
The Effect Of Heat On The Diversion Length Of 
Capillary Barriers 

1 C.J. Matthews, 1J.H. Knight, 2F.J. Cook and 1R.D. Braddock 

1Griffith University, School of Environmental Engineering, Nathan, 2CSIRO Land and Water, 
Indooroopilly, QLD  E-Mail: c.matthews@griffith.edu.au . 

Keywords: Capillary Barrier, heat, unsaturated flow, layered soils 

EXTENDED ABSTRACT 

Within the literature, capillary barriers have been 
suggested as an alternative hydraulic barrier in 
cover liners for waste dumps. When a waste dump 
reaches its full capacity, cover liners are usually 
constructed over the waste mound to seal the waste 
from the surrounding environment. One main 
function of a cover liner is to prevent substantial 
amounts of water infiltrating into the waste material 
thereby preventing leaching and potentially 
contamination of the ground water system. A 
capillary barrier consists of a fine soil overlying a 
coarse soil, which can impeded infiltrating water at 
the soil layer interface by capillary forces. 
Breakthrough into the coarse soil will only occur 
once enough water has accumulated at the interface 
to overcome the water-entry pressure of the coarse 
soil. If a capillary barrier is inclined, water will flow 
laterally downslope (or upslope) until breakthrough 
is reached. The length of this lateral flow, parallel to 
the slope, is known as the diversion length. 
Additionally, sealed waste can produce a substantial 
amount of heat due to the decomposing waste 
material. Therefore, it is important to explore the 
effect of heat on the performance of capillary 
barriers.  

This paper will explore the effect of heat on the 
diversion length of a capillary barriers by using a 
numerical model based on the Method of Lines. The 
model will be used to simulate one-dimensional 
coupled heat and water flow through a capillary 
barrier consisting of a Glendale clay loam over 
Berino fine sand. The domain will be rotated by a 
given angle and will represent flow through an 
elongated slope where the edge effects can be 
ignored. It will be assumed that the underlying 
waste will generate a constant heat source while the 
soil surface experiences a constant water flux. 

Under these conditions, the heat generated by the 
waste will result in heat and water fluxes moving up 
the soil profile towards the soil surface opposing the 
infiltrating water flux. To estimate the divergence 
length of the capillary barrier, the analytical 
solution of Warrick et al (1997) for divergence 
length of isothermal steady-state flow through 
layered soils will be extended to non-isothermal 
conditions. This does not provide an absolute 
analytical solution for divergence length under non-
isothermal conditions since the solution still 
requires information from the steady-state 
numerical solution.   

It will be shown that heat generated from the waste 
will have a dramatic effect on the divergence length of 
the capillary barrier when compared to the isothermal 
case. In particular, under dry conditions, the heat 
processes will dominate resulting in upslope 
divergence. Under the same water flow conditions, 
downslope divergence is expected for isothermal flow. 
Interestingly, as the surface flux is increased, the 
results show that, for non-isothermal flow, the 
divergence length switches from an upslope 
divergence to a downslope divergence. This is the 
direct opposite to isothermal flow where downslope 
eventual occurs as the surface flux is increased. 
Essentially, heat seems to act as an additional barrier 
to promote flow down a slope and away from the 
underlying waste. 

This result has implications for cover liner design 
since it appears to extend the use of capillary barriers 
for higher surface fluxes. However, given the dynamic 
nature of the heat fluxes from waste and the 
uncertainty in its behaviour, the non-isothermal flow 
of water through cover liner design will have to be 
explored in more detail. 
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1. INTRODUCTION 

The majority of waste from society, whether it be 
municipal or mining, is disposed of in landfills. 
Fundamentally, the objective of a landfill is isolate 
potentially harmful waste from the surrounding 
environment until the waste decomposes to a less 
harmful state (Koerner and Daniel, 1997). Once a 
landfill reaches its design capacity, a cover liner is 
constructed over the waste as a seal to the environment. 
One of the most important functions of a cover liner is 
to minimise the amount of water that infiltrates into the 
waste material and, consequently, prevent excessive 
amounts of leachate entering the underlying 
groundwater system (Koerner and Daniel, 1997). The 
hydraulic barrier component of a cover liner system is 
generally engineered using compacted clays and/or 
geosynthetic materials due to their low saturated 
hydraulic conductivity properties. However, the 
longevity of these types of barriers is questionable. 
Geosynthetic materials can be damaged during 
construction resulting in weak zones or puncture holes 
that can cause preferential flow paths (Daniel, 1995). 
Similarly, compacted clays can crack from wetting and 
drying processes, particularly, when high temperature 
gradients are evident (Nassar et al, 1996). 

Capillary barriers have been suggested as an alternative 
hydraulic barrier within cover liner systems. A capillary 
barrier consists of a fine soil overlying a coarse soil, 
which impedes the flow of infiltrating water at the 
interface due to the strong capillary forces of the fine 
soil (Warrick et al, 1997). Water will only move into 
the coarse soil once enough water as accumulated at the 
interface to exceed the air entry pressure of the coarse 
soil (Walter et al, 2000). If a capillary barrier is 
inclined, water will flow laterally down-slope (or up-
slope) until breakthrough is reached. The length of this 
lateral flow, parallel to the slope, is known as the 
diversion length (Warrick et al, 1997). 

Once sealed from the environment, the decomposing 
waste material in a landfill can generate large amounts 
of heat that can have a dramatic effect on water flow 
through layered soil profile. Recently, Nassar and 
Horton (1997) showed experimentally, and 
numerically, for a vertical soil profile that diurnal 
temperature effects of the surface caused greater 
thermal water transfer than isothermal water transfer in 
layered compacted soils. Other studies within the 
literature have also explored the combined effect of 
heat and water flow through compacted clay liners in 
landfills, which aimed to examine conditions that can 
lead to cracking of the compacted soil (Nassar et al, 
1996). However, to date, the effect of heat on the 
divergence length of capillary barriers has not been 
investigated. 
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Figure 1 Layered soil profiles and grid system along 
the rotated coordinate system (z). 

This study will model one-dimensional coupled heat 
and water flow through a capillary barrier for a rotated 
coordinate system given by Figure 1. The model will 
represent flow along an elongated slope where flow in 
the lateral direction (along the x-axis) can be neglected. 
The capillary barrier will consist of two soils:  Glendale 
clay loam (Soil 1) over Berino fine sand (Soil 2), which 
will be inclined by an angle γ. The model will be used 
to explore the effect of infiltrating water from a 
constant surface flux as it meets a constant heat source 
from the bottom of the soil profile. In particular, we 
will show to what extent heat generated by the 
underlying waste can affect the diversion length of 
capillary barriers. This will be achieved by extending 
the analytical solution of Warrick et al (1997) for the 
diversion length of capillary barriers to the non-
isothermal case.   

2. GOVERNING EQUATIONS 

2.1 Coupled Heat and Water flow.  

The coupled heat and unsaturated water flow equations 
of Philip and de Vries (1957) can be expressed in 
rotated form (Figure 1) as  

cos( )

k k
T k k

l k

TD D
t z z z z

K
z

θ

θ

θ θ

γ

∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∂

−
∂

L
, (1) 

k k
T kk

k k
Tv vk k

T TC
t z z

TL D D
z z zθ

λ

θ

∂ ∂∂ ⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂∂ ⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

L
, (2) 

 
subject to the following initial and boundary 
conditions for water transfer 
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where T Tl TvD D D= +  is thermal moisture diffusivity 
(cm2 sec-1 oC-1), l vD D Dθ θ θ= +  is the isothermal 
moisture diffusivity (cm2 sec-1), DTl is the thermal liquid 
diffusivity (cm2 sec-1 oC-1), DTv is the thermal vapour 
diffusivity (cm2 sec-1 oC-1), λ is the thermal conductivity 
(cal cm-1 sec-1 oC-1), CT is the volumetric heat capacity 
of the soil (cal cm-3 oC-1), qv is the vapour flux (g cm-2 
sec-1), T is temperature (oC), L = 585 (cal/g) is latent 
heat of vaporisation, ψ is matric potential (cm), t is time 
(sec), z is a coordinate normal to the sloping surface 
positive downwards (cm) and subscript k (=1 or 2) 
denotes soil type as depicted in Figure 1. Equations (1) 
and (2) are based on the conservation of mass and 
energy with moisture and heat fluxes given by 
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respectively. The constitutive equations are given 
by 
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where ξ = -2.09x10-3 is temperature coefficient of water 
surface tension (oC-1), η is the vapour flow 
enhancement factor, α = 2/3 is tortuosity factor,  
a = S – θ is the volumetric air content (cm3/cm3), S is 
porosity, Da is the coefficient for molecular diffusion of 
water vapour in air (cm2 sec-1), v is the mass flow 
factor, ρvs is density of saturated water vapour (g cm-3), 
g is acceleration due to gravity (cm sec-1), ρv is density 
of water vapour (g cm-3), ρl is the density of liquid 
water (g cm-3), R = 4.615x106 is the gas constant of 
water vapour (erg g-1 oC-1), λa = 5.82e-5  is the thermal 
conductivity of air (cal cm-1 sec-1 oC-1), hr is relative 
humidity and Xm and Xo is the volume fraction of 
mineral and organic matter in the soil respectively. 
Note that Dθl, Kθl and d dθ ψ are the isothermal 
hydraulic diffusivity (cm2 s-1), hydraulic conductivity 
(cm s-1) and water capacity (cm-1), respectively and are 
describe by the van Genuchten (1980) equations. In 
addition, temperature and water content dependent 
variables within (13)-(17) are calculated as per Philip 
and de Vries (1957) except for η, which is given by 
(Scanlon et al, 2003) 
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where fc is the mass fraction of clay in the soil. 

2.2 Water flow in isothermal conditions.  

One-dimensional unsaturated flow under isothermal 
conditions for the rotated coordinate system is given 
by Richards’ Equation as 
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where the ̂  represents the solution of the isothermal 
case. (19) will be solved subject to the same type of 
initial and boundary conditions as expressed above 
for (1). Note that the isothermal water flux is given 
by 

ˆ
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3. NUMERICAL METHOD 

3.1 Method of Lines (MoL).  

The set of coupled partial differential equations (PDEs) 
are solved numerically using the Method of Lines 
(MoL) template developed by Lee et al (2004) using 
Matlab. In general, the MoL solves PDEs by 
discretising the spatial component of the PDE while 
keeping the time component continuous. For a coupled 
set of PDEs, the discretisation results in a system of 
ordinary differential equations (ODEs) of the form 

[ ], ([ , ], )d dt t=θ T f θ T  (21) 

where the bold represents a vector. For all test cases 
considered, Matlab’s ODE15s was used to integrate 
(21). The spatial domain is discretised using a finite 
difference scheme developed by Schiesser (1991), 
which unlike conventional finite differencing schemes, 
does not incorporate boundary conditions directly into 
the finite difference equations. Instead, Schiesser’s 
approach uses a series of upwinding and downwinding 
finite difference equations to account for the 
boundaries. Boundary conditions are incorporated by 
imposing the condition on an appropriate vector within 
the model depending on the type of boundary 
condition. A Dirichlet condition is imposed directly on 
the vector θ or T at the boundary node while Neumann 
conditions are imposed on the spatial gradient vectors 
d dzθ  or d dzT  overwriting the finite differencing 
approximation at the boundary node (Schiesser, 1991; 
Lee et al, 2004). 

Using this approach, incorporating boundary conditions 
given by (4)-(6) and (8)-(10) into the numerical method 
is straight forward except for the interface boundary 
condition ((5) and (9)). Following an approach by 
Matthews et al (2004), it is assumed that the finite 
differencing scheme can accurately approximate spatial 
gradients just above the interface for both solution 
variables θ and T. Therefore, the continuity of flux 
condition at the interface can be written in the general 
matrix form 
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where matrix A and b are known at each time interval. 
(22) is readily solved for 2T z∂ ∂  and 2 zθ∂ ∂ , which 
is then used to construct an ODE at the interface in 
terms of Soil 2 for 2T t∂ ∂  and 2 tθ∂ ∂ thereby gaining 
a solution for T2 and θ2 at the interface. At the next time 
interval, T1 and θ1 are calculated from the new values of 

T2 and θ2 through the continuity of ψ and T conditions 
given in (5) and (9). Note that this approach has been 
shown to handle the discontinuity in θ at the interface 
between the two soils (Matthews et al, 2004). 

3.2. Analytical solution for Divergence 
Length. 

Warrick et al (1997) derived an analytical expression 
for divergence length under isothermal conditions, 
which is given by 
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where ˆ
hQ is total horizontal flow (cm2 sec-1) along the 

x*-axis (Figure 1), θs1 and θc1 is the water content at the 
surface and interface boundary in terms of Soil 1 and γ 
is the slope angle. For non-isothermal conditions, it can 
be shown that total horizontal flux can be expressed as 
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Equations (23) and (25) will be used to approximate the 
divergence length under non-isothermal conditions by 
using the solution profile to numerical integrate (25) 
over the Soil 1 using Simpson’s rule. Note that (25) has 
two components, i.e. the total horizontal flow due to a 
water gradient and total horizontal flow due to a 
temperature gradient. Consequently, we can calculate 
the contribution these gradients have to the divergence 
length via (23). Therefore, we will denote the 
divergence length due to a water gradient and a 
temperature gradient as dLθ  and T

dL , respectively. In 
addition, we will denote isothermal and non-isothermal 
divergence length by ˆ

dL  and dL , respectively. Note 
that T

d d dL L Lθ= + . 

4. RESULTS AND DISCUSSION 

This study will simulate coupled heat and water flow 
through a capillary barrier that consists of a Glendale 
clay loam over Berino fine sand. The hydraulic and 
thermal properties of the soil are given in Table 1. Note 
that, the additional soil parameters for the thermal 
properties are given by fc for η and Xm and Xo for CT and 
are only representative figures. Also, the isothermal 
hydraulic properties for both soils are described by van 
Genuchten (1980) equations with 1 1m n= − . For each 
test case considered, the soil profile was kept constant 
at a total length of zL = 70 cm with the interface situated 
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at zc = 30 cm and the initial water content in both layers 
was set at θi1 = 0.248 and θi2 = 0.034 corresponding to a 
constant matric potential of ψi = -1000 cm. 

Table 1. Hydraulic and thermal properties for the 
Glendale clay loam and Berino fine sand. 

Soil properties clay loam fine sand 
θr 0.1060 0.0286 
θs 0.4686 0.3658 
αvg 0.0104 0.0280 
N 1.3954 2.2390 
Ks 13.1 541.0 
fc 0.25 0.01 
Xm 0.3 0.55 
Xo 0.2314 0.0842 
 
Also for the above test case, isothermal flow will be 
modeled using (19) and (20) under the same initial 
condition given by (3) and the same type of 
boundary conditions i.e. a constant surface flux and a 
free drainage condition. To highlight the effect of 

heat, the relative difference between the isotheral and 
non-isothermal case for each node within the system 
will be calculated as 

ˆ( )i i
i

i

RD
θ θ

θ
−

= , (26) 

where i is the node counter and ^ represents the 
isothermal solution. 

4.1. Vertical Case. 

The first test case considered was for a vertical soil 
profile (γ = 0 degrees) with a constant flux of qs = 1 m 
year-1. Figure 2 (a) and (b) show a plot of water content 
and temperature over depth of the soil profile at t = 1, 3, 
5, 7, 9 and 10 days. Figure 2(a) clearly shows the effect 
of the constant flux infiltration at the surface of the soil 
profile and moisture transfer in the bottom soil layer 
due to temperature effects. 
 

 

(a) (b)(a) (b)

 
Figure 2 Plot of depth vs (a) water content and (b) temperature for qs = 1 m year-1  

at t = 1, 3, 5, 7, 9 and 10 days. 

 
(a) (b)(a) (b)

 
Figure 3. Plot of depth vs (a) water content for the isothermal case and (b) relative difference between the 

isothermal and non-isothermal cases for qs = 1 m year-1 at t = 1, 3, 5, 7, 9 and 10 days. 
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In Figure 2(b), it is evident that the temperature 
distribution is moving towards an almost linear profile 
at t = 10 days. Also, the differences in the soil 
properties are only evident in the later simulation times 
at t = 9 and 10 days. At the later simulation times, heat 
transfer due to conduction is more prominent, which 
relies on the thermal properties of the soil matter and 
the water content (de Vries, 1958). 

Figure 3(a) shows a plot of water content over depth of 
an isothermal solution for qs = 1 m year-1 at t = 1, 3, 5, 
7, 9, 10 days. From figure 3(a), it is evident that the 
bottom layer exhibits more thermal moisture 
movement as compared to the upper layer. On 
comparing figure 2(a) and 3(a), the bottom of the non-
isothermal case is becoming wetter at the bottom of 
the soil profile. This is caused by the continual thermal 
transfer of water in the vapor phase from the infinite 
soil profile. Figure 3(b) shows a plot of relative 
difference between the isothermal and non-isothermal 
profiles calculated using (26). The increase in the θ in 
the bottom layer is evident and thermal transfer of 
water has also affected the top layer but to a lesser 
extent. Note that at approximately z = 40 cm the 
relative difference profiles at t = 9 and 10 days start to 
bulge demonstrating that a zone of higher water 
content is gather in the soil profile, which will then 
move downwards over time. This bulge is directly 
caused by the opposing water and heat fluxes where 
the water in the vapor phase is combining with the 
approaching wetting front from the constant 
infiltration. Given that we have opposing water fluxes 
due to infiltration and thermal transfer, it would be 
interesting to examine how this affects the divergence 
length for sloping profiles. 

4.2. Effect on divergence capacity (Ld). 

Table 2 shows the total divergence length of the 
capillary barrier under isothermal ( ˆ

dL ) and non-

isothermal conditions (Ld) for a range of constant 
surface fluxes and slope angles. For Ld, Table 2 also 
shows the contribution thermal gradients and water 
gradients have on Ld, which are represented by T

dL  
and dLθ , respectively. Note that a positive divergence 
length denotes a downslope divergence while a 
negative divergence length denotes an upslope 
divergence. For cover liner design, downslope 
divergence is preferred to divert water away from the 
underlying waste. 

Table 2 clearly shows the effect of the slope where all 
isothermal and non-isothermal divergence lengths 
increase as the slope increases for a given surface flux. 
This is to be expected since both (24) and (25) are 
multiplied by a factor of tan(γ) (Warrick et al, 1997). 
As the constant surface flux is increased, the 
isothermal divergence length ( ˆ

dL ) moves from a 
downslope divergence at qs = 0.01 and 0.1 m yr-1 to an 
upslope divergence at qs= 1 m yr-1. Interestingly, for 
non-isothermal flow, the opposite occurs where Ld 
shows an upslope divergence for the lower surface 
fluxes and a downslope divergence for the higher flux 
of 1 m yr-1. On inspection of the two components of 
Ld, it is evident that T

dL , for all values of qs and γ 
considered, shows an upslope divergence that 
increases as the surface flux decreases. On the other 
hand, dLθ  for all cases considered shows a downslope 
divergence, which also decreases as qs increases. 
However, the decrease in dLθ is much more gradual 
than T

dL , which eventually results in the positive values 
for Ld. The constant upslope divergence for T

dL  is 
caused by the thermal movement of water back up 
through the soil profile, i.e. from hotter to cooler 
regions (see Figure 3(b)), which is more predominant 
under drier conditions (de Vries, 1958). 

Table 2. Horizontal Flux (Qh) and divergence length (Ld) at varying angles and fluxes for the capillary 
barrier. 

qs 
(m y-1) 

γ 
dLθ  

(cm) 

T
dL  

 (cm-1) 
dL  

(cm) 
ˆ

dL  
(cm) 

0.01 5 7.02x100 -1.91x101 -1.21x101 1.87x101 
 10 1.43x101 -3.89x101 -2.46x101 3.73x101 
 15 2.22x101 -6.03x101 -3.81x101 5.50x101 
0.1 5 1.90x100 -1.91x100 -1.33x10-2 4.19x100 
 10 3.85x100 -3.89 x100 -4.70x10-2 8.36x100 
 15 5.91x100 -6.03x100 -1.27x10-1 1.25x101 
1 5 4.97x10-1 -3.98x10-1 9.90x10-2 -3.25x10-1 
 10 1.69x100 -7.66x10-1 9.32x10-1 -6.42x10-1 
 15 2.69x100 -1.18x10-1 1.51x100 -9.91x10-1 
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As the surface flux increases, the downward 
movement of water increases, diminishing the effect of 
water fluxes due to thermal gradients. Even though it 
is not explicitly shown here, as qs is increased further 
the above trend continues with Ld showing a 
downslope divergence as opposed to an upslope 
divergence for isothermal flow ( ˆ

dL ). This result has 
implications for cover liner design since the 
divergence capacity of a capillary barrier can be 
increased, particularly under high surfaces fluxes, as 
long as the waste provides a source of heat. However, 
more work is required to gain a better understanding of 
the function of heat in promoting downslope 
divergence and its implications for cover liner design. 

5. CONCLUSION  

This paper has modeled coupled heat and water flow 
through a capillary barrier, which functions as a water 
barrier in a cover liner system. The results have shown 
that heat generated from the waste will have a 
dramatic effect on the functioning of the capillary 
barrier particularly in terms of its divergence length. 
Under dry conditions, the heat processes dominate 
resulting in upslope divergence, whereas for 
isothermal flow downslope divergence is expected 
under the same water flow conditions. Interestingly, as 
qs is increased, the results show a downslope 
divergence under non-isothermal conditions when 
upslope divergence occurs in the isothermal case. This 
result has implications for cover liner design and 
highlights the need to gain a better understanding of 
non-isothermal flow through cover liner systems. 
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