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EXTENDED ABSTRACT 

Traditional sensitivity assessment (SA) methods 
have limitations which motivate a new approach, 
the subject of a new project at ANU and the 
Universities of Adelaide and Melbourne, with the 
Murray-Darling Basin Commission and the South 
Australia Dept. of Water, Land and Biodiversity 
Conservation as partners. The limitations include 
high computing load, restricted scope and validity 
of the results, excessive volume of results and 
failure to distinguish SA from uncertainty 
assessment. The new approach has three main 
aims: (i) to investigate sensitivity of a wide range 
of model outcomes, not only the values of 
individual output variables; (ii) to examine 
sensitivity to changes which are not small; (iii) to 
find efficiently features such as critical or near-
redundant parameter combinations. Requirements 
such as output ranges, credible behaviour or given 
rank order of scenario outcomes define an 
acceptable outcome set. SA then explores the 
feasible set of parameter values producing 
acceptable outcomes. This inverts the mapping by 
the model from parameters to outcomes.  

Existing techniques for inverting an output set 
through a non-linear model work only on small 
numbers of parameters and outputs, and assume 
that the output set is bounded by either a box (pairs 
of bounds on individual variables) or an ellipsoid. 
Consequently it is proposed to simplify SA by set 
inversion by two tactics. First, the model is split 
into simpler sections, e.g. with linear dynamics, to 
allow use of efficient, approximate inversion 
methods such as ellipsoidal, orthotopic or 
parallelotopic bounding. Second, attention is 
confined to features of the feasible set which can 
answer specific questions, such as largest or 
smallest diameter, indicating the least and most 
critical linear parameter combinations. Numerical 
search from approximate bounds, computed with 

the help of standard bounding algorithms, is 
contemplated to find such features. 

Even with these tactics, SA by set inversion faces 
several difficulties: 
(i) Approximation error increases as the set is 
propagated through stages of the model. Existing 
algorithms process many successive bounded-error 
output observations one by one, updating the 
feasible parameter set with the bounds inferred 
from each by a one-step model inversion. By 
contrast, SA by set inversion through a non-linear 
model is likely to handle only a modest number of 
output bounds, but may have to propagate each 
through a cascade of model sections. This raises 
new variations on the problems tackled by 
established set-inversion algorithms. They produce 
bounds on model parameters or state from bounds 
on outputs, whereas SA by set inversion through a 
number of model sections requires bounds on 
inputs to all but the last section.  
(ii) Almost all existing algorithms produce outer-
bound approximations to the feasible set, whereas 
for SA a conservative estimate of the parameter 
range is required, i.e. inner bounds.  
(iii) The standard algorithms assume instantaneous 
bounds on each output variable or an ellipsoidal 
instantaneous bound on a vector of outputs. If the 
flexibility of set-inversion SA is to be exploited, 
bounds in other metrics have to be permitted.  
(iv) Some non-linearities effectively contain 
switches which can disconnect parts of the model. 
It is not obvious whether inversion of a bound 
through such a switch is possible.  
(v) A model with stable dynamics has an unstable 
inverse. 

The significance of these difficulties and the 
factors affecting their resolution are outlined in the 
paper, with particular reference to how established 
parameter-bounding algorithms fit into the new 
scheme. 
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1.  INTRODUCTION 

This paper gives the background to a recently 
started project to explore a new approach to 
sensitivity assessment (SA) of complex simulation 
models for natural-resource management. The 
project partners are The Australian National 
University, the Universities of Adelaide and 
Melbourne, the Murray-Darling Basin 
Commission and the South Australia Department 
of Water, Land and Biodiversity Conservation. 
The aims are (i) to investigate sensitivity of a wide 
range of model outcomes, not confined to values 
of individual output variables, to variation in 
parameter values; (ii) to examine non-local 
sensitivity behaviour, i.e. sensitivity to changes 
which are not small; (iii) to find selected 
sensitivity features, such as critical or near-
redundant parameter combinations, efficiently. 

Section 2 reviews SA for models intended to 
support natural-resource management. The 
features of such models affecting SA are discussed 
and the standard approaches to SA, with their 
limitations, are outlined. An alternative approach, 
employing bounds on parameters and variables in 
the model, is motivated and presented in Section 3. 
Section 4 discusses the scope for using existing 
tools to implement the approach, the differences 
between the requirements of the new SA approach 
and the problems addressed by the existing tools  
and the resulting difficulties. Fundamental 
limitations of the approach are also noted. 

2.  SENSITIVITY ASSESSMENT OF 
MODELS FOR NATURAL-RESOURCE 
MANAGEMENT 

2.1 Features of NRM Models Affecting 
Sensitivity Assessment 

Models for natural-resource management have 
several features which make their analysis more 
difficult: (a) heterogeneity, as they deal with 
multiple aspects of a situation, e.g. hydrological, 
forest-management, cropping, climatic, economic, 
ecological, amenity; (b) unavoidable complexity, 
often simply because the model has both time and 
location as independent variables and must have a 
large number of space-time samples for adequate 
coverage; (c) absence of mathematical properties 
which simplify analysis: they are typically non-
stationary (notably because of year-to-year 
variation in climate or longer-term climate change, 
depending on time scale) and sharply non-linear 
(due, for instance, to changes in water extraction at 
irrigation-rule thresholds, abrupt hydrological 
changes due to cropping or farm dams, dependence 

of flow and erosion mechanisms on rainfall 
intensity and soil condition, and hard constraints 
on land use and water availability); (d) incomplete 
and often unconvincing testing against data, 
leaving doubts whether the model was fitted to 
observations in conditions similar to those 
pertaining in its intended use, whether its structure 
is too elaborate, and whether “validation” against 
other records, strictly only checking that invalidity 
is not proven, can establish reliability; and (e) high 
uncertainty in many of the values of parameters, 
boundary conditions and inputs supplied to the 
model, and in structural features such as dynamical 
order or assumed constancy of parameters.  

These features all raise questions about the utility 
of predictions by the model as guides to the effects 
of management action. SA is essential if anything 
better than guesses at the reliability of model 
responses is to be provided. These same features 
make SA demanding. Although the need for SA is 
widely accepted and well established techniques 
exist (Saltelli et al., 2000), SA of models for 
natural-resource management is rarely fully 
satisfactory, for reasons discussed below. 

2.2  Sensitivity Analysis Through Derivatives 

If the relation between the parameters, forcing 
and/or boundary conditions of interest (henceforth 
just called parameters) and responses of a model 
(any specified functions of the model outputs) are 
continuous and not strongly non-linear, the 
sensitivities can usefully be defined as the rates of 
change (derivatives) of the response with respect 
to the parameters, normalised as appropriate. They 
can be found by differentiating the model 
equations with respect to those parameters, then 
solving the resulting influence equations to find 
the derivatives. The model will usually include 
differential equations (DE’s), so some influence 
equations will be DE’s, which must be integrated 
to get the sensitivities as functions of time and 
perhaps location. Unless the DE’s are all linear 
(and perhaps even then), the integration must 
probably be numerical, giving results for specific 
initial conditions, forcing, times and locations, not 
yielding the insight obtainable from a general 
analytical solution. The same applies if derivatives 
are found as finite-difference approximations from 
many parameter-perturbation runs. 

For linear models, SA by finding derivatives has a 
long history (Tomovic, 1976). Additional 
assumptions, specifying the probability density 
functions (pdf’s) of the varying parameters, permit 
uncertainty analysis (Atherton et al., 1975). 
Sensitivity analysis of DE models continues to 
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receive attention, especially from reaction 
kineticists (Horenko et al., 2005). 

This approach to SA has fundamental limitations. 
The first is due to non-linearity. The change in 
response due to given parameter changes can be 
found from first derivatives only if the response is 
near-linear in the parameter; otherwise, the 
sensitivities vary with the values of the parameters. 
To use derivatives to find the effects of changes 
large enough for non-linearity to show, Taylor-
series expansion with higher derivatives is 
required. The number of derivatives may be very 
large and can only be found by extensive analysis 
or trial and error, often impracticable. Even if the 
response is linear in individual parameters, higher 
derivatives must be found to determine any 
interaction effects of changing more than one 
parameter. The second drawback is that little 
insight is conferred by a mass of derivative values. 
Further analysis is necessary to find, for instance, 
what parameter combinations are critical and 
which might be replaced by simpler combinations. 

2.3  Sampling-Based Sensitivity Assessment 

Variation of sensitivities with the parameters can 
be taken into account by random or systematic 
sampling of the parameters to see how the 
response varies over their whole realistic range. 
Systematic sampling schemes such as the Morris 
method (Morris, 1991) cover all parameter 
combinations and their entire ranges, and give an 
indication of the strength of interaction effects, as 
statistics of the mean and variability of the output 
changes over a collection of parameter samples. 
Alternatively, Monte Carlo sampling can be 
performed, according to distributions specified for 
the parameters. However, it blurs the distinction 
between sensitivity assessment and uncertainty 
assessment. SA aims simply to find how sensitive 
the responses are to parameter changes and does 
not need to know anything about the probability 
properties of the parameters. Uncertainty 
assessment is usually treated as investigating 
statistics of the response variations due to 
parameter variation with given statistics (or, 
ideally, the relations between the pdf’s).  

For either deterministic or Monte Carlo sampling, 
the design problem is to find a scheme to produce 
the best coverage with an acceptable computing 
load. There is a risk that significant features of the 
relations between parameters and outputs are 
missed because the samples are too sparse. For 
example, coverage of near-extreme responses is a 
particular concern. When probability distributions 
for the parameters can be supplied, stratified 
sampling allows control of the proportion of 

samples close to the parameter extremes, but 
extreme responses may not correspond to extreme 
parameter values and may still be missed. A 
similar risk arises with deterministic sampling. 

Specialised schemes offer more limited 
information with greater computing economy. If it 
is sufficient to apportion the mean-square variation 
of the response to uncertainties in various 
parameter combinations, Fourier Analysis 
Sensitivity Testing (FAST) (Saltelli et al., 2000) 
does so efficiently. Where the response is near-
linear in the parameters, principal-component 
analysis of parameter-sampling results can show 
which combinations are most and least important. 

To avoid imposing too large a computing load, 
sampling-based SA covers the region of parameter 
space of interest as thinly as necessary and 
examines restricted aspects of the output 
behaviour. A distributional approach to 
summarising a large body of results is often 
adopted to avoid the difficulty or impossibility of 
interpreting the results in detail. The alternative 
approach outlined below allows a wide range of 
output behaviour to be nominated as of interest, 
and does not require or utilise any distributional 
information. It also offers some prospect of 
efficient computing by exploiting existing 
techniques developed in the fields of system 
identification and state estimation. 

3.  SENSITIVITY ASSESSMENT BY SET 
INVERSION 

To date, SA methods treat SA as a forward 
problem, rerunning the model for a range of 
parameter values and/or boundary conditions. By 
contrast, the project in progress at ANU and the 
Universities of Adelaide and Melbourne views SA 
as the inverse problem of translating specified 
output behaviour back through the model to 
constrain the parameters. There are three motives 
for doing so. 

First, it fits the questions in SA, which can usually 
be posed as asking over what parameter range the 
outputs meet stated requirements. For instance, the 
ranking order of outputs in a number of scenarios 
(e.g. management policies or climate futures) may 
be of interest. For preferences to be attached to the 
outcomes, the order must remain unchanged over a 
parameter range dictated by prior experience, 
analysis of model uncertainties or “what if?” 
considerations. Another example is wishing to 
know over what parameter range particular 
outputs, such as salinities at specified places, stay 
below certain levels. A third instance is asking 
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what relative changes in different parameters cause 
a given response change. 

The second reason for treating SA by model 
inversion is that it directly exposes model-structure 
defects. Over-parameterisation shows as a very 
large range of some parameter combination while 
still meeting the output requirements, i.e. as those 
parameters being jointly ill defined. Conversely, a 
very restricted range for a parameter combination 
indicates that it is critical, and may suggest that the 
model has too few degrees of freedom. 

The third motive is that many techniques exist for 
inverse problems, translating uncertain output 
values into uncertain parameter or state values; 
some may be exploitable for SA. Most parameter-
estimation algorithms (Ljung, 1995; Söderström 
and Stoica, 1989; Norton, 1986) optimise the fit of 
model outputs to observed output values, but are 
justified by properties such as statistical 
consistency, efficiency and asymptotic normality. 
Those which produce estimates of parameter 
variability (usually a covariance) translate output 
variation into parameter variation, so they might in 
principle be modified for uncertainty assessment. 

However, there is an easily interpreted non-
probabilistic alternative, apparently relevant to SA 
treated as turning output requirements, expressed 
as inequality constraints, into bounds on the 
parameters. Parameter-bounding identification 
(Fogel and Huang, 1982; Milanese and Belforte, 
1982; Walter, 1990; Norton, 1994, 1995; Milanese 
et al., 1996) finds (approximately in most cases) 
the feasible set of all parameter values giving 
outputs fitting a sequence of observations to within 
a given maximum instantaneous error. Parameter-
bounding algorithms are well developed for linear 
dynamical systems (Walter, 2003; Norton, 2003) 
but less so for non-linear systems (Keesman, 2003; 
Lahanier et al., 1987; Jaulin and Walter,1993; 
Jaulin et al., 2001). In a closely analogous way, 
SA can be regarded as finding the feasible set of 
parameter values corresponding to an acceptable 
outcome set defined by inequality constraints on 
the output behaviour. These reflect the intended 
use of the model, as outlined above. SA then looks 
like a generalisation of parameter bounding, 
allowing a wider selection of response constraints 
than bounds on individual output samples. 

The idea of finding parameter values making the 
model response observe specified bounds is the 
basis of Regional Sensitivity Analysis (RSA) 
(Spear et al., 1994), initially developed in the 
1970’s. The model is run forwards for a large 
number of random samples of the parameters,  
checking the responses against inequality 

constraints to see if each sample is feasible. RSA 
then uses the extent and shape of the collection of 
feasible values to find relatively important and 
unimportant parameter combinations and hence 
refine model structure. The method has the big 
advantage of not requiring linearity. It shares with 
the proposed set-inversion SA approach great 
flexibility in specifying what the model outputs 
must do. Its drawback is a high likelihood of 
inefficiency. Typically only a small proportion of 
trial values turn out to be feasible, as the feasible 
set occupies a small part of the volume of 
parameter space explored; a much smaller fraction 
still shows where the boundary of the feasible set 
lies. Commonly in heavily parameterised 
environmental models, some parameters are near-
redundant, and so the feasible set lies almost in a 
subspace of parameter space. A further difficulty 
in predefined sampling SA schemes is the need to 
know in advance what parameter ranges to 
explore. As a primary aim of  SA is to find out 
what ranges are significant, this is a Catch 22, to 
be resolved by trial and error. Both drawbacks are 
avoided by inversion of the output set. 

4.  SCOPE FOR EXISTING TOOLS IN SET-
INVERSION SA 

4.1 Bound Updating 

Interest in the variation of outputs of a model (a set 
of equations) as parameters or boundary conditions 
vary over specified ranges is common to many 
fields (Puig et al., 2005). Certain generic 
difficulties in translating parameter variation into 
output variation or vice versa have been 
recognised. One arises as successive updates of the 
bounds are carried out, in parameter-bounding 
identification to impose new parameter bounds 
inferred from successive output observations, or in 
SA to propagate bounds through stages of the 
model. The updates tend to make the feasible set 
more complicated, so in most cases it has to be 
approximated by a simpler set. For set inversion in 
linear dynamical systems, relatively cheap 
algorithms have been developed to update an 
ellipsoid (Fogel and Huang, 1982; Pronzato and 
Walter, 1994; Maksarov and Norton, 1996, 2002) 
or parallelotope (Chisci et al., 1996; Chisci et al., 
1998) approximating the feasible set of parameters 
or state variables. Error is incurred at each update 
of the set and it may well become an unacceptably 
loose fit to the actual feasible set. This is 
sometimes called the wrapping effect. The effect 
occurs in both forward and inverse translation of 
sets through a model. 

Fewer updates are likely to be needed for SA by 
set inversion than for parameter-bounding 
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identification. The latter takes an update to process 
each output observation, of which there are usually 
many. In SA by inversion of the acceptable output 
set, the number of updates at most equals the 
number of output bounds, provided each update 
can be performed in a single step back through the 
model. This is so if the parameter-to-output 
relation is linear. If the relation is non-linear, 
updating is not straightforward, as discussed 
below. Bounds on more than one scalar function of 
the outputs may sometimes be replaceable by a 
single approximate (e.g. ellipsoidal) joint bound, 
reducing the number of updates.  

The next subsection discusses how output bounds 
are propagated through time and through a series 
of model sections, with a view to applying existing 
parameter- or state-bounding algorithms to update 
parameter bounds for SA in linear models (model 
sections taken as near-linear or linearised models 
valid over a restricted period).  

4.2 Updating of Parameter Bounds in Set-
Inversion SA for Linear Models 

Consider a general linear, time-invariant model 
expressed in state-space form: 

 kkkkk HxyGuFxx =−+−=     ;11  (1) 

relating input vector u to output y via state x and 
giving the dynamics of the transition between 
sample instants k-1 and k. If the model applies over 
j sample intervals up to time k,  

)
1

( ∑
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so linear bounds on ky  imply linear bounds on 
parameters appearing linearly in G or H (such as 
individual elements), but the implied bounds are of 
degree j in parameters appearing linearly in F. 
Bounds on output behaviour more than one 
sampling interval later thus impose non-linear 
bounds on parameters appearing linearly in F, and 
their updating cannot be performed in one step 
over j sampling intervals if it is to use any of the 
standard algorithms, which require linearity. 

The non-linearity is not avoidable by updating in j 
steps. Linear bounds on ky  imply linear bounds 

on kx , but thence bilinear bounds on 1−kx  and 
the parameters of F jointly, and so on.  At each 
stage the state depends on the parameters in F 
through earlier transitions (1), so the inferred 
bounds are of degree one higher in those 

parameters for each step back in time. No such 
problem occurs for parameters applying at only 
one instant, e.g. input or initial-condition values. 

In a sectioned model, bounds may have also to be 
propagated back through a series of sections. 
Consider the cascade 
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where m indexes sections and k time. Here the 
outputs from section m feed section m+1. Bounds 
on parameters of the transition matrices 1F  to 

MF  suffer the complication described above. To 

bound parameters of 1G  or 1H , bounds on km,y  

must be translated into bounds on km,x , hence 

joint bounds on 1, −kmx  and 1, −kmu , hence 

bounds on 2, −kmx , 2, −kmu  and (through 

1,1 −− kmy  and 1,1 −− kmx ) 2,1 −− kmx  and 

2,1 −− kmu , and so on. Clearly the influence of the 

parameters in 1G  or 1H not only travels 
downstream but also persists through the 
dynamics. In this linearity is preserved, but the 
cataloguing of the inferred bounds from bounds on 

km,y  to arrive at time-spread bounds on 1G  or 

1H  will be a significant burden unless M is small. 
Furthermore, the standard set-inversion algorithms 
consider inversion from output to parameters (e.g. 
Fogel and Huang, 1982) or from outputs to state 
variables (e.g. Maksarov and Norton, 1996, 2002), 
but not outputs to inputs. They must be modified 
to deal with stage-by-stage set-inversion SA. 

If the series of model sections has no dynamics, 
bound propagation back through the series needs 
only easily implemented linear transformations.   

4.3 Inner-Bounding Approximation of the 
Feasible Set 

Conventional parameter or state bounding seeks 
not to exclude any feasible values, so it employs 
outer-bounding approximations. In SA, it is safer 
to underestimate than to overestimate the 
parameter range keeping outputs within the 
prescribed set, so inner-bounding approximation is 
needed. Inner bounds have seldom been 
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considered (Norton, 1989; Vicino and Milanese, 
1991). A potential problem in inner bounding is 
that loosening of the bounds by cumulative 
approximation error can lead to the approximated 
feasible set vanishing. This is less likely in 
propagating bounds back through a model, where 
they will usually widen, than in parameter-
bounding identification, where the bounds tighten 
as more observations are processed. Even so, 
conservative bounds may give a false impression 
that the parameters are critical, so they will need to 
be checked by forward model runs. 

4.4  Bound Metrics 

The acceptable output set may be defined by 
bounds on a wide variety of aspects of behaviour. 
For instance, bounds on behaviour over a period of 
time or a spatial region may be specified, or on 
how much of the time a condition is met. By 
contrast, most work on parameter or state 
bounding assumes instantaneous linear or 
ellipsoidal bounds on parameter or state vectors. 
At first sight this discrepancy is serious, but the 
scope of instantaneous bounds can be extended 
greatly by augmenting the model with variables 
which form the desired functions of the outputs. 
For example, a discrete-interval integrator 
(summer) can integrate an output variable over a 
period or region. With a further signum function 
(switching from 0 to 1 as its input passes a 
specified value) and a counter, it can register the 
proportion of the time or space in which a 
threshold is exceeded. 

A signum function switches at its input threshold, 
as at spilling of a storage. Switches are common in 
simulation models. The question arises whether a 
bound can be propagated back through a switch 
which spends part of the time open. It can. While 
the switch is closed (the threshold is exceeded), the 
switch is invisible; while it is open, the bound 
simply does not apply to the upstream input of the 
switch. However, in this case there is an implied 
bound that the upstream variable has not reached 
the switch threshold. Where bounded downstream 
variables are affected by other variables as well as 
the switch output, a bound will have to be 
propagated back in two parts, taking the switch as 
closed and open.      

4.5  Unstable Inverses 

The inverse of a stable model is unstable, so small 
changes in outputs become large errors in inputs. 
This is easy to see for a linear model, as the 
eigenvalues of the inverse are the reciprocals of 
those of the model, but it is more generally true: if 
the model is dissipative, its inverse generates 

energy. In SA, the significant dynamics are from 
the parameters to the outputs, but this does not 
alter the essentials. Does instability of the relations 
between outputs and parameters imply that model 
inversion is doomed? No: if the proportional 
effects of changes in parameters are attenuated as 
they pass through the model, a small change in an 
affected output corresponds to a large parameter 
change. This is a valid conclusion. 

5.  CONCLUSIONS 

A new approach has been outlined for sensitivity 
assessment of simulation models. It translates 
specified inequality constraints on output 
behaviour into constraints on model parameters. 
The approach offers flexibility in stating what is 
important in the outputs. By determining the joint 
ranges of the parameters, it has potential for 
revealing critical or near-redundant parameter 
combinations. It does not rely on any probabilistic 
knowledge and does not assume small variations. 

Existing parameter-bounding techniques may be 
helpful in turning output bounds into parameter 
bounds, but as discussed above, several features of 
SA by model inversion make their exploitation far 
from simple. In practice, it is not necessary or 
desirable to find a full description of the set of 
parameter values consistent with the output 
constraints. Judicious selection of features to 
identify, together with complementary use of 
numerical search (not discussed in detail here), 
may be crucial to success of the approach. 
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