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EXTENDED ABSTRACT 

Hydroclimatic variability occurs over time scales 
ranging from seconds through to millennia. 
Fluctuations at certain time scales, like monthly, 
seasonal, annual, interannual and interdecadal, are 
particularly important for the sustainable 
management of land and water resources systems. 
Quantifying the proportion of variation in a 
hydroclimatic time series due to fluctuations at 
different time scales is usually done using spectral 
techniques, like Fourier analysis, which assume a 
time series to be both linear and stationary. 
Empirical mode decomposition (EMD), a 
relatively new form of time series analysis for 
quantifying the proportion of variation at different 
time scales, is introduced and key aspects of its 
application are discussed in this paper. 

EMD was originally developed as a form of 
adaptive time series decomposition, used prior to 
spectral analysis using the Hilbert transform, for 
non-linear and non-stationary time series data. In 
this paper the spectral analysis component 
(Hilbert transform) is not discussed, only the 
EMD procedure is addressed. EMD has several 
advantages over other spectral techniques, in that 
it is relatively easy to understand and use, the 
fluctuations within a time series are automatically 
and adaptively selected from the time series and it 
is robust in the presence of non-linear and non-
stationary data. EMD allows the data to speak for 
themselves. Robustness in the presence of non-
linear and non-stationary data is particularly 
important for hydroclimatology applications 
where time series are generally non-stationary (or 
not long enough to categorically prove 

stationarity) and they exhibit non-linear 
characteristics like amplitude and frequency 
modulation with time. 

In this paper the process of applying EMD to a time 
series is demonstrated using 10 years of monthly 
precipitation data from Melbourne Regional Office. 
The Melbourne monthly precipitation time series is 
decomposed into three intrinsic mode functions 
(IMFs) and a residual. The conditions defining an 
IMF are presented. The sifting process used to 
obtain each IMF and the residual is described. The 
general features of IMFs are described along with 
the ability to combine IMFs and the residual to 
form low frequency or high frequency filters. 

Two key decisions in the EMD application process, 
the rule for deciding when to stop sifting for an 
IMF and the choice of cubic spline end condition 
rule are reviewed and discussed in detail. A new 
cubic spline end condition rule, based on the 
assumption that the slope of the cubic spline at the 
end point is equal to zero, is proposed and 
compared to two other end condition rules from the 
literature. The comparison is based on three 
applications of the EMD algorithm, each 
application with a different end condition rule, to 
8135 annual precipitation time series from around 
the world. The annual precipitation time series have 
periods of record ranging from 30 up to 299 years 
and represent a wide range of climatic zones. The 
proposed end condition rule is found to be the most 
efficient of the three rules tested, due to the EMD 
algorithm producing less IMFs when using the 
proposed rule. The end condition rule proposed in 
this paper is recommended for future EMD 
applications. 
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1. INTRODUCTION 

In many fields of science separating signal from 
noise in a time series is a consistent problem. In 
physical sciences, like hydroclimatology, short 
record lengths, non-stationary data and non-linear 
processes further complicate this problem. 
Separating process signal from random noise is 
particularly important for understanding the 
processes driving an observed variable as well as 
for forecasting that variable. Techniques for 
separating signal from noise are therefore of 
considerable interest to engineers and scientists. In 
this paper we present and discuss some issues with 
the application of empirical mode decomposition, 
a relatively new technique for decomposing non-
linear and non-stationary time series data. 

2. WHAT IS EMD? 

Empirical Mode Decomposition (EMD), 
developed by Huang et al (1998), is a form of 
adaptive time series decomposition, used prior to 
spectral analysis (with the Hilbert transform), for 
non-linear and non-stationary time series data. 
Traditional forms of spectral analysis, like Fourier, 
assume that a time series (either linear or non-
linear) can be decomposed into a set of linear 
components. However, as the degree of non-
linearity and non-stationarity in a time series 
increases, the set of linear components describing 
that time series increases substantially when using 
Fourier techniques. In the physical sciences, time 
series are often non-linear and or non-stationary, 
so Fourier based spectral analysis techniques often 
produce large sets of physically meaningless 
harmonics when applied to these problems (Huang 
et al 1999). In contrast the EMD method does not 
assume a time series is linear or stationary prior to 
analysis, it lets the data speak for themselves. 
EMD adaptively decomposes a time series into a 
set of independent intrinsic mode functions (IMFs) 
and a residual component. When the IMFs and 
residual are summed together they form the 
original time series. The IMFs and residual 
component may display linear and or non-linear 
behaviour (amplitude and frequency modulation) 
depending on the nature of the time series being 
studied. 

3. APPLYING EMD 

Application of EMD to a time series is 
demonstrated using monthly precipitation data for 
the Melbourne Regional Office (see Figure 1a - 
Observed) for the period January 1995 to 
December 2004 (data provided by the Australian 
Bureau of Meteorology). 

Figure 1 shows the four steps required to estimate 
the first IMF. First, the local extrema, both 
maxima and minima, are identified (see Figure 1a). 
Second, cubic splines are fit to the sequences of 
maxima and minima (see Figure 1b). Third, the 
mean of the two cubic splines is taken (see Figure 
1c) and, fourth, the mean of the cubic splines is 
subtracted from the original time series and the 
remainder forms a residual (see Figure 1d). The 
residual shown in Figure 1d is the first estimate of 
the first IMF. 

An IMF must satisfy two conditions (Huang et al 
1998): 

(i) the number of extrema (sum of 
maxima and minima) and the number 
of zero crossings must be equal or 
differ by one, and 

(ii) the mean of the cubic splines (Figure 
1c) must be equal to zero at all 
points. 

In Figure 1d the number of extrema (maxima = 39 
+ minima = 40) = 79, while the number of zero 
crossings = 75, a difference of 4. The first estimate 
of the first IMF does not satisfy condition (i) and is 
therefore not an IMF. The difference between the 
number of extrema and zero crossings is due to the 
positive local minima in May 1998 and the 
negative local maxima in February 2003 (also 
shown in red circles in Figure 1d). Whenever there 
are multiple extrema between zero crossings, 
condition (i) is violated. The mean of the cubic 
splines, in Figure 1c, is also clearly not zero at any 
point. 

3.1. Sifting to obtain the first IMF 

In order to satisfy the above two IMF conditions 
the first estimate of the first IMF is subjected to a 
recursive sifting process. The four steps shown in 
Figure 1, initially applied to the observed time 
series, are applied to the first estimate of the first 
IMF, resulting in a new residual (the second 
estimate of the first IMF). Whether this residual 
satisfies the two IMF conditions is assessed and, if 
not, the sifting process continues. The result of the 
previous sift is used as input for the next sift, until 
a residual satisfying the two conditions is found. 

Once a residual is found that satisfies the two IMF 
conditions, then this residual is designated the first 
IMF (see Figure 2b) and it is subtracted from the 
original observed time series. 

3.2. Obtaining subsequent IMFs 

The four steps and recursive sifting process are 
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Figure 1. Steps involved in identifying the first IMF (see text for details). 

then applied to the residual of the observed time 
series minus the first IMF to obtain the second 
IMF (see Figure 2c). As each subsequent IMF is 
identified it is subtracted from the residual of the 
observed time series minus the previous IMFs. The 
process of IMF identification continues until all 
IMFs are extracted (see Figure 2d for the third and 
final IMF) and a final residual remains (see Figure 
2a - “Residual”). The final residual will be a 
constant, a monotonic trend or an incomplete (≤ 3 
extrema, like that shown in Figure 2a for 
Melbourne) fluctuation with a cycle longer than 
the period of record. 

3.3. Features of IMFs 

The average period of each IMF can be calculated 
by dividing twice the sample size (2 x N) by the 
number of zero crossings. The average period and 

variance of each IMF are shown in Table 1 for the 
120 months of Melbourne Regional Office 
precipitation data (N = 120). 

The EMD methodology is based on the 
identification of local extrema, which results in the 
first IMF containing the highest frequency 
fluctuations. Once the first IMF is removed from 
the original time series only lower frequency 
fluctuations remain, thus subsequent IMFs have 
progressively lower frequencies (see Figure 2 and 
Table 1). Wu et al (2001) noted that the number of 
IMFs extracted from a time series is roughly equal 
to log2(N). 

Separately each IMF and the residual are 
significantly correlated (at the 1% level of 
significance) with the observed time series, but are 
not significantly cross-correlated for the 

1683



 
Figure 2. Observed data, IMFs, final residual and low frequency filter (see text for details). 

Table 1. Average period and variance of IMFs. 
 Average 

period 
(months) 

Variance 
(mm2) 

Variance as a % 
of Observed 

(ΣIMFs + 
residual) 

Observed  748  
IMF1 3.0 478 64 (59) 
IMF2 6.3 106 14 (13) 
IMF3 16.0 82 11 (10) 

Residual  142 19 (18) 
ΣIMFs + Residual 808 108 (100) 

Melbourne precipitation data (not shown). The 
non-significant cross-correlation indicates that the 
IMFs and residual are independent / orthogonal to 
each other as expected. This indication is 
confirmed with an orthogonal index (Huang et al 
1998) value of –0.04 for the Melbourne data. 

Due to the independence of these IMFs, it is 
possible to sum the variances and determine the 
percentage of the observed time series variance 
that is explained by each IMF and the residual (see 
last column of Table 1). However, the IMF and 
residual variance do not always sum to the 
observed variance (in Table 1, there is a +8% 
difference) due to a combination of rounding error, 
the non-linearity of the original time series and the 
introduction of variance by the treatment of the 
cubic spline end conditions (see next section). 

Summation of low frequency IMFs with the 
residual forms a low pass filter (Gloersen and 
Huang 2003, Huang et al 2003a). This is shown 
for the Melbourne precipitation data using the 
summation of IMF3 and the residual in Figure 2a, 
which represents periods greater than one year. 
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Similarly high pass filters can be created using the 
high frequency IMFs. Flandrin et al (2004) note 
that the EMD process is an automatic and adaptive 
(signal dependent) time-variant filter and that the 
IMFs should not be considered the result of a 
predetermined subband (frequency only) filtering 
process. Frequency filtering is difficult for non-
linear / non-stationary data, due to the generation 
of harmonics (Gloersen and Huang 2003). 

4. ISSUES WITH APPLYING EMD 

A key feature of the EMD algorithm is its 
simplicity of application and robustness across a 
wide range of input time series. However, two 
issues, the sifting stopping rule and the cubic 
spline end conditions, require further attention for 
successful application of EMD. 

4.1. Sifting stopping rules 

The purpose of sifting is to obtain an IMF that 
satisfies the two rules outlined in the previous 
section. Huang et al (1998) note that sifting reveals 
hidden riding waves in the input series (like in 
Figure 1d, red circles) as well as tending to smooth 
uneven amplitudes in the resultant IMF. As riding 
waves are identified the number of extrema 
change, which is important for satisfying IMF 
condition (i). Over-sifting each IMF will produce a 
series of smooth amplitude IMFs where any 
physically meaningful amplitude variation will be 
sifted away. So the sifting process involves a trade 
off between under-sifting (producing incorrectly 
defined IMFs due to insufficient sifts to reveal all 
the riding waves) and over-sifting (producing less 
physically meaningful IMFs). 

Initially Huang et al (1998) implemented a 
“Cauchy-like convergence criterion” (Huang et al 
1999) for automatically deciding when to stop 
sifting. Based on minimising the difference 
between residuals in successive sifts to below a 
predetermined level, this criterion did not 
explicitly take into account the two IMF 
conditions, so the predetermined level could be 
obtained without the two IMF conditions being 
satisfied (Huang et al 2003b). 

Rilling et al (2003) devised an alternate stopping 
criterion based on satisfying IMF condition (i) and 
then trying to satisfy condition (ii) without over-
sifting. They used two thresholds, one designed to 
ensure globally small fluctuations in the mean of 
the cubic splines from zero, and the second 
allowing small regions of locally large deviations 
from zero. 

The sifting stopping criterion recommended here is 
that proposed by Huang et al (2003b). Sifting is 
conducted until condition (i) is satisfied. At this 
sift, and each subsequent sift, the number of 
extrema and zero crossings are recorded and 
compared to those of the previous sift. When the 
number of extrema and zero crossings remain 
constant for five successive sifts, the sifting is 
stopped and the residual is designated as an IMF. 
Huang et al (2003b) found that IMFs produced 
using this sifting stopping criterion satisfied 
condition (i), were consistently orthogonal and 
were not over-sifted. 

4.2. Cubic spline end conditions 

Huang et al (1998) also highlighted the importance 
of how the end points of the maximum and 
minimum cubic splines were dealt with as a key 
practical implementation issue. They were 
particularly concerned that if the ends were left to 
oscillate wildly these artefacts of the methodology 
would propagate inwards and progressively 
corrupt the subsequent lower frequency IMFs. 

The first technique for dealing with the spline end 
conditions proposed by Huang et al (1998) and 
slightly modified by Coughlin and Tung (2004) is 
to pad the beginning and the end of the time series 
with additional “characteristic” or “typical” waves. 
Huang et al (1998) based their additional waves on 
the two closest maxima and minima, while 
Coughlin and Tung (2004) based theirs on the 
closest maximum and minimum. 

A simpler methodology proposed and tested by 
Rilling et al (2003) is to “mirrorize” the extrema 
closest to the edge, rather than pad the time series 
with extra data. Chiew et al (2005) used the 
average of the two closest maxima (minima) for 
the maximum (minimum) spline. 

Here we present an alternate methodology (SZero) 
for handling the spline end conditions developed 
by the third author, based on the assumption that 
the slope of the cubic spline is equal to zero at the 
end points. The procedure is shown below. 

i) Calculate the maximum (minimum) cubic 
spline for the series of maxima (minima). 

ii) Assuming the slope of the spline equals 
zero at the end point, project the spline to 
the end. 

iii) Check whether the observed data are less 
(greater) than the projected maximum 
(minimum) spline. 

a. If true, then finish. 
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Table 2. Comparison of number and period of IMFs produced for three cubic spline end condition rules. 
 IMF 1 2 3 4 5 6 7 Total 

No. 8135 8133 7685 4260 959 53  29225 
Mean 3.0 6.4 13.0 24.1 41.2 61.0   Mirror 
StD 0.3 1.0 2.9 6.5 11.8 18.7   
No. 8135 8135 7924 5308 1736 175 1 31414 

Mean 3.0 6.3 12.7 23.4 40.6 62.3 149.5  Average 
StD 0.3 1.0 2.8 6.2 10.9 16.7   
No. 8135 8132 6759 2650 335 8  26019 

Mean 3.0 6.8 14.8 29.6 49.4 91.8   SZero 
StD 0.3 1.2 3.4 7.7 13.6 38.6   

 

b. If false, then recalculate the 
spline assuming that the 
observed end point is a 
maximum (minimum). 

The last step of the above procedure is required to 
ensure that the cubic splines contain all the 
observed points (Huang et al 1998). Without this 
step the projected cubic splines may be exceeded 
by the observed data. Although not explicitly 
stated in Rilling et al (2003) and Chiew et al 
(2005), this last step is also required in the 
mirrorizing and average rules. 

A comparison of the performance of SZero, along 
with a mirrorizing rule like Rilling et al (2003) and 
an average rule like Chiew et al (2005), is 
conducted below using a world data set of annual 
precipitation data (Peterson and Vose 1997). The 
world precipitation data set includes 8135 time 
series from a wide range of climatic zones with 
record lengths of 30 up to 299 years, which 
provide the EMD algorithm with a realistic range 
of hydroclimatic conditions to be tested on. 

The EMD algorithm was applied to the 8135 
annual precipitation records three times, each time 
with a different cubic spline end condition. Table 2 
shows the results classified by the three different 
end condition rules. In Table 2 the number of 
times (No.) each IMF is produced by the EMD 
algorithm for the 8135 stations, the average period 
(Mean) of each IMF and the standard deviation 
(StD) of the period for each IMF are shown. 

There is no difference, in Table 2, between end 
condition rules seen in the first IMF, however, for 
subsequent IMFs a pattern emerges. The average 
period of the IMFs produced by the SZero end 
condition rule are greater than the other rules and 
the standard deviations of the periods are also 
higher for the SZero rule. This pattern is explained 
by the fact that the SZero rule requires 
significantly less IMFs to decompose the annual 
precipitation data than the other two rules (total 

IMFs shown in last column of Table 2). In 
requiring less IMFs to decompose the time series, 
the SZero rule IMFs must cover a broader range of 
periods (higher Mean and StD) for a given IMF, it 
must also be introducing fewer extrema into the 
process that require additional IMFs to resolve 
(like the average rule). We conclude that the SZero 
rule is the most efficient of the three rules, due to 
the lower number of IMFs required to decompose 
the observed time series using this method. 

The average variances of each IMF and residual as 
a percentage of the observed precipitation station 
variance (% of Obs.) for the three end condition 
rules are compared in Table 3. Ideally for 
orthogonal IMFs the average total variance of the 
IMFs and residual should sum to the observed 
variance (a value of 100 in the last column). The 
average rule is closest to 100, followed by SZero 
and the mirror rule. The mirror rule displays 
significantly higher standard deviations of IMF 
variance for low frequency IMFs and the residual, 
indicating that this rule is not consistently handling 
all the time series. This inconsistency is clearly 
seen in Figure 3, which summarises the summation 
of the IMFs and residual variance as a percentage 
of the observed variance (% of Obs.) at each of the 
8135 stations for the three methods. The average 
rule outperforms the SZero and mirror rules across 
all time series, with the mirror rule producing very 
high summed variance compared to the observed 
variance in the last 5% of stations. 

Clearly the mirror rule is inconsistent in enough 
cases to be discarded. Although SZero decomposes 
into less IMFs, the average rule consistently 
produces IMFs where the sum of variances are 
closer to the observed variance. It is possible that 
the average rule achieves the consistent summation 
of variances close to the observed variance by 
producing significantly more (5395) IMFs than 
SZero, which may be less physically meaningful. 
We therefore recommend SZero as the more 
efficient and physically meaningful spline end 
condition rule. 
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Table 3. Comparison of variance of IMFs for three cubic spline end condition rules. 

 

Figure 3. Percentiles of % of Obs. results from 
8135 stations for three end condition rules. 

5. CONCLUSIONS 

In this paper EMD has been introduced and issues 
with its application have been discussed. In 
particular the IMF sifting stopping rule and the 
cubic spline end condition rule have been 
reviewed, investigated and discussed. A new cubic 
spline end condition rule has been proposed and its 
performance compared against two other end 
condition rules from the literature. The proposed 
rule, which assumes that the slope of the cubic 
spline equals zero at the end point, is found to be 
the most efficient of the three rules. The 
comparison was based on three separate 
applications of EMD, each application with a 
different end condition rule, to 8135 annual 
precipitation records from around the world. 
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 IMF 1 2 3 4 5 6 7 Residual Total 
% of Obs. 60.7 23.2 14.8 10.5 5.3 3.7  14.9 118.9 

Mirror 
StD 0.13 0.15 0.40 0.83 0.11 0.06  0.73 1.62 

% of Obs. 59.5 21.4 12.2 7.7 5.3 4.5 1.1 10.6 109.6 
Average 

StD 0.13 0.10 0.08 0.07 0.06 0.09  0.11 0.15 
% of Obs. 62.6 24.9 14.4 7.6 3.7 2.4  14.3 116.4 

SZero 
StD 0.14 0.13 0.09 0.06 0.04 0.03  0.14 0.21 
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