network for an optimal path from 
the target to the UGV. A* is an optimal, complete 
and computationally efficient search technique 
(Nilsson 1980). In A*, the nodes that can be 
searched are stored in an “open list”. Each node in 
the open list has a back pointer to its parent node, 
and an associated value: .  equals the 
sum of the cost of getting to node  from the start 
node, plus an estimate of the cost of getting from 

 to the goal. At each iteration, A* chooses the 
node with the smallest  to search, and adds 
this node to a “closed list”. The search ends when 
the node chosen with the smallest  is the goal 
node. At this point, A* follows the back pointers 
of the nodes contained in the closed list starting at 
the goal node, to produce an optimal path from the 
start to the goal. For a more detailed explanation of 
A*, refer to Nilsson (1980). In this paper the A* 
algorithm has been extended to create a true online 
algorithm called Online A*. Similar to D* (Stentz 
1995), the online A* algorithm finds optimal paths 
in a dynamically changing environment. Online 
algorithms run while the agent is traversing the 
path, allowing the agent to dynamically replan if 
an unanticipated situation is encountered. 
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Online A* is similar to A* but has two key 
differences. Firstly, it is not run in entirety before 
the agent sets out, but runs while the UAV is in 
motion. That is, when the algorithm selects the 
best road for the UAV to search, it pauses and 
waits till the UAV has finished scanning the road. 
The second difference is that while the UAV is 
scanning the road, if a blockage is found the UAV 
informs the algorithm, which in turn penalizes that 
road. Only when a road has been fully traversed by 
the UAV and no blockages are found that the road 
is added to the closed list in the algorithm. Below 
is the pseudo-code for the online A* algorithm: 

(1) Run A* to select next best road. 

(2) Pause while UAV scans road. 

(3) If road is clear, add road to closed list, 
return to (1). 

Else if road is blocked, penalize road, and 
leave on open list, return to (1). 

In the simulation, once the UAV has located the 
target it starts the path search from there. The 
online A* algorithm chooses the next best road to 
take and the agent commands the UAV to fly 
along the road to the next intersection. While the 

UAV is flying above the road it constantly scans 
the road for blockages. If a blockage is found, the 
search algorithm heavily penalizes the road by 
adding to its score a maximum value, and finds the 
next best road to search. The search ends when 
either the UAV arrives at the UGV, or if the UAV 
has no more paths left to check. If the UAV arrives 
at the UGV, the algorithm creates a path from the 
roads in the closed list, and coverts the path to a 
set of waypoints for the UGV to traverse. If the 
UAV has no more paths to check, it implies that 
each possible route from the UGV to the target is 
blocked. 

The major difference between online A* and other 
path replanning algorithms is that at the end of the 
online A* algorithm only one path has been 
created. D* and the other path planning algorithms 
mentioned, replan and create a whole new path 
either from the start to the goal, or from the agents 
location to the goal, every time a blockage is found 
in the road network. The online A* algorithm is 
thus computationally efficient, and it is extremely 
simple, as it is just a small extension to A*.  Trials 
were run in the simulation with different road 
networks and different locations and numbers of 
blockages, in each case the agent found the 
optimal path through the network or determined 
that no clear path existed. 

2.3. Multiple UAV Path Planning 

While there has been extensive research done on 
single agent path planning, multi-agent path 
planning has received less attention. Market 
economy (Zlot et al 2002) and auction 
architectures are examples of robust distributed 
multi-agent frameworks, but rely heavily on inter-
agent communication. When dealing with UAVs, 
keeping inter-communication low is desirable. A 
simpler robust architecture is required. 

Different variations of an online A* multi-agent 
path planning technique were tested in the 
simulation. Initially a centralized architecture was 
developed. The architecture consisted of a single 
online A* algorithm which was run on a central 
UAV agent. All new information on the network 
found by the agents would be returned back to the 
central agent. Similarly all agents would request 
their next best road to check from the central 
agent. Once a road has been chosen by an agent to 
scan, no other agent may choose it. All agents in 
the simulation started their search at the target, 
resulting in a “breadth-heavy” search (Dijkstra 
1959). Alternatively it is possible for some agents 
to start at the target and others to start at the UGV. 
This would result in a “depth-heavy” search 
(Dijkstra 1959). Figure 2 shows a simulation with 
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3 UAV agents collaboratively searching, and one 
agent detecting a blockage. 

Figure 2. Blockage encountered 

While the centralized architecture ran well in the 
simulation, it is not robust enough for real-world 
applications. For example, if the central UAV in 
this architecture fails for any reason, the other 
UAVs cannot continue their task. A distributed 
architecture was then developed. In this 
architecture each agent runs its own online A* 
algorithm. However, when an agent starts 
searching a road, it broadcasts this road to all other 
agents in its team, alerting them to add this road to 
their open list if it doesn’t already exist, and to 
mark the road as “being searched”. Thus, an agent 
won’t start scanning a road already being searched 
by another agent. Similarly when an agent adds a 
new road to its closed list, it broadcasts this road to 
all other agents in its team. An agent receiving this 
broadcast initially checks to see if the road is in its 
open list, and if so removes it. The agent then adds 
the transmitted road to its own closed list. Also, 
when an agent adds new roads to its open list it 
broadcasts this information to the other agents, 
acting as a form of information sharing amongst 
the agents. There is a chance an UAV may fail 
midway through scanning a road. In this situation 
the remaining UAV agents will find a road still on 
their open list but marked as “being searched”, 
which will be false. The solution is to let the 
agents now scan this road marked as “being 
searched”; as long as it has no other roads to 
check, or all other remaining roads in its open list 
have values greater than the maximum value. The 
task is complete when at least one of the agents 
holds a complete path from the target to the UGV 
in its closed list, or if all agents have no road in 
their open list with a value less than the maximum 
value. 

The distributed architecture has many advantages. 
Being decentralized, if one UAV fails, the task is 
only slightly hindered, giving the effect of graceful 

degradation. There is a replication of information 
among the agents. If an UAV fails, it is likely that 
it had the chance to communicate at least some of 
its discoveries. Thus a total loss of information is 
avoided. In the worst case where no 
communication between the agents is possible, 
each agent would perform the entire search 
themselves, leading to a less efficient but 
satisfactory result. Trials were conducted in the 
simulation to determine whether applying more 
UAVs to the path search task would result in a 
linear reduction of completion times. 

2.4. Simulation Results 

Sets of trials of the simulation were run with one 
UAV, and teams of two, three and four UAVs. 
They were run on random road networks with ten, 
one hundred, and one thousand roads. For 
simulations with ten roads, trials were run with 
zero, one, two and three blockages placed at 
random locations. With one hundred roads, 
simulations were run with zero, ten, twenty and 
thirty blockages. For one thousand road 
simulations, zero, one hundred, two hundred and 
three hundred blockages were tested. Figure 3 
shows a histogram for one hundred thousand trials 
conducted for one UAV scanning random 
networks with one thousand roads and with one 
hundred blockages placed randomly on the 
network. The x-axis is the simulation time taken to 
find the optimal path or determine if no clear path 
exists. The y-axis is the frequency of the time 
taken. In Figure 3, the distribution was cut at 2000 
milliseconds for picture clarity. 

Figure 3. Frequency of time taken for one UAV to 
find a path in networks of 1000 roads (y-axis). 
Simulation time taken (x-axis). 

The distribution in Figure 3 starts with a large 
spike followed by an extremely long tail, and can 
be fitted to a gamma distribution (Law and Kelton 
1991) with α = 3.48, and β = 23.27. The 
distributions for trials of networks with one 
hundred road has a similar spike, but with a shorter 
tail. While the distributions for trials of ten road 
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networks has a similar spike but with only a few 
outliers. Because of this long tail, it is meaningless 
to describe the results in terms of mean and 
variance. A quantile analysis was performed and 
the results are shown in Tables 1, 2 and 3. 

Table 1. Percentage of 10 roads trials completed 
within the simulation time shown. 
Blockages UAVs 75% 90% 100% 

0 1 45 59 150 
0 2 36 49 99 
0 3 34 45 93 
0 4 30 41 79 
1 1 47 70 221 
1 2 37 50 122 
1 3 35 44 101 
1 4 32 43 91 
2 1 47 66 187 
2 2 38 51 120 
2 3 34 44 102 
2 4 33 44 106 
3 1 51 74 206 
3 2 39 52 117 
3 3 35 48 89 
3 4 34 44 87 

Table 2. Percentage of 100 roads trials completed 
within the simulation time shown. 
Blockages UAVs 75% 90% 100% 

0 1 100 338 1478 
0 2 80 243 895 
0 3 63 152 530 
0 4 61 135 407 
10 1 130 483 1788 
10 2 96 291 1048 
10 3 80 191 709 
10 4 64 155 641 
20 1 156 559 1678 
20 2 108 360 1170 
20 3 95 230 738 
20 4 73 165 502 
30 1 225 666 1647 
30 2 130 325 829 
30 3 84 243 908 
30 4 86 217 795 

Tables 1, 2, and 3 show for each set of trials, the 
percentage of trials completed within the 
simulation time shown. Analysis of the results 
illustrate that the majority (75%) of the trials were 
completed quickly, as indicated by the spike in the 
distributions. The remainder of the simulations 
took a lot longer to finish. An example of this 
would be when each road immediately connecting 
the goal is blocked while the rest of network is 
relatively clear, the UAV(s) would then spend a lot 
of time scanning the whole road network, in hope 
of finding a clear path to the goal. The results 
indicate in general that adding more UAVs to the 
task will reduce the completion time. The greatest 

benefit of applying multiple UAVs to the path 
search task was in trials containing one thousand 
roads, where a team of four UAVs completed the 
task roughly four times as fast as a single UAV. 

Table 3. Percentage of 1000 roads trials completed 
within the simulation time shown. 

Blockages UAVs 75% 90% 100% 
0 1 247 4991 24513 
0 2 146 3125 16728 
0 3 125 1982 7910 
0 4 126 1659 6408 

100 1 239 8202 27793 
100 2 166 3323 24726 
100 3 143 2407 11895 
100 4 137 1827 6683 
200 1 459 10134 27693 
200 2 270 4122 19176 
200 3 243 2933 9185 
200 4 150 2150 8151 
300 1 836 11378 25981 
300 2 285 4867 13739 
300 3 279 3448 10842 
300 4 144 2175 6917 

3. DYNAMIC PROGRAMMING 
FORMULATION 

In this section a stochastic dynamic programming 
formulation of the path planning problem is 
presented. The goal of this work was to find the 
optimal policy for two UAVs collaboratively path 
planning, and then to evaluate various strategies 
for the UAVs via Monte Carlo simulations. 

3.1. Outline 

In this simulation, critical intersections or nodes of 
the network are searched, instead of the roads as 
per the previous work. Implicit in this formulation 
is the assumption that all edges or roads are 
passable, as the UGV can only be blocked at the 
nodes or intersections. We start with a road 
network containing 10 nodes, and the nodes are 
labeled 0 to 9. A target is located at node 0, while 
an UGV is located at node 9. Two UAVs search 
the network, traveling from node to adjacent node, 
to find an admissible path for the UGV.  

3.2. Transition Probabilities 

At the start of the simulation each node is labeled 
as unknown (U). As each UAV enters a node it 
determines whether it is blocked (B) or clear (C), 
and changes the label of the node. Below are the 
transition probabilities forming the Markov Chain 
for the process. The transition probabilities specify 
the probability whether a node is determined to be 
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blocked or clear, given that it is currently known to 
be blocked, clear, or uncertain.  
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In (5) the reward for finding a clear path and 
ending at node 9 is 10, while the reward is 1 for 
ending in any other state. For all other states the 
recursive Bellman’s equation for the optimal value 
function is: 

Here,  is the conditional probability that 
prior to the visit the node is in state i, and after the 
visit the node is in state j. In the model once a node 
has been determined to be clear or blocked it 
remains that way forever. 
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3.3. Value Function 

For the path planning task the value function is 
defined as: 

).,,,( 21 xxssV netn   (2) 

In (6) the –1 specifies a negative reward at each 
time step. This is a time penalty for search, and 
makes the problem a minimum time cost problem. 
The discount factor )1,0[∈β  discounts future 
rewards, and was set to 0.9. The term 
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the probabilities that a transition is made from 
state  to s , given UAV1 can move from node 

 to  and UAV2 from node  to . 
Finally, V  refers the value of 
being in state . 
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uncertain node.  is defined as a mapping from 
the state of individual nodes onto the network state 
as a whole, either as passable, blocked or 
uncertain:  
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3.4. Monte Carlo Simulation and Results 
}.,,{: UncertainBlockedPassableSf n →  (3) 

The value function was solved via value iteration 
to produce the optimal policy (Bertsekas 2001). 
Monte Carlo simulations were run using the 
optimal policy on different starting locations for 
each UAV. The starting strategies evaluated were: 

For example, if certain nodes are blocked (such as 
node 0) the whole network is blocked and no clear 
path exists from the target to UGV. Or if all the 
nodes are uncertain, the whole network is 
determined to be uncertain. The current position of 
the UAVs is denoted as  and , where 

 and represents which node each 
UAV is currently at. If the whole state of the 
network is either passable or blocked there is no 
more work for the UAVs to do, they simply return 
the result to the UGV. Therefore the states 

 and ( are considered 
to be the end or goal states, which return rewards 
to the value function. The value function for a 
blocked network is: 

1

,1 xx
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i
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• Both UAVs start at target. 

• One starts at target, the other at UGV. 

• Both UAVs start at UGV. 

• Both UAVs start at random nodes. 

Sets of trials of each strategy were run for three 
different transition probabilities: 0.8 (i.e. the 
probability a node is clear equals 0.8, and 0.2 if it 
is blocked), 0.5 and 0.2. From the simulations, the 
average number of moves taken to reach a goal 
state (i.e. if the network was blocked, or a path 
existed) was found. Table 4 outlines the results. .1),,,( 21 =xxBsV n   (4) 

The reward for a passable network is more 
specific. In particular we would like one UAV to 
complete its search at the starting point of the 
UGV, so the UAV may search again ahead of the 
UGV, as it heads towards the target. The value 
function is defined below: 

The results show that if the road network tested 
was expected to be relatively clear (i.e. transition 
probability 0.8), the best strategy is to start one 
UAV at the target and one UAV at the UGV, and 
perform a “depth-heavy” search (Dijkstra 1959). If 
the road network tested was likely to be heavily 
blocked (i.e. transition probability 0.2) the best 
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strategy is to start both UAVs from the target and 
perform a “breadth-heavy” search (Dijkstra 1959). 

Table 4. Average number of moves for strategies 
against three transition probabilities. 

Strategy 0.8 0.5 0.2 

Both start at Target 4.066 3.776 2.682 

One at target, one at UGV 3.463 3.811 3.306 

Both start at UGV 5.076 4.599 3.549 

Both start at random 
nodes 

3.703 3.956 2.998 

4. FUTURE WORK 

It is the intent of future work to test other 
strategies using Monte Carlo simulations, as well 
as to modify the dynamic program to search roads 
instead of critical intersections, and take into 
account road length. Extending the dynamic 
program to more complicated networks is planned, 
but would require either to divide the network into 
sub networks to solve the optimal policy or to take 
advantage of obvious symmetries in the problem to 
reduce the state space. 

Future work also includes additional experimental 
testing of the multi-agent online A* algorithm to 
determine the optimal number of UAVs for a path 
planning task with road networks of varying sizes 
and topologies. Further analysis will also be 
conducted to determine whether there are common 
topological features, that exist in road networks in 
which the multi-agent online A* algorithm takes 
the longest time to compute.  

5. CONCLUSIONS 

This paper presented a simulation designed to test 
single and multiple agents performing a path 
planning task. An online search algorithm 
extended from A* was applied to a single agent in 
the simulation. A multi-agent version of the 
extended A* algorithm was outlined, both as a 
centralized and a more robust distributed 
architecture. Results from trials of the simulation 
showed that adding more UAVs to the path 
planning task generally reduced completion time, 
however it was not a linear reduction. The benefit 
of applying more UAVs to the task varied between 
networks of different sizes and topologies. 

A stochastic dynamic programming formulation of 
the problem was also presented. The optimal 
policy for a ten-node network with two UAVs 
performing node search collaboratively was 

computed. Monte Carlo simulations were run, 
testing the strategies for the optimal starting 
locations for each UAV. Results showed that if the 
road network tested was likely to be clear, the best 
strategy is to start one UAV at the target and one 
UAV at the UGV. Alternatively, if the road 
network tested was expected to be heavily blocked 
the best strategy is to start both UAVs at the target.  
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