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EXTENDED ABSTRACT  

Limited funds mean that conservation 
organisations must prioritise between regions in 
order to preserve as much biodiversity as 
possible. Biodiversity hotspots are one of the key 
strategies used to identify such priorities; 
however, they do not reveal how resources should 
be distributed. Identifying optimal returns for 
conservation investment requires the resource 
allocation problem to be properly formulated 
within a sound mathematical framework. A range 
of techniques can then be used in order to find an 
optimal solution.  

A number of important factors must be 
incorporated into the resource allocation problem 
if we are to accurately model the process of 
making of conservation investments; including 
the biodiversity values of a region, threats to the 
biodiversity in that region, investment costs, the 
current state (amount of area reserved and lost) of 
the regions of interest, future uncertainty, and the 
likelihood of investment success. The probability 
of a successful investment in particular, can be 
severely affected by various political and 
economic factors, but has not been accounted for 
in previous work. Explicitly incorporating the 
possibility that conservation efforts may fail 
allows the effects of such uncertainty on the 
behaviour of the optimal investment strategy to be 
evaluated. This knowledge can then be used to 
inform future investments.  

Each region is considered as being made up of a 
number of homogenous land parcels, each of 
which can be reserved, available for reservation, 
or lost to development. We use number of 
endemic species as a measure of regional 
biodiversity value, which avoids the need to 
consider species overlap between regions.  The 
number of endemics protected with increasing 
investment in a region is modelled using the 
species area curve.  We use the binomial 
distribution to model the probabilities of parcel 
loss due to development and investment 
uncertainty factors. 

We treat conservation resource allocation as a 
dynamic and ongoing process. The method of 
stochastic dynamic programming (SDP) is used to 
determine how to optimally allocate conservation 
resources between biodiversity hotspots. The 
resultant solution is used to evaluate the 
performance of a number of simple heuristics: with 
and without consideration given to the likelihood of 
investment success.  

We performed a sensitivity analysis on the 
outcomes of each of the SDP and heuristic 
approaches in order to properly assess the effects of 
including investment uncertainty over a range of 
parameter values. Investment uncertainty was 
varied against each of the two main factors of 
interest in the resource allocation problem: regional 
biodiversity value and threat level. The cost of 
investing in a region is also important but was not 
explicitly examined in the analysis.  

Our results show that the optimal solution responds 
to the likelihood of investment success, with the 
outcome a complicated trade-off between the likely 
relative benefits of investing in different regions 
and the corresponding relative risks of investing in 
those regions. Due to the complex nature of this 
problem, the heuristic methods are unable to 
approximate the behaviour of the optimal solution, 
but can still provide a reasonable outcome. 
Heuristics accounting for investment uncertainty 
generally outperformed those that didn’t, which 
suggests that future conservation action should take 
into account the likelihood of investment success 
when prioritising the allocation of conservation 
resources between regions.  
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1. INTRODUCTION 

Conservation efforts have become a race against 
time, as conservation agencies struggle to protect 
what they can in the face of escalating 
biodiversity loss (Mittermeier et al., 1998, Pimm 
et al., 1995). The limited resources available 
necessitate that conservation resources be 
efficiently targeted in order to ensure the 
preservation of as much biodiversity as possible 
(Moore et al., 2004). Much planning for 
conservation is focused at a regional or local 
level, but the increasing presence of international 
conservation organisations is driving the need for 
more globally-orientated allocation of resources 
(Meir et al., 2004). Working at such a broad scale 
allows for global patterns in biodiversity to be 
examined, though at the cost of fine-scale and 
more spatially explicit data. 

To date a considerable number of strategies to 
address the problem of global allocation of 
conservation resources have been proposed (eg. 
Myers et al., 2000, Olson & Dinerstein, 1998, 
Stattersfield et al., 1998), with most targeting 
areas rich in some form of biodiversity, or 
‘biodiversity hotspots’. Proposed by Myers in 
1988, the hotspots concept encapsulates the 
notion that a large portion of terrestrial 
biodiversity can be protected within a relatively 
small region of land due to the uneven and often 
highly clustered distribution of species around the 
globe (Rodrigues et al., 2004).  

However, the identification of biodiversity 
richness alone does not address the resource 
allocation problem, and instead offer a solution to 
a problem that has not been correctly formulated 
(Possingham et al., 2000, Redford et al., 2003).  
Hotspots address the problem of where species 
diversity is greatest; they do not identify the 
regions that should be priorities for investment in 
order to conserve the most biodiversity. Instead, 
organizations need to employ a more directed 
approach and set explicit, quantitative 
conservation targets which can then utilise 
systematic methods in order to optimise 
conservation outcomes (Margules & Pressey, 
2000). Here we develop the conservation resource 
allocation problem using a mathematical 
framework, with the objective being to maximise 
the total species conserved in the long-term given 
financial constraints (i.e. a maximal coverage 
problem (Church et al., 1996)). Conservation 
agencies typically receive funding on an annual 
basis, and to incorporate this we model resource 
allocation as an ongoing, dynamic process, where 
additional reserves may be acquired each year, 

and remaining unreserved land is subject to 
degradation, and subsequent species loss.  

Current resource allocation methods in 
conservation planning assume all investments 
made will be completely successful in protecting 
the targeted biodiversity. In this paper we 
investigate the effects of incorporating uncertainty 
into the likelihood that once reserved, species 
remain protected. We refer to this uncertainty as 
‘investment uncertainty’. There are a wide range 
of factors that could potentially influence the 
likely success of conservation investments, 
including species or habitat viability, as well as 
various social and political-economic factors such 
as corruption, political instability, constitutional 
change, democracy, government effectiveness, 
and population pressures (Deacon & Murphy, 
1997, Smith et al., 2003). Their effects on capital 
investments are well documented (Bohn & 
Deacon, 2000), but are only just beginning to be 
investigated in relation to allocating conservation 
resources.  

There exists already a wide range of cases 
documenting the often deleterious impacts 
political-economy factors can have on 
conservation efforts (Brandon et al., 1998, Bruner 
et al., 2003, Smith et al., 2003). Indeed, Soule 
(1991) encourages the view of reserves as merely 
transient states, and emphasises the importance of 
structuring conservation action in response to 
such uncertainty, even suggesting the use of 
alternative measures in places where the risk of 
political instability and reserve loss is simply too 
high. Such factors are likely to be particularly 
relevant when operating at a global scale, as 
differences in investment certainty are subject to 
much wider variation across countries, and thus 
have the potential to significantly alter investment 
priorities.  

2. FORMULATING THE GLOBAL 
CONSERVATION ALLOCATION 
PROBLEM 

At a global scale, considering individually each of 
the potentially thousands of sites that could be 
reserved is impractical. Instead we treat each 
potential reserve within a defined region as 
simply one of many homogeneous ‘parcels’, with 
characteristics averaged over the entire region. 
Following allocation at the global level, further 
planning at a smaller, and more detailed 
resolution can follow. Thus, the problem reduces 
to how many ‘parcels’ to allocate funds to from 
each of the different regions in a given time step 
in order to ensure optimal species protection. For 
simplicity, just two regions are used here, in order 
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to make computations easier, and results more 
transparent.  

Each region and its component parcels are 
characterised by their total biodiversity value, 
threat level, cost per unit parcel, a measure of 
investment certainty due to political-economic 
factors and the current state of each of the parcels. 
Endemics are used to represent regional 
biodiversity levels in order to remove species 
overlap, and therefore the need to consider 
complementarity between regions. Parcels can be 
in one of three states: reserved, available for 
reservation or unsuitable for reservation due to 
development. Each currently available parcel has 
a probability of being converted to unsuitable 
during the next timestep, based on regional threat 
levels, and likewise, each currently reserved 
parcel has a probability of being converted to 
unsuitable, as determined by the level of 
investment uncertainty in the region. 

For each successive parcel reserved, the resultant 
increase in biodiversity is dependant on the 
number of parcels already reserved within a 
region. This is because the number of distinct 
species within a region does not increase linearly 
with increasing area reserved. Instead the increase 
in number of species has been shown to follow a 
species-area relationship, with the number of 
species in a given reserve network equal to 

z
RAα , where RA  is the amount of area reserved, 

and α  and z region-specific constants 
(Rosenzweig, 1995). For this analysis, a standard 
z value of 0.2 is used and α is calculated as the 
total number of species in a region divided 
by z

TA , where TA is the total area of the region of 
interest (MacArthur & Wilson, 1967).  

Reserving each parcel entails a cost, and at each 
timestep total expenditure must be less then or 
equal to the total available funds. Any surplus 
funds are disregarded by the model and assumed 
to be utilised for other purposes. Regional costs, 
threat rates and investment certainty are taken to 
be constant throughout the entire allocation 
period. 

As conversion is treated here as irreversible and 
reserved as well as unreserved land parcels are 
now subject to loss, all biodiversity must then 
eventually be lost from the system. This makes 
optimising for biodiversity gains at some final 
time irrelevant. Instead we optimise the number 
of ‘biodiversity years’ accumulated by the 
terminal time, with the points allocated each year 
reflecting the biodiversity currently protected by 
the reserved area. The terminal time is defined 

here as being when all biodiversity has been lost. 
Results obtained under this scoring system are 
then comparable to optimising for a terminal time 
when investment uncertainty is not taken into 
consideration.   
For each possible system state X , the value of the 
reserve system ),( XtV  at time t is determined by 
the total number of endemic species it protected 
that year, with the value function to be maximised 
as follows: 

∑ ∑=
= =

T

t

z
j

J

j
j trTV

0 1
)(),( αX                      (1) 

where T is the terminal time and rj (t),  the 
number of parcels reserved at time t within region 
j, j=1…J for a total of J priority regions. This is 
subject to the budget constraint: 

Bbc j
J

j
j ≤∑

=1
                  (2)                      

where cj is the cost of acquiring any parcel from 
region j and B is the annual budget.  At each time 
step, we must determine the number of new 
parcels, sj (t) to acquire from region j out of a total 
of aj (t) possible parcels available for reservation, 
with vector S(t) representing our investment in all 
regions in year t. The available parcels aj (t) are 
subject to a yearly loss rate dj, and each of the 
currently reserved parcels rj (t), have a probability 
pj of being lost due political-economic factors, 
with pj < dj ∀ J.  

3. SOLVING THE RESOURCE 
ALLOCATION PROBLEM  

The method of Stochastic Dynamic Programming 
(SDP) was used to find the optimal allocation 
solution S(t). SDP is a state-based, backwards 
iteration algorithm that determines for each 
possible system state, the optimal solution based 
on the current state and the expected return given 
the likely transition probabilities (Clark & 
Mangel, 2000). It has been used to solve a number 
of conservation planning problems, and has been 
applied to the dynamic reserve selection process 
for locally based cases involving small numbers 
of sites (Costello & Polasky, 2004, Meir et al., 
2004).  

Parcel loss was treated as a stochastic process and 
represented using the binomial distribution. The 
resultant value function for state X  is then the 
sum of these transition probabilities weighted by 
the corresponding value of being in the new state 

'X  at the next step, plus the score given for being 
in the current system state (Bellman, 1957).  
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This equation is given by (3), with rj and aj 
defined by X , mj the number of parcels 
potentially lost due to development or other land 
use change pressures and nj the number of parcels 
lost due to political-economic factors when 
accounting for the investment uncertainty, and 
subject to (2). 

The SDP algorithm was run until the solution 
reached equilibrium, in order to remove time 
dependency, and then forward simulated using 
stochastic parcel loss probabilities to investigate 
the performance of the optimal solution (Clark & 
Mangel, 2000).  Even when using much smaller 
state spaces, the SDP algorithm had trouble 
stabilising, and the forward simulation was also 
highly variable, requiring up to 100,000 
simulations in order to produce consistent outputs.  

While guaranteed to find the optimal solution, 
SDP is severely limited in the number of regions 
and parcels it can consider due to the ‘curse of 
dimensionality’, which limits its use to relatively 
small problems. In light of this, we formulate a 
number of heuristic algorithms and evaluate their 
performance relative to the optimal SDP solution 
over a range of scenarios. Previous work has 
applied a similar approach (Costello & Polasky, 
2004, Drechsler, 2005, Meir et al., 2004)  and a 
number of myopic and greedy algorithms have 
been investigated and found to be quite effective 
in approximating the optimal solution,  with 
outputs differing by less then 5%.  

Here we select two heuristics: ‘maximising short 
term gain’ and ‘minimising short term loss’, and 
compare them to the equivalent heuristics when 
the expected gain in total number of biodiversity 
years under investment uncertainty is used rather 
then the number of species. A myopic SDP 
solution is also considered. For the heuristic that 
maximises short-term gain, the value function to 
be maximised at each timestep is the number of 
additional species that are reserved and this is 
given by: 

z
j

J

j
j trtV )(),(

1
∑=
=

αX               (4) 

subject to (2). For the heuristic that minimises 
short-term loss, the value function maximised is 
dependant not only on the species reserved but 
also on those present in unreserved parcels:  

z
jj

J

j
j tatrtV ))()((),(

1
+∑=

=
αX       (5)   

subject to (2). In the heuristics accounting for 
investment uncertainty, jα  is replaced by jα / 

jp  in (4) and (5) in order to evaluate the expected 
return on ‘biodiversity years’ when investing in a 
region.  

4.  RESULTS AND DISCUSSION 

The optimal solution was investigated over a wide 
range of scenarios in order to assess its sensitivity 
to different parameter values, with forward 
simulations each repeated 100,000 times and the 
average score at each timestep recorded. A base 
level of 1% per year for investment uncertainty 
was chosen for the contour plot sensitivity 
analyses. Regions having lower levels of 
investment uncertainty were favoured; with the 
weighting given to this factor dependant on the 
relative difference between regions. Thus, a loss 
probability difference of 0.15 to 0.10 was not 
equivalent to 0.50 and 0.45, but instead more 
closely reflected the outcome of a 0.75 to 0.50 
comparison.  

However, when conflicting differences in parcel 
biodiversity value are incorporated, the results 
varied depending on the overall level of 
investment uncertainty, with higher uncertainty 
levels causing the more stable region to be 
increasingly favoured. This ultimately reflects the 
benefit each parcel is likely to provide, but 
represents a key flaw in the heuristics that account 
for investment certainty: they can only respond to 
differences between sites rather then to the 
absolute level of investment uncertainty.  

This dependency on absolute uncertainty levels is 
only when weighed against regional biodiversity 
value and does not apply relative to parcel threat 
differences. Thus, for scenarios with no 
biodiversity value differences, the solution 
remains constant regardless of how high or low 
overall investment uncertainty levels are. This 
apparent inconsistency essentially just reflects 
how the threat and biodiversity value 
characteristics of a parcel are viewed: once 
acquired, a parcel’s threat level is no longer 
relevant, but the certainty of investment and 
biodiversity value are and will together influence 
the number of biodiversity years gained. 
Investment uncertainty is more influential then 
regional threat levels in determining the optimal 
approach, with the SDP almost always choosing 
to act first in the region with the greatest 
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investment certainty, even when the alternative 
region is highly threatened.  

Overall, none of the heuristic methods were found 
to closely approximate the rather complex nature 
of the optimal solution. In particular, the myopic 
SDP, though able to respond to different levels of 
investment uncertainty, failed to provide a good 
approximation to the SDP solution (Figure 1). On 
average it fared no better than the heuristics not 
accounting for investment certainty and differed 
from the optimal solution by up to 12%. In 
scenarios without investment uncertainty, the 
myopic SDP solution closely approximated the 
optimal solution. These differences are likely to 
reflect the overall increased complexity of the 
problem, with a single look-ahead algorithm no 
longer able to capture the essence of the optimal 
solution. 

Of the simple heuristics, the ‘maximise gain’ 
heuristic slightly outperformed the ‘minimise 
loss’ heuristic; with both being least effective 
when large differences in investment uncertainty 
were coupled with only small differences in the 
biodiversity value of parcels (Figure 2). These 
differences in performance are primarily because 
maximising gain early on provides an increased 
amount of time in which to accumulate 
‘biodiversity years’.  

If the scoring scheme was modified so that points 
were given for every year a species existed, 
regardless of whether it was in or out of a reserve, 
then the performance of the minimise loss 
heuristic would likely be improved. Both 
heuristics can lead to suboptimal solutions under 
investment uncertainty (Figure 2), which is 
important to note, given that these are in line with 
the approaches currently recommended for 
efficient resource allocation.  

Adjusting these two heuristics to account for 
expected long-term species gain significantly 
improved their performance; with subsequent 
final differences being significantly lowered 
(Figure 3). The heuristic that minimises expected 
short-term loss under investment uncertainty is 
closest to the optimal solution, giving percentage 
differences of less then 3%. However this 
heuristic tends to be less effective when there are 
high relative differences in both investment 
uncertainty and either biodiversity value or threat 
levels.   

These results demonstrate that incorporating this 
relatively simple measure of investment 
uncertainty can lead to varying recommendations 
concerning resource allocation, and highlights the 

need for political-economic measures along with 
other sources of investment uncertainty, to be 
considered more explicitly in future planning 
frameworks.  
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Figure 1. The percentage difference from the 
optimal solution of the myopic SDP solution over 
a range of biodiversity value and investment 
uncertainty levels. Results for varying threat 
levels were similar. 
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(b) 

Figure 2. The percentage difference from the 
optimal SDP solution of (a) the ‘maximising gain’ 
heuristic and (b) the ‘minimising loss’ heuristic 
over a range of biodiversity value and investment 
uncertainty levels. Results for varying threat 
levels were within similar ranges for both (a) and 
(b).
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Figure 3. The percentage difference from the 
optimal SDP solution of the heuristic that 
maximises expected gain under investment 
uncertainty over a range of (a) biodiversity value 
and investment uncertainty levels, and (b) threat 
and investment uncertainty levels.  
 

Percentage difference from the SDP solution of 
the heuristic that minimises expected loss under 
investment uncertainty over a range of (a) 
biodiversity value and investment uncertainty 
levels, and (b) threat and investment uncertainty 
levels. 

5. CONCLUSION   

This analysis investigated the effects of 
incorporating potential reserve loss as a measure 
of investment uncertainty into the conservation 
resource allocation problem. We found 
investment uncertainty to have a significant 
impact on how regions were prioritised. Those 
with high investment certainty were selected more 
readily, even when a parcel was otherwise less 
favourable, with the optimal approach determined 
by the degree and relative difference of the 
investment uncertainty. Of the heuristics 
investigated, none were able to closely 
approximate the optimal solution, although their 
performance improved when our objective was 
modified to concern the expected long-term gain 
of species.  

Our results suggest that neglecting considerations 
of investment uncertainty could result in sub-
optimal outcomes, but that this can be avoided if 
regional biodiversity value is scaled up relative to 
its expected return.  However, planners could also 

consider alternative proactive approaches, such as 
policy changes or increased funding, that may 
prove more beneficial in the long-term then 
simply avoiding those areas with low investment 
certainty. Further development of this problem 
will include such approaches and examine the 
effects of alternative political-economic factors. 
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