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EXTENDED ABSTRACT 

Freshwater flows have an important influence on 
the balance of fish species in estuaries. As well as 
supporting general ecosystem health, these flows 
are also necessary to comply with Australia-wide 
legislation aimed at the sustainable management 
of water resources. The Coastal Zone CRC and 
Fisheries Research and Development Corporation 
(FRDC) instigated the ‘environmental flows for 
estuaries’ project in three dry-tropics estuaries in 
central Queensland, namely the Fitzroy, Calliope 
and Boyne Rivers. The effects of the independent 
variables, including freshwater flows, on catch 
rates now need to be quantified. Typically, for 
each species the count data from the two-minute 
spatial and temporal trawl samples include many 
zeros, and are significantly skewed. 

This inflated zero-class violates the statistical 
assumptions of many standard analytical 
techniques. A more appropriate method is to use 
two-part conditional distributions – firstly, a 
Binomial to represent the proportion of zeros 
(simple presence or absence of each species in 
each trawl), and secondly, if present, a truncated 
distribution modelling the catch numbers (>0). 
For this second part there is a range of available 
distributions – researchers in ecology and 
entomology have typically used the Poisson or 
Negative Binomial for their discrete counts, 
whereas in meteorology, health statistics, and 
fisheries and air-pollution research, continuous 
distributions such as the Gamma or log-Normal 
have been profitably employed. Whilst catches 
are necessarily integers, the addition of modelling 
terms (such as effort) effectively converts these 
onto a continuous basis, so statistically the use of 
continuous distributions is quite acceptable. 

To compare statistical methods, we consider a 
subset of the species in our extensive data set – 
the most common (Thryssa hamiltoni, an 
anchovy, with 44% of samples being zero), 
somewhat rarer (Favongobius exquisitus, a goby, 
72% zeros) and rare (Valamugil sp., mullet, 82% 
zeros), as well as a commercial fish (Pomadasys 
kaakan, banded grunter, 63% zeros). The zero-

truncated distributions of catch were all positively 
and significantly skewed. For each species, the 
range of available conditional distributions was 
fitted, with the final model including site and month 
as factors, flowmeter reading (i.e., effective effort) 
as a linear covariate, and salinity, pH and turbidity 
as quadratic covariates. Residual plots were used to 
compare the observed values with the expected 
distributions. Back-transformed adjusted means 
were estimated for the model terms, and compared. 

Whilst the approximate Poisson and Negative 
Binomial models occasionally performed well, this 
does not hold across all situations, especially when 
the mean catch rates are low. Hence the correctly 
zero-truncated versions of these distributions must 
be used. However, these are yet to be incorporated 
into the major statistical packages, so complex 
coded optimisation procedures are required. The 
Negative Binomial, in particular, suffered from 
poor convergence and computational problems. 

Across our four example data sets, there was no 
consistent pattern regarding how the different 
distributions performed. The zero-truncated Poisson 
was shown to be unsuitable, as it could not 
accommodate the degree of overdispersion in the 
data. The Negative Binomial generally performed 
well, but for the species with the lowest degree of 
model fit produced unacceptably low fitted means. 
The residual plots for the Gamma models were 
quite acceptable, however some question remains 
over the fitted means, as these tended to follow the 
Poisson models. 

The truncated log-Normal distribution gave the best 
overall results – significance of the independent 
factors and variates, good distributions of the 
residuals, and generally responsive fitted means 
which were usually ‘amongst’ the other models. In 
particular, they never went into ‘unbelievable’ 
regions, unlike the other distributions. 

One remaining problem, however, is the current 
lack of an acceptable method to estimate the 
standard errors of this log-Normal by Binomial 
combination. This is an area of ongoing 
investigation. 
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1. INTRODUCTION 
 

The balance of fish species in estuaries is affected 
by many factors. These include freshwater flows, 
which must be allowed to pass down into estuaries 
to support ecosystem health, and to comply with 
new Australia-wide legislation aimed at the 
sustainable management of water resources. The 
‘environmental flows for estuaries’ project, funded 
by FRDC and conducted by DPI&F and the 
Coastal Zone CRC, has been running in three dry-
tropics estuaries in central Queensland (the 
Fitzroy, Calliope and Boyne Rivers), for a number 
of years. 

The relationship between estuarine demersal 
assemblages and freshwater flows was 
investigated. Samples were collected using a beam 
trawl (1 m wide by 0.5 m high, with a mesh size of 
6 mm). The beam trawl was towed in water 0.5 to 
1 m deep for two minutes (~50m in distance), with 
the volume of water flowing through the mouth of 
the net measured using a flowmeter. Sites were 
selected for sampling on the following attributes: 
(i) presence of mangroves; (ii) presence of a runoff 
channel; (iii) depth; and (iv) ability to be trawled 
(i.e., no snags). Samples were collected on the 
falling tide, within two hours of high water, around 
the new moon between October and May in 2002 
and 2003. Data for salinity, pH and temperature 
were collected using a Yellow Springs Instruments 
water quality meter, and turbidity was measured as 
secchi depth (which is inversely related to the 
actual level of turbidity). Demersal assemblages 
were characterized by a larger number of species 
(~160), with 10 species dominating the overall 
catch (95% of all animals sampled). 
For the comparison of statistical methods, we 
consider a subset of the species in our extensive 
data set – the most common (Thryssa hamiltoni, an 
anchovy), somewhat rarer (Favongobius 
exquisitus, a goby) and rare (Valamugil sp., 
mullet), as well as a commercial fish (Pomadasys 
kaakan, banded grunter). Descriptive statistics for 
these species are listed in Table 1, and the 
distribution for the first is shown in Figure 1. 
Histograms for the latter three species appeared 
similar, but somewhat less smooth. 

Table 1. Descriptive statistics by species. 

 T-ham. P-kaak. F-exq. Val. 

Ppn. zeros 0.44 0.63 0.72 0.82 

Mean 8.7 1.3 1.0 3.8 

Mean (>0) 16 3.7 3.5 21 

Median (>0)   6   2   2   2 

Maximum 196 56 26 876 

Skewness 3.2 4.9 2.5 7.7 

 
Figure 1. Histogram of non-zero catches per trawl. 

2. STATISTICAL MODELLING OF 
POPULATION DATA  

Obviously, multivariate analyses of species 
assemblages are appropriate for this data set, and 
these analyses are being undertaken. However, one 
key aim of the study was to investigate the effects 
of environmental flows, and the other known 
important covariates, on each individual species. 
This requires sequential univariate analyses of the 
fish counts for each.  

If the observed data skewness and heteroscedastic 
variance can be assumed to be mainly attributable 
to the population strata and other independent 
variates, analyses of the raw data (assuming the 
usual Normal distribution) may be appropriate 
(Haddon 2001). Heteroscedastic regression models 
(Welsh et al. 2000) extend this by allowing the 
variance to be a function of the mean. 
Unfortunately, residual plots showed these simpler 
methods were not appropriate for our skewed data. 

Transformation models, such as the square root or 
log, have been mentioned as potentially useful for 
abundance data (Welsh et al. 1996, Ye et al. 2001). 
In instances where sampling time is ‘lengthy’, 
these are appropriate – for example, the boat catch 
per day data in the northern trawl fishery (Bishop 
et al. 2004) has no zeros, and is approximately log-
Normally distributed. However, in cases with 
smaller sampling times which result in even a 
mildly-inflated zero class, these are unlikely to be 
appropriate. The simulation study of Welsh et al. 
(2000) showed that these transformation methods 
produce markedly biased results, even when using 
bias-corrected back-transformations. 

A range of more flexible and skewed distributions 
has been used for modelling animal abundances, 
including the Poisson (Gardner et al. 1995, Welsh 
et al. 1996), the overdispersed Poisson or Negative 
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Binomial (Gardner et al. 1995, Welsh et al. 2000), 
and Poisson mixtures or Neyman type A (Dobbie 
and Welsh 2001, who concluded that conditional 
models were superior). Again, these distributions 
tend to become less valid as the proportion of 
zeros in the data increases. 

On the other hand, conditional models show good 
potential to accommodate all data sets. This 
approach combines a model for the binary 
(presence/absence) nature of the zeros; and then a 
second distribution modelling these numbers 
(conditional upon their presence). As Welsh et al. 
(1996) demonstrate, the overall log-likelihood is 
the sum of the two independent components, and 
the fitted parameters are orthogonal. Hence, it is 
valid and usual to fit these distributions separately 
(Feuerverger 1979, Pennington 1983, Tu 2002, 
O’Neill and Faddy 2003). 

For the binary component of the conditional 
model, it is most common to use a logistic model 
assuming the Binomial distribution (Feuerverger 
1979, Welsh et al. 1996, 2000, Ye et al. 2001, 
O’Neill and Faddy 2003). The influence of the 
various factors and covariates on this probability 
of capture is usually investigated via generalized 
linear models (McCullagh and Nelder 1989). 

There is a range of distributions available for the 
second component of the conditional model, i.e., 
for modelling the numbers present. Distributions 
which allow zero values need to have these 
truncated, before being useful as a conditional 
distribution with the Binomial. With larger mean 
values this truncation may not be necessary as the 
untruncated version can provide an acceptable 
approximate solution (Welsh et al. 1996), but this 
will not apply generally. Available distributions, 
and their use in conditional models, include - 

Truncated Poisson – this discrete distribution was 
used to model industrial processes (Lambert 1992), 
and possum counts (Welsh et al. 1996). 

Truncated Negative Binomial – this distribution 
has a more flexible shape than the Poisson, as it 
allows for extra variation (Tu 2002). It has been 
used to model seabird nesting counts (Welsh et al. 
1996) and recreational fishery catch rates (O’Neill 
and Faddy 2003), with both these data sets 
displaying overdispersion.  

Extended Poisson process models – based on a 
Markov birth process representation of discrete 
distributions (Faddy 1997), this allows a range of 
distributional shapes, with the Poisson and 
Negative Binomial being particular cases. Podlich 
et al. (2002) applied it to ecological data, where 

results were similar to the truncated Poisson. 
O’Neill and Faddy (2002) adopted it for the 
analysis of recreational fishery catches, and found 
close agreement with their truncated Negative 
Binomial models (O’Neill and Faddy 2003). 

Log-Normal - this combination (of the Binomial 
with the log-Normal) was initially termed the delta 
distribution (Aitchison 1955), and has been used to 
model mackerel egg counts (Pennington 1983), 
health statistics (Zhou and Tu 2000), and air 
contaminant levels (Tu 2002). In a review of 78 
zero-truncated fisheries and ecological samples, 
Myers and Pepin (1990) found that only 7 showed 
significant (P<0.05) departure from the log-
Normal distribution. 

Gamma – this has been used successfully as a 
conditional distribution in meteorological models 
(Feuerverger 1979), and fishery catch rates in 
Kuwait (Ye et al. 2001), where zero catches 
occurred in 50% or more of the data. Myers and 
Pepin (1990) showed their Gamma models to be 
generally similar, but more often slightly superior, 
to the log-Normal fits. 

3. METHODS 
 

The design factors in this survey were year, river, 
location (side-creek or main branch) and month. 
For each species, catch number per trawl is taken 
as the independent variable, with 837 spatial and 
temporal observations. Generalized linear models 
(McCullagh and Nelder 1989), in GenStat (2005), 
were used to fit the independent terms to the 
observed counts. Continuous covariates, uniformly 
fitted as quadratics to accommodate curvature, 
included temperature, salinity, pH and turbidity. 
Flowmeter reading is dependent on both trawl 
speed and time, and is a direct measure of water 
entering the trawl net. Flow is thus an effective 
measure of effort, and was included as a linear 
covariate. Correlations between these variates are 
listed in Table 2. Whilst a correlation coefficient of 
0.36 is statistically significant, this relationship 
only explains 13% of the variation, so there is 
ample scope for each to contribute approximately 
independently to the catch models. 

Table 2. Correlation matrix for the independent 
variables. 

 Temperature Salinity pH Turbidity 

Salinity -0.10    

pH  0.02 -0.07   

Turbidity -0.15  0.36 0.22  

Flow -0.01 -0.11 0.22 -0.13 
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Across all species and models, the main effects 
were generally pronounced and significant 
(P<0.05). The exceptions were year, where the 
observed differences appeared to be adequately 
explained by the covariates; and the temperature 
covariate when in combination with the month 
factor, as these also tended to explain the same 
effect. Hence, year and temperature were dropped. 
Except for the pronounced ‘river by location’ 
interaction (the levels of these factors were then 
combined into a new ‘site’ factor), interactions 
tended to be of a lower order of magnitude, so 
were omitted. Hence, the final model included site 
and month as factors, flow as a linear covariate, 
and salinity, pH and turbidity as quadratics. 

Firstly, a ‘basic’ general linear model was fitted to 
all data (including zeros), using the transformation 
ln(x+1). The more complex conditional models 
were fitted as follows. 

It was assumed that the binary presence/absence of 
each species was adequately modeled using the 
Binomial distribution with a logit link. As each 
data point is a single trawl sample the dispersion 
parameter could not be estimated and, as usual, 
was taken as one. 

Distributions used for the conditional (zero-
truncated) data included the Gamma, log-Normal, 
Poisson and Negative Binomial. The latter two 
were fitted as both approximate (under standard 
GenStat models, which allow for the missing zero 
class), and correctly-truncated (via complex 
procedures). The suitability of each model can be 
judged by half-normal (or quantile) plots, which 
show how the model residuals align with the 
expected distribution. On this basis almost all the 
Poisson models were judged to be inappropriate. 

Figure 2 shows two such plots. The residuals for 
the ln(x+1) analysis of all data at first appear quite 
reasonable. However, they fall outside the 95% 
simulated intervals for most of the low and high 
ends of the range, and it may be expected that this 
pattern will only get worse as the proportion of 
zeros in the data increases. Contrast this with the 
residuals from the log-Normal model of the 
truncated data – these match expectation 
throughout, and of course this pattern is unaffected 
by the proportion of zeros.  

4. RESULTS 
 

Despite the significance of the independent terms, 
the amount of variation explained by these models 
is relatively low (Table 3). Unfortunately, this is 
somewhat common with fisheries data, particularly 
when shorter sample times tend to result in ‘hit or 
miss’ counts with high variability. 

 

 
Figure 2. Half-normal plots, with 95% simulated 
envelopes, of residuals of Thryssa hamiltoni for a). 
ln(x+1) model on all data, and b). log-Normal 
model on truncated data.  

Table 3. Degree of fit for Binomial model of 
binary data (percentage of deviance explained), 
and log-Normal model of the zero-truncated data 
(adjusted R2, percent). 

 T-ham. P-kaak. F-exq. Val. 

Binomial 27.4 7.5 27.3 15.8 

log-Normal 33.0 8.6 11.9 21.4 

Adjusted means and their standard errors were 
estimated for each model. For the ln(x+1) and 
zero-truncated log-Normal models, the bias-
corrected back-transformation (Zhou and Gao 
1997, Tu 2002) was used. We also used the 
adjustment for sample size of Kendall et al. 
(1983), as it is simpler than the adjustment listed in 
Pennington (1983). For the larger sample size of 
this study, these two produced similar results. 
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For all conditional models, the overall means for 
each level of each independent term were 
calculated as the Binomial proportion (of presence) 
multiplied by the conditional (on presence) mean. 
Standard errors for each mean were estimated, 
using the standard formula for the variance of the 
product of two random variables (Goodman 1960). 

Within species, the fitted (or adjusted) means 
tended to form the same patterns for each 
independent term. Figure 3 shows two such terms 
for the most common species, Thryssa hamiltoni. 
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Figure 3. Adjusted means for Thryssa hamiltoni, 
for a). Month main effect, and b). Polynomial for 
observed turbidity levels. 

Only the correctly zero-truncated versions of the 
Poisson and Negative Binomial are shown here. 
For the approximate models, the Negative 
Binomial tended to give quite acceptable results – 
and the parameter estimates proved to be most 
useful as initial values for the optimization 
procedure for the zero-truncated version (this 
always experienced convergence problems with 
anything other than good initial estimates). The 
back-transformed means of the approximate and 

the exact versions were quite similar for the 
Negative Binomial model. 

In contrast, the approximate Poisson model 
performed poorly. The means were often ‘well-
removed’ from the exact Poisson model, as well as 
the other models, and went into ‘unbelievable’ 
regions (given the observed mean catch rates). As 
indicated from the half-Normal plots (not 
presented here), the Poisson distribution appears to 
have insufficient skewness to accommodate short-
sample fisheries data. 

For the five models in Figure 3, the patterns across 
months appear quite similar, with the exception 
that the ln(x+1) model was less responsive and 
lower overall. This proved to be a common feature 
for this model, across all analyses. Across turbidity 
levels, there was good agreement between the 
Gamma and Poisson models, and also between the 
log-Normal and Negative Binomial models. 

Figure 4 shows the adjusted means across pH 
levels, for Favongobius exquisitus. This data set 
displayed the least skewness (Table 1). Again, the 
‘flawed’ ln(x+1) model showed the least 
responsiveness to increased pH levels. In practical 
terms, all of the conditional models displayed a 
similar response. 
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Figure 4. Adjusted means for Favongobius 
exquisitus, across observed pH levels. 

These results, however, are in contrast to the 
Pomadasys kaakan means against salinity levels 
(Figure 5). Here, whilst a general increase with 
salinity is indicated, the shapes of the (possibly 
over-fitted) polynomials differ. The models tend to 
predict different ranges of catch numbers - in 
particular the Negative Binomial means are even 
lower than the ln(x+1) model. This was common 
across all the independent terms for this species, 
and may have been caused by its higher skewness 
(Table 1), or the lower degree of fit (Table 3). 
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Figure 5. Adjusted means for Pomadasys kaakan, 
across observed salinity levels. 

The adjusted means for Valamugil sp. produced 
yet another set of patterns (Figure 6). This species 
had the highest number of captured fish in a single 
sample (876), and the highest skewness, so the 
models had to accommodate this extreme tail. In 
Figure 6, the ln(x+1) is again unresponsive and 
low, the Poisson and the Gamma conditional 
models provide the more extreme fitted values, and 
the log-Normal and the Negative Binomial models 
indicate close agreement. 
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Figure 6. Adjusted means for Valamugil sp., 
across observed turbidity levels. 

The issue of appropriate standard errors for these 
means is yet to be adequately addressed. 
Standardising these as a percentage of their 
respective means, some common patterns were 
observed. For an example, we take the site main 
effect for the Boyne River (this had the median 
number of observations per site, of 65). Across 
species, the standard errors for the ‘basic’ ln(x+1) 
model ranged between 10 and 36%, which given 

the low degree of model fits appears reasonable. 
For the gamma conditional model this range was 
19 to 58%, and for the Negative Binomial, 19 to 
60%. From our implementation of the formula in 
Pennington (1983) for the variance of the 
conditional log-Normal model, the range across 
species was 5 to 11%. These appear over-precise, 
especially when compared with the asymmetrical 
intervals for the log-Normal distribution 
recommended in Zhou and Gao (1997) - these 
ranged from 13 to 31% on the lower side, with 
upper values of 15 to 45%. These only apply to the 
zero-truncated portion of the data, i.e., cannot be 
incorporated with the Binomial component. We 
are thus unable to recommend an acceptable 
theoretical method for estimating the standard 
errors for the Binomial by log-Normal model, and 
are currently investigating bootstrap methods. 

5. CONCLUSIONS 
 

Fisheries data are frequently right-skewed, with a 
sizable proportion of zero values. No single 
distribution appears sufficiently versatile to 
accommodate this wide range of distributional 
shapes. Although the ln(x+1) transformation may 
appear adequate, for our data the residual plots and 
the general lack of responsiveness of the fitted 
means indicate this model performs poorly. 

This leaves conditional distributions as the 
recommended statistical method. The Binomial 
appears an adequate representation of the binary 
(zero proportion) component, and there is a range 
of distributions available for the conditional (>0) 
catch data. Their suitability can be judged by the 
distribution of residuals, which needs to be 
considered separately for each species. However, 
this can only be determined after the final model 
has been decided, and the significance of the 
various competing model terms may well depend 
on the adequacy of the selected distribution. Hence 
this process will tend to be iterative, between 
model selection and distribution selection. 

Based on residual plots and the fitted means, the 
truncated Poisson was shown to be generally 
inappropriate for our data. The truncated Gamma 
gave similar means – so whilst its residual plots 
appear acceptable, the means may be questionable. 
In three of our four species, the Negative Binomial 
and the log-Normal gave similar means, but for 
Pomadasys kaakan the Negative Binomial was 
notably below all other models. 

Overall, the conditional (zero-truncated) log-
Normal performed best. It gave good residual 
plots, and the resultant fitted means were generally 
responsive without ever going into ‘unbelievable’ 
regions. This is in agreement with Myers and 
Pepin (1990) that most zero-truncated fisheries 
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data sets will approximately conform to the log-
Normal. However, one remaining problem is that 
we currently have no recommended method to 
estimate the standard errors for the overall means 
of this Binomial by log-Normal combination. 
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