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EXTENDED ABSTRACT 
A semi-parametric stochastic model for generation 
of daily precipitation amounts, simultaneously at a 
collection of stations in a way that preserves 
realistic spatial correlations, accommodates 
seasonality, and reproduces a number of key 
aspects of the distributional and dependence 
properties of observed rainfall is described and 
illustrated. Following a conventional weather 
generator formulation, rainfall occurrences are 
modeled at the first stage and the rainfall amounts 
on simulated wet days are modeled subsequently. 
The rainfall occurrences at each individual site are 
simulated using a two-state, second-order Markov 
model. This model is found to produce better 
results for the statistics of long wet and dry spells. 
The rainfall amounts on the simulated wet days are 
generated using a non-parametric kernel density 
based approach. The amount model is conditioned 
on the rainfall amount on the previous day. 
Multisite spatial correlations of rainfall 
occurrences and amounts are reproduced by 
driving the single-site models with spatially 
correlated random numbers following a procedure 
described in Wilks (1998). The seasonal transition 
in the generation process is maintained by 

estimating the correlations on a day-to-day basis 
using a moving window formulation. The 
procedure of simulating rainfall at individual 
station and introducing the spatial dependence by 
means of spatially correlated random numbers, 
allows more flexibility to model temporal rainfall 
attributes of importance at individual station 
without introducing unnecessary complexity. The 
model is applied on a network of 30 raingauge 
stations around Sydney in Australia and the results 
evaluated. The study region exhibits substantial 
topographic and spatio- temporal rainfall 
variations, and thus provides a challenging setting 
to evaluate the simulation model. The analyses of 
the results show that the model is able to reproduce 
successfully the spatial correlations of rainfall 
occurrence and amounts (as shown by the scatter 
plots of Figure 1) and temporal rainfall 
characteristics (for example, number of wet days 
and average rainfall amount as shown in Figure 2) 
of general interest to the hydrologists. In addition, 
rainfall characteristics at higher time scale are also 
found to be captured well by the model. 
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Figure 1. Observed and modeled log-odds ratios 
and cross correlations at all stations and seasons. 
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Figure 2. The scatter plots of observed and 
modelled number of wet days and average 
rainfall amount at all stations and seasons. 
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1. INTRODUCTION 
 

Simultaneous simulation of weather variables at 
multiple point locations is often desired in many 
hydrological and agricultural ecosystem models. 
An important limiting factor in the applications of 
these variables in modeling activities can be their 
availability with sufficient temporal and spatial 
coverage. To overcome this, stochastic models 
sometimes also known as ‘weather generators’ are 
commonly used to generate synthetic sequences of 
weather variables that are statistically consistent 
with the observed characteristics of the historical 
record in time. These synthetic sequences provide 
information in enhancing our understanding of 
hydrological system response, and in the design 
and operation of water resource systems. The 
single site weather generators based on Markovian 
dependence are based on a relatively simple 
stochastic process and are easy to formulate and 
implement. However, the single-site weather 
generators cannot satisfactorily reproduce the 
strong spatial dependence among weather 
variables, often necessary to evaluate the 
hydrological or agricultural behavior of a region. 
The spatial correlation of weather variables, 
specially the precipitation, may have essential 
effects on the discharge of a river and the 
formation of floods. It is nowadays widely 
accepted that multi-station precipitation simulation 
can only be achieved with the weather models that 
preserve spatial correlation among stations. 

This vital issue of spatial dependence among series 
of weather variables at multiple locations has been 
addressed in a number of space-time applications 
(e.g. Bras and Rodriguez-Iturbe, 1976; Hay et al., 
1991; Hughes and Guttorp, 1994; Bardossy and 
Plate, 1992; Hughes et al, 1999; Stehlίk and 
Bárdossy, 2002). These approaches are 
comparatively complex in both calibration and 
implementation, and therefore have been only 
modestly successful in multi-site simulation of 
rainfall and other weather variables.  

In an effort to alleviate the problem of the 
excessive number of parameters of multi-site 
weather simulators, Wilks (1998) proposed a 
simple extension of commonly used single-site 
weather simulators primarily for rainfall, to multi-
sites by driving each of the individual single-site 
rainfall occurrence and amounts models with 
temporally independent but spatially correlated 
random numbers. This logic has since than been 
applied to varieties of multi-site simulation studies 
including, simulation of daily precipitation, daily 
maximum temperature, daily minimum 
temperature, and daily solar radiation (Wilks, 
1999a); downscaling of precipitation (Wilks, 
1999b); downscaling of daily precipitation, and 

daily maximum and minimum temperatures 
conditional on daily circulation patterns (Qian et 
al., 2002); generation of rainfall occurrences 
(Mehrotra et al., 2005) and downscaling of rainfall 
occurrence and amounts (Mehrotra and Sharma, 
2005). 

The modification proposed by Wilks (1998) 
simulates amounts on wet days assuming temporal 
independence. However, Buishand (1978) found 
significant correlation between precipitation 
amounts on successive wet days. Gregory et al. 
(1993) suggest that reproduction of the structure of 
daily autocorrelation provides a crucial test for a 
stochastic rainfall model.  

The kernel density approach belongs to a class of 
models that are nonparametric, or, models where 
assumption about the form of the probability 
distribution or dependence between variables is 
minimal. This method has been used extensively 
for a range of hydro-climatological applications 
(Sharma et al., 1997; Sharma, 2000; Sharma and 
O’Neill, 2002; Harrold et al., 2003; Mehrotra and 
Sharma, 2005). 

This paper presents a mix of parametric and 
nonparametric approaches for the generation of 
rainfall at multiple locations. The paper is 
organised as follows. The methodology and the 
models used are discussed in Section 2. Details on 
the application of the various models considered, 
the data and the study region used, and a 
comparison of the various results obtained, are 
presented in Section 3. We conclude the paper by 
presenting the summary and conclusions drawn 
from the results in section 4.  

2. METHODOLOGY 

With the conventional weather generator 
formulation, it is quite common to model first 
precipitation occurrence (whether a day is wet or 
dry at a location) and subsequently model the 
precipitation amounts on simulated wet days. As 
rainfall occurrence and amounts are simulated 
independently at each location, observed spatial 
dependence across the stations is not directly 
reproduced and is introduced by using spatially 
correlated random numbers. This procedure of 
simulating rainfall at individual station and 
introducing the spatial dependence by means of 
spatially correlated random numbers, allows more 
flexibility to model temporal rainfall attributes of 
importance at individual station without 
introducing unnecessary complexity.  

2.1. Rainfall occurrence 
Daily precipitation occurrence is usually modeled 
using a two-state, first-order Markov chain, 
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according to which the probability of precipitation 
depends only on whether the previous day was wet 
or dry. Here, a slightly more complex Markov 
model for precipitation occurrence was used (Stern 
and Coe, 1984; Wilks, 1999a,b), involving four 
precipitation probabilities: (1) the probability of 
precipitation following two consecutive dry days 
(p001), (2) the probability of precipitation 
following two consecutive wet days (p111), (3) the 
probability of precipitation if the previous day was 
dry but the day before that was wet (p101), and (4) 
the probability of precipitation if the previous day 
was wet but the day before that was dry (p011).  
The two state second-order Markov model is used 
here because it produces better results for the 
statistics of long wet and dry spells, and also helps 
in identifying whether the wet day belongs to the 
start or middle of a wet spell. Sets of these four 
transition probabilities are estimated separately for 
each location and for each day using a moving 
window formulation. 

2.2. Rainfall Amounts 
A nonzero precipitation amount must be generated 
for each day and location that the model described 
in Section 2.1 simulates to be wet. Conventionally, 
parametric methods generate nonzero precipitation 
amounts by fitting a single probability distribution 
to all locations and months. The model for rainfall 
amounts that is presented in this paper is 
nonparametric, and is based on the kernel density 
procedure as described in Sharma et al. (1997); 
Sharma (2000) and Harrold et al. (2003). It 
simulates the rainfall amounts at individual 
stations conditional on the previous days’ rainfall. 
The use of rainfall amounts on the previous day as 
a conditioning variable imparts a Markovian order 
dependence to the simulated series. 

2.3. Modeling Spatial Correlations of 
Rainfall Occurrence and Amounts  

Rainfall occurrence and amount models outlined in 
sections 2.1 and 2.2 generate series of occurrence 
and amounts at individual stations, hence resulting 
in values that are theoretically spatially 
uncorrelated. We induce spatial dependence in the 
generated rainfall fields by making use of spatially 
correlated and serially independent random 
numbers in generation of rainfall occurrence and 
amounts at individual stations separately, adopting 
a procedure outlined in Wilks (1998). The general 
procedure of estimating the correlation matrices of 
random numbers for rainfall occurrence and 
amounts models is explained next. It may be noted 
that these matrices are estimated independently for 
occurrence and amounts models. 

Denote ut as a vector of uniform [0,1] variates of 
length sn  at time step t, with sn  being the number 
of stations. The vector ut 
( )(),......2(),1( sttt nuuu≡ ) is defined such that for 
locations k and l, corr[ut(k), ut+1(l)] = 0 (or, 
random numbers are independent across time), but 
corr[ut(k), ut(l)] ≠ 0 (or, random numbers are 
correlated across space). As a result, there is 
spatial dependence between individual elements of 
the vector ut, this dependence being introduced to 
induce observed spatial dependence in the 
response variables they are used to simulate.  

We denote the response series at a station pair k 
and l as Yt(k) and Yt(l), respectively. For rainfall 
occurrence these series comprise binary variables 
(0 if rainfall is less than 0.3 mm and 1 if it is equal 
to or greater than 0.3mm, after Buishand, (1978) 
and Harrold et al. (2003)) while for rainfall 
amounts these include only those observations 
when rainfall is equal to or greater than 0.3 mm. 
The sample coefficient of correlation between the 
two variables Yt(k) and Yt(l) is written as:  

)](),([),( lYkYCorrlk tt=ξ   (1) 

The spatial dependence between the uniform 
random variates ut(k), ut(l) is specified such that 
the resulting quantiles from the conditional CDF 
exhibit a correlation equivalent to ),( lkξ . This 
spatial dependence is specified by first 
transforming the uniform random variates to those 
of a standard Normal distribution: 

 ut(k) =  Φ[vt(k)]    (2), 

where Φ[.] indicates the standard normal CDF. Let 
the correlation between the standard Normal 
variates be denoted as: 

)](),([),( lvkvCorrlk tt=ω   (3) 

Our aim then becomes to find a value for ),( lkω  
such that the Uniform random variates ut(k), ut(l) 
(or equivalently vt(k), vt(l) ) generated based on it, 
lead to rainfall series Yt(k), Yt(l) (for rainfall 
occurrences these are series of 0 and 1 while for 
amounts these are non zero values i.e. values 
greater than or equal to 0.3 mm) that exhibit a 
correlation of ),( lkoξ , which denotes the observed 
value of ),( lkξ  (estimated as the sample 
coefficient of correlation of the observed rainfall 
series (of occurrence or amounts) )(kY o

t  and 

)(lY o
t at stations k and l). Estimating this value 

involves an empirical procedure that is described 
below. 

Direct computation of ),( lkω  from ),( lkοξ  is 
complex as vt(k) or vt(l) corresponding to observed 
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Figure 3. Map of the study area showing 
the locations of rain-gauge stations. 

rainfall series )(kY o
t or )(lY o

t is difficult to 
specify. However, as noted by Wilks (1998), there 
exists a monotonic relationship between 

),( lkω and the simulated ),( lkξ for a given station 
pair k and l. Therefore, in practice, one obtains 

),( lkω  using a trial and error by assigning a 
reasonable value to ),( lkω , simulating the series  

)(kYt  and )(lYt at stations k and l, evaluating 

),( lkξ and comparing it with ),( lkοξ . The process 
is repeated with different values of ),( lkω  till an 
acceptable value of ),( lkξ , reasonably close to 

),( lkοξ , is obtained. It is also possible to invert 
the relationship between ),( lkω  and ),( lkξ using 
a nonlinear root finding algorithm. The procedure 
is repeated with all possible combinations of 
station pairs and a final correlation matrix ω  
( sn x sn ) of normal deviates separately for rainfall 
occurrence and amounts is obtained. Further 
details on the methodology are available in Wilks 
(1998) and Mehrotra and Sharma (2005).  

Note that the estimation of the correlation 
coefficient of the normally distributed random 
numbers as described here is assumed independent 
of the process used to drive the rainfall generation 
mechanism. That is, although, rainfall occurrences 
or amounts are generated by using the second 
order Markov model or conditional KDE model, 
the correlations are computed independent of the 
assumed conditional distribution. This assumption 
while allows considerable simplifications in the 
calculations, has negligible affects on the final 
results as presented and discussed in the 
subsequent sections. 

3. APPLICATION OF MODELS AND 
RESULT DISCUSSION 

3.1. Data and Study Area 

The study region is located around Sydney, eastern 
Australia spanning between 147°E - 153°E 
longitude and 31°S - 36°S latitude (Figure 3). For 
this study, a 43-year continuous record (from 1960 
to 2002) of daily rainfall at 30 stations around 
Sydney, eastern Australia was used. The inter-
station distances between station pairs vary 
approximately from 20 to 340 km. Missing values 
at some stations (<0.5%), were estimated using 
inverse distance averaging and the records of 
nearby stations. 

3.2. Model Application 

Relationship between correlations of series of 
normally distributed random numbers and 

simulated rainfall occurrence and amount series at 
a station pair is estimated on a daily basis 
considering the observations falling within a 
moving window of length 31 days centred on the 
current day. Rainfall occurrences at individual 
sites are generated using a two state, second order 
Markov model as described in sub section 2.1, 
while rainfall amounts on wet days are generated 
conditional on the previous day rainfall amount 

using a nonparametric kernel density approach as 
described in sub section 2.2. 

It was observed that the procedure used for 
generation of rainfall amounts considers the 
correlation matrix of random numbers derived 
using the rainfall series of wet days only and 
therefore the correlation of simulated rainfall 
amounts on occasions when only one station (of a 
station pair) is wet, did not match well with the 
observed ones. This situation occurs when a wet 
station lies close to the boundary of a wet region. 
We address this issue by incorporating two 
additional variables in the predictor set 
representing respectively, the ratio of number of 
wet stations to the total number of stations in the 
neighbourhood (within a given radius) and, the 
average distance of neighbouring wet stations from 
the station under consideration. Following 
Mehrotra and Sharma (2005), a region represented 
by a radius of 150 kilometres was found to be the 
most effective in representing the influence of 
local neighbourhood. The conditioning vector 
considered for simulation of rainfall amount at a 
station thus includes previous day rainfall and two 
variables defining the local wetness density, 
totaling three variables.   
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3.3. Model results 

In all the results that follow, the statistics reported 
are ascertained by generating 100 realisations of 
the rainfall from the model. The performance of 
the occurrence and amounts models is evaluated 
on a seasonal basis for their ability to simulate the 
observed spatial and temporal characteristics of 
rainfall including those of importance in water 
resource management. These include number of 
wet days, average daily rainfall amount, wet and 
dry spells, maximum daily rainfall amount and 
mean and standard deviation of monthly rainfall 
totals. Due to space limitation, however, results of 
only a few important statistics are reproduced here. 

Spatial dependence of rainfall occurrence and 

amounts 

The log-odds ratio, reflecting the spatial 
correlation between rainfall occurrences at each 
pair of stations provides a measure of accurate 
reproduction of the spatial dependence. The top 
row of Figure 1 presents observed and modeled 
log-odds ratios at all stations for both seasons. 
Each point on the graph indicates the ratio 
evaluated for a pair of raingauge stations. The 
dependence between the stations is accurately 
preserved by the model. 

Bottom row of Figure 1 presents the scatter plots 
of cross correlations in the observed and simulated 
daily rainfall amounts for all station pairs and 
seasons. The amount model provides a good fit to 
the rainfall amounts except some bias during 
winter.  

Number of wet days and average rainfall amount 

It is vital that the average number of wet days and 
rainfall amount be reproduced accurately before 

using the generated rainfall series as an input to 
any water balance modeling exercise. Top row of 
Figure 2 presents the scatter plots of observed and 
modelled number of wet days at all stations for 
both seasons. Each point on the graph represents a 
station. As can be seen from the graph, the model 
provides a good fit to the number of wet days at all 
stations. Bottom row of Figure 2 shows the scatter 
plots of the observed and model simulated 
seasonal rainfall amount for all stations and both 
seasons. The model provides an accurate 
simulation of seasonal rainfall amounts. 

For efficient design and management of water 
resource projects, not only the number of wet days 
but their accurate distribution in the simulated 
series is also important. Top row of Figure 4 
compares the distribution plots of wet days in the 
observed and simulated rainfall series for a 
representative station only (no 15 of Figure 3, 
picked up to represent the coastal wet region). The 
5th percentile, median, and 95th percentile values 
are shown as continuous lines while the historical 
values are superimposed as circles. As shown in 
the plot, the model adequately reproduces the 
distribution of wet days for both seasons. 
Similarly, bottom row of Figure 4 compares the 
distribution of observed and simulated seasonal 
rainfall amounts at the representative station. In 
general, performance of the model in reproducing 
the distribution of seasonal rainfall amount and 
number of wet days is satisfactory, except for the 
upper ends of the graphs, where it somewhat under 
estimates the extreme values.  

Wet and dry spell characteristics 

The generated series intended for use in catchment 
modeling studies should be capable of reproducing 
sustained wet and dry days. Figure 5 presents the 
scatter plots of lowest, median and highest yearly 
maximum wet and dry spells at each station. As 
shown in the plots, these characteristics are not 
well reproduced by the model; specifically the 
highest dry spells are consistently under estimated 
at majority of stations. It appears that the second 
order Markov model used in the study is not 
capable enough to capture these longer time scales 
characteristics. Perhaps, conditioning on additional 
variables incorporating longer time memory of 
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Figure 4. Distribution plots of wet days and 
seasonal rainfall amount in the observed and 
simulated rainfall series at the representative 

station for both seasons. 
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Figure 5: Scatter plots of observed and modeled 
yearly highest, median and lowest maximum 

wet and dry spells at all stations. 
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Figure 6: Distribution plots of observed and 
modeled daily maximum rainfall at the 
representative station for both seasons.

rainfall series as suggested by Harrold et al. (2003) 
might help in improving the results further. 

Daily maximum rainfall 

Accurate estimation and distribution of the 
observed rainfall peaks at a station is of 
significance in catchment studies dealing with 
flood estimation and analysis. It has essential 
effect on the maximum discharge that can be 
expected from the catchment. Figure 6 provides 
the distribution plots of observed and modeled 
daily maximum rainfall at the representative 
station for winter and summer. On an average, the 
model is quite successful in simulating this 
important rainfall characteristic. 

Implied monthly rainfall characteristics 

As the model is formed considering the daily 
rainfall occurrence and amount series, it would of 
general interest to investigate further the capability 
of the model in modeling the longer time scale 
rainfall attributes. These longer time-scale 
characteristics can be of essential interest for some 
applications, and constitute a challenging 
assessment of the performance of the daily model 
(Buishand, 1978; Wilks, 1998). Figure 7 presents 
the scatter plots of a few statistics of the 
aggregated observed and generated rainfall series 
at monthly level including: standard deviations of 
monthly rainfall totals (panel a), standard 
deviations of number of wet days in a month 
(panel b) and, cross correlations of monthly 
rainfall totals and number of wet days in a month 
(panels c and d). The points on the graph are 
shown for all months and stations for panels a and 
b and for all station pairs and months for panels c 
and d. Since the monthly means are determined by 
the mean number of wet days per month and mean 
rainfall per day (Wilks, 1992; Wilks, 1998) and 
these observed statistics are well reproduced by the 
model (Figure 2), the plots of the averages of 
monthly rainfall totals and number of wet days are 
not presented here. As can be seen from the Figure 
7, there is consistent under estimation of standard 
deviation (indicative of the interannual variation of 
the series used) of monthly rainfall totals and 

monthly number of wet days. This deviation is 
more pronounced for higher standard deviations of 
monthly rainfall rainfalls. This kind of behaviour 
of aggregated series of rainfall has also been noted 
by others in the past (Buishand, 1978; Katz and 
Parlange, 1993; Wilks, 1998). Similarly, inter-site 
cross correlations of monthly rainfall totals and 
monthly number of wet days indicate a wide 
scatter across the stations (panels c and d). In these 
graphs, some of the deviation can be attributed to 
sampling uncertainty in the limited observational 
record (only 43 years of record is used in the 
analysis). In general, these statistics at monthly 
time scale are reasonably well represented by the 
model, even though the models were fitted to the 
daily rainfall series. We feel that inclusion of 
additional conditioning variables representing 
longer time memory of the rainfall series as 
suggested by Harrold et al. (2003) might help 
improving these results. For rainfall amount, as 
individual models are fitted to each site, inclusion 
of additional variables in the nonparametric KDE 
model is easy and straightforward.  

4. SUMMARY AND CONCLUSIONS 

This paper has demonstrated the applicability of a 
relatively simple rainfall generation framework for 
multi-site rainfall amounts. The approach 
simulates rainfall occurrences at all stations using 
a parametric Markov model, while rainfall 
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Figure 7. Statistics of observed and simulated 
monthly aggregated rainfall series: (a) and (b)- 
standard deviations of monthly rainfall amount 
and number of wet days in a month, (c) and (d)- 

cross correlations of monthly rainfall amount 
and number of wet days in a month. Points on 

the panels a and b are shown for each month and 
station, while for c and d are shown for each 

month and station pair. 
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amounts on the wet days as specified by the 
occurrence model, are simulated using a 
conditional kernel density estimation procedure. 
Spatial correlations in the rainfall occurrence and 
amount series are induced by making use of 
spatially dependent random numbers.  
Rainfall simulation models having the capability to 
simulate rainfall at networks of stations and 
maintaining spatial correlation structure are best 
suited for use in catchment management practice, 
where the nature of spatial variations in rainfall has 
important influences on streamflow and flooding.  

The study region exhibits substantial topographic 
and spatio- temporal rainfall variations, and thus 
provides a challenging setting to evaluate the 
simulation model. Results of the study indicate the 
proposed simulation framework is effective in 
reproducing the various important spatial and 
temporal attributes of the observed rainfall 
occurrence and amount process over the region. 
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