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EXTENDED ABSTRACT 

Catchment management is becoming a more 
complex task. The sharing of water resources 
between traditional water users and the 
environment, the introduction of water and 
contaminant trading and water quantity and quality 
targets has necessitated a whole-of-catchment 
modelling approach. A variety of software 
products address this need. They range from 
abstract, general-purpose modelling frameworks 
which are not tailored to catchment modelling, to 
software that is applicable only to a specific 
catchment. Many of these catchment models are 
‘hardwired’ with algorithms that may not be 
appropriate for another catchment, or do not allow 
for the reuse of prior modelling knowledge. E2 is a 
catchment modelling framework within the 
Cooperative Research Centre for Catchment 
Hydrology (CRCCH) Catchment Modelling 
Toolkit. It allows the integration of components 
and models from other Toolkit products, and is 
designed to enable flexibility in model choice. The 
core capabilities of the framework extend beyond 
the modelling of physical processes in unregulated 
catchments, and the architecture was designed 
from the ground up to also enable the 
representation of regulated systems and ecological 
responses to physical conditions. 

E2 has no intrinsic assumption about the time step 
of the input data and, with an appropriate choice of 
models warranted by the data available, can run 
over a range of time steps and spatial scales. The 
catchment is modelled using a structure of sub-
catchments, nodes and links. These key elements 
have been designed as modular, extendable 
modelling units. E2 is built upon The Invisible 
Modelling Environment (TIME) and shares several 
of its characteristics, notably the use at run-time of 
model metadata attributes and reflection. In 
particular it relies on the use of abstract software 
interfaces, flexibility by composition of objects 
using a “plug-in” approach, and object oriented 
design patterns, wherever appropriate to enable 
this flexibility. This helps to foster minimal 
software coupling between the models dealing 
with different processes, and for each of these 

processes there is thus the possibility to choose 
from a library of candidate models. This flexibility 
extends to the user interface and the persistence 
mechanism used to save the system configuration. 
The user interface is designed to accommodate a 
choice of different methods when building 
scenarios, enabling, for example, alternate 
approaches to defining the node-link network. The 
use of “wizards” guides the definition of an 
overarching workflow between the tasks required 
to set up the network, and at many steps in this 
workflow an extensible list of alternate methods to 
perform the task is offered. The persistence 
mechanism uses a relational database, and can 
handle complex dependencies between objects in 
the system. 

The high level features of E2 are described by 
Argent et al. (2005). The present paper describes 
the software design process and key architectural 
aspects in the various software layers that were 
required to enable the features and flexibility of the 
framework. The modelling engine, user interface, 
on-disk persistence mechanism and calibration 
tools all rely on the use of software interfaces, 
software reflection and various software design 
patterns to achieve flexibility and enable 
extensibility of the modelling framework. The 
modelling engine contains four main software 
elements: nodes, links, sub-catchments and 
functional units, and each can have alternate 
concrete software implementations. This engine 
also relies on a standardised software 
representation of mass balance and unit 
consistency throughout the system. The user 
interface relies on the use of a wizard with selected 
points of extension for alternate methods to 
perform a given task. The persistence mechanism 
uses software reflection to save and load model 
configurations, which has no overhead in terms of 
code for model developers. If objects are too 
complex to rely solely on software reflection, 
another mechanism using a software interface that 
still keeps the overhead at a minimum can be used. 
The calibration tool uses the builder and factory 
patterns to build composite parameter sets at run 
time by grouping model parameters. 
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1. INTRODUCTION 

Catchment management requires increasingly an 
integrated modelling approach. There is a growing 
demand for modelling systems and decision 
support tools taking into account the biophysical, 
water management, economic and ecological 
processes taking place in catchments. Numerous 
software packages support the modelling of one or 
more of these processes. However the integration 
of these software packages to support an integrated 
approach is often a very difficult exercise, if it is to 
go beyond a relatively simple data exchange. Also 
many catchment models have fixed algorithms that 
may not make the best use of the modeller’s prior 
knowledge of the catchment, nor have the 
flexibility to adapt the model structure for 
changing modelling requirements. 

E2 is an integrative catchment modelling platform 
using the Catchment Modelling Toolkit (CMT) as 
its primary source of component models and tools. 
It is built upon The Invisible Modelling 
Environment (TIME, Rahman et al. 2003), and has 
been designed as an extensible framework 
enabling model choice. This paper presents the 
design and architecture of E2, and the software 
mechanisms that underpin it. Note that it is 
assumed that the reader has a good understanding 
of object-oriented programming. 

2. KEY GOALS 

E2 is a catchment modelling framework based 
conceptually on two previous software packages, 
the Environmental Management Support System 
(EMSS, Cuddy 2003) and the Integrated Quantity 
and Quality Model (IQQM, Podger 2004). The 
features of other well-known catchment and river 
system modelling tools (e.g. SWAT, QUAL2E) 
were reviewed in order to ensure there was enough 
flexibility in the product. 

The key requirements for E2 were identified as: 

• Enabling choice wherever warranted, e.g. 
rainfall-runoff modelling, flow routing 
model, but also for various methods of 
definition of the river network and sub-
catchments, 

• Being a transparent system, i.e. the 
modeller can explore the state variables of 
the models in depth if required 

• Ability to model a variable list of 
conservative and non-conservative water 
constituents 

• Including advanced tools facilitating the 
calibration of the models in a 
computationally efficient manner 

• Minimising the up-front data 
requirements to start building a network, 

• The modelling engine itself must not be 
tied to a fixed temporal or spatial scale,  

• Allow for adapting the quantity of output 
data (e.g. number of time series) to the 
memory constraints of the computer, 

• Designed from the ground up with the 
aim to implement water management 
rules and support ecological response 
models. 

The high level architecture of E2 consists of three 
layers: user interface, modelling engine and 
handling of data input-output, a fairly standard 
approach in most recent softwares. This paper will 
illustrate the design of key architectural elements 
in these layers. 

3. MODELLING ENGINE 

Three sub-layers can be distinguished in the 
modelling engine itself:  

• physical layer, embodied by the 
interconnected nodes, links and sub-
catchments, dedicated to representing any 
biophysical process, 

• management layer, that comprises the 
modelling units that deal with any human-
induced process and which inspects and 
acts upon the physical layer, and 

• a layer for tools acting on the previous 
two layers, e.g. a tool cropping a sub-
network out of a full network, for 
calibration purposes. 

E2 relies on a structure of projects and scenarios. 
A project is a container for a series of scenarios, 
and a repository for a central list of stored 
parameter sets that can be applied to the models in 
the scenarios. The scenarios in a project do not 
necessarily have the same spatial structure, since 
for example a scenario representing the addition of 
a dam would modify the structure of the river 
network. 

Each scenario has a network runner, which is an 
aggregate of a network (a collection of sub-
catchments, nodes and links), a component that 
centrally stores the temporal information of the 
simulation (start, end and time step), and two 
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software components in charge of recording time 
series from and feeding time series into the 
models. These last two components (“Player” and 
“Recorder”) are central to addressing two of the 
core requirements: being able to record at run-time 
any model variable, and adapting the size of the 
data handling to the memory availability of the 
system.  

Players and Recorders rely on software reflection 
(Rahman et al. 2004) to specify the association of a 
given time series and the property of a model that 
is played to, or recorded from. Software reflection 
is a cornerstone of the E2 architecture, and is used 
extensively in the modelling engine (e.g. to build 
parameter sets at run-time) as well as in the other 
main software layers. 

3.1. Spatial sub-systems 

E2 is a catchment modelling framework that uses a 
hierarchical, nested structure, especially with 
respect to the spatial scale. For each modelling 
sub-system defined at a certain scale or relating to 
a type of process, a software interface was defined 
whenever possible. The advantages of this 
approach were explained by Gamma et al. (1994). 
In E2 this fosters the decoupling of the software 
classes operating at different spatial scales or 
modelling separate physical processes, and is a key 
mechanism enabling model choice. 

The catchment is broken up as a series of sub-
catchments. Their outflows contribute to the node-
link network representing the river system itself, as 
lateral inflow to the links. A standard 
representation of a sub-catchment is as a collection 
of Functional Units (FU), a generalisation of the 
concept of Hydrological Response Units. A FU is 
a part of a sub-catchment that has homogenous 
characteristics for the modelling purpose at hand. 
In most cases this means homogeneity in terms of 
hydrology and constituent generation. FUs do not 
have any explicit spatial representation, although 
they have an area as a property. The rationale for 
this choice can be found in Argent et al. (2005). A 
standard implementation of a FU is a series of 
three models: a rainfall-runoff model, a constituent 
generation model, and a constituent filtering 
model. The generation and filtering models are 
usually a collection of models that deal 
independently with each water constituent. 

Sub-catchments, FUs, constituent generation and 
filtering models are defined as interfaces or 
abstract classes (Figure 1.). The previous 
paragraph only detailed a possible implementation, 
albeit the standard one. The main advantage of this 
systematic reliance on software interfaces and 

abstract classes is that it is possible to replace these 
default models at different granularity with more 
custom models if required. A sub-catchment may 
then be modelled in a different way, e.g. as a fully 
grid-based model, without any modification to the 
rest of the modelling engine. Similarly, if a 
standard representation of a functional unit is not 
appropriate for the modeller, another concrete 
implementation may be used. This possibility has 
already been used to support the modelling of 
irrigation areas (Hornbuckle et al. 2005). 

 

Figure 1. Sub-catchment structure in E2 

3.2. Links and nodes 

The river system is modelled using a structure of 
links connected via nodes. This is a common 
conceptual structure also used in e.g. IQQM and 
EMSS. Conceptually links and nodes are both 
network elements with one or more inflows and an 
outflow. The difference is that nodes are usually 
thought of as having no spatial extent. These 
network elements support the most demanding part 
of the modelling exercise from a mathematical 
point of view, and as a consequence it is also a 
challenging part of the framework in terms of 
software engineering. 

From a software standpoint, links themselves are 
simple and have a small number of properties and 
methods. Their software architecture relies on 
flexibility by composition of objects rather than 
direct inheritance (Gamma et al. 1994). The task of 
propagating the characteristics of the flood wave is 
delegated to an instance of a FlowRouting 
class, which itself delegates the task of 
manipulating the constituents to an instance of an 
InStreamProcessingModel. Reservoirs are 
represented as links rather than nodes, the rationale 
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for this being that reservoirs have a significant 
spatial extent. Reservoirs can also arguably be seen 
as just another flow routing scheme, and they are 
thus another instance of the FlowRouting class.  

Nodes are well suited to support the modelling of 
processes that occur at a given point in the system 
with little or no spatial extent. Nodes feature an 
expandable list of instances of a NodeModel 
class that can be used to model these processes. 
Node models are called sequentially in the order 
they are in the list, and modify the states of the 
node and any other objects they are related to. 
Current examples of node models are models 
forcing time series of flows or water quality 
constituents, water demand and extraction. 

3.3. Mass balance and units 

Work at a variety of temporal and spatial scales, 
with a variable list of constituents and a choice of 
different models raises some significant 
challenges. Notably, the handling of units and the 
related issue of mass balance may be taken for 
granted at an abstract level but is surprisingly 
difficult in practice from a software engineering 
perspective. Many readers will likely have come 
across lines of code with obscure unit conversion 
factors, and will be aware of how easily these lead 
to errors. 

In order to limit the risk of inconsistencies, the E2 
modelling engine represents physical quantities in 
S.I. base units (BIPM 1998). The component 
models used in E2 may have their parameters 
expressed in other units, but their output into the 
modelling engine must conform to the S.I. 
standard. The context-dependent conversion to 
other units is delegated to the presentation layer, 
and is facilitated by the unit handling framework 
provided by TIME. 

Masses and fluxes of water and constituents, and 
their concentrations, are represented throughout 
the system via self-contained objects. Operations 
like the addition of two quantities or fluxes of 
water solutes, water extraction for irrigation, or the 
conversions between concentrations to equivalent 
masses or fluxes can thus be encapsulated in 
methods, thus greatly reducing the risk of error. 

3.4. System run 

The modelling engine adopts a hierarchical 
approach to running the system. Prior to the start 
of the simulation, model state variables can be set 
to initial values. In other catchment modelling 
systems initial values are often expressed as 
additional parameters, adding unnecessary degrees 

of freedom when calibrating. The software system 
of E2 handling initial values relies instead on a 
variant of the Memento Pattern described by 
Gamma et al. (1994), and uses software reflection 
wherever possible to avoid writing custom code 
for every model. Prior to running every time step, 
the values of input time series are fed into the 
model, once again relying on reflection. The 
system is run in a hierarchical fashion, each model 
element passing the temporal characteristics (date 
and time step length) to its sub-models, leaving 
room for the sub-models to run at a finer temporal 
resolution if need be. The temporal characteristics 
of the run are derived from the input time series if 
unambiguous, or can be specified by the user.  

4. USER INTERFACE 

The approach of allowing for choice between 
alternate models or methods for performing a 
given modelling task poses some significant 
challenges in terms of user interface. A system 
with fixed algorithms, or a fixed workflow for 
building the catchment model, has the advantage 
of making it easier for a user interface designer to 
tailor the forms. In such systems the number and 
types of input data and parameters expected at 
every step are set and thus allow for designing 
easy to use, custom forms that reflects the 
predefined tasks. 

E2 provides several points of extension for 
alternate methods of performing a given task, e.g. 
defining the sub-catchments and network (Figure 
2). Importantly, it allows for the choice of a 
method that is adapted to the data availability. 
However, this makes it more difficult to design a 
user interface workflow that guides the user 
effectively. 

 

Figure 2. Network definition in a scenario setup 

The overall approach for the E2 user interface is to 
have some broad overarching workflow that users 
must adhere to when creating a scenario. This is 
embodied by a scenario wizard stepping through 
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the broad categories of tasks required (definition of 
sub-catchments and network, then assignment of 
models, and finally assignment of parameters to 
these models). At many of the steps in the standard 
scenario wizard, the user is presented with a 
variety of options to complete the step. In the 
example shown in Figure 2, four alternate methods 
were detected for performing the task. These 
methods are primarily detected at run-time by 
exploring the executable and libraries of the 
application. E2 also uses a plug-ins manager 
component to load additional libraries (.NET 
assemblies), that are also explored for additional 
methods to perform a given task.  

The underlying mechanism to find these methods 
is software reflection. The software types 
(synonym of classes, here) defined in the assembly 
are retrieved and inspected for relevant 
characteristics. For instance in the case of the 
network definition, the program would look for 
types that inherit from the class UserControl, 
and implement an interface 
ICatchmentDefiner. The level of 
sophistication in this detection of appropriate types 
can be enhanced using custom attributes, as 
explained by Rahman et al. (2004). An example is 
the detection of user interface controls for editing 
the parameters of instances of NodeModel, since 
the control can be given an attribute that specifies 
with which model it is working. The use of 
software reflection is a key technique for keeping 
the user interface and modelling engine decoupled, 
and for enabling the points of extension in E2. 

5. PERSISTENCE 

The persistence mechanism is based on a relatively 
simple but robust method which will be expanded. 
It has been designed to allow for a relational 
persistence tool, such as NHibernate (Koshcheyev 
2005), to be used in the future. At the moment an 
E2 project file is a zip file with an “e2proj” 
extension. It contains a Microsoft Access database 
file and a number of data files which may include 
rasters, time series and shape files. When a project 
is loaded all of the scenarios and data related with 
each scenario are loaded. When saving a project, a 
new database is created and along with the 
necessary data files they are saved to a temporary 
location and a zip file of the folder is created. The 
new project file is then copied over the previous 
project file.  

The following section focuses on the E2 specific 
challenges involved with the implementation of a 
persistence mechanism.  

5.1. Unknown Models 

Allowing choice between alternate models or 
methods for performing a given modelling task is 
not a significant problem for persistence; however 
the fact that models can have any object as a 
parameter complicates matters. The saving 
mechanism needs to be able to persist previously 
“unknown” objects. This is the case for models 
such as the storage models that have a 
StoreGeometry object as a parameter. 

This is enabled by setting up an interface that a 
model developer can implement in order to save 
previously unknown object types. The interface is 
called an ITypePersistor (Figure 3). 

 

Figure 3. The ITypePersistor interface.  

The createStatement function in Figure 3 
enables a developer to create their own table 
structure within the database to save an object. The 
saveObject function is given an object and an 
ID that will be associated with that object.  

The RelationalTool object (Figure 3) has a 
number of functions for executing SQL statements, 
saving references to other objects in the system, 
and saving other objects. This includes the core 
elements such as models or constituents and any 
object that has an ITypePersistor associated 
with it. The load object function simply has to load 
the object that was associated with the ID given. 

5.2. Extending core elements of the 
framework 

It is possible to extend the core elements of the 
framework such as in the case of the Irrigation FU 
(Hornbuckle et al. 2005). This irrigation FU 
inherits from the abstract parent class 
FunctionalUnit and implements different 
functionality to the standard FU described earlier. 
Thus a similar mechanism to the method used to 
handle unknown objects was needed. This is done 
with an interface 
IInheritedTypePersistor. The definition 
of this is slightly different to the 
ITypePersistor. When loading and saving 
the IInheritedTypePersistor it only 
needs to save anything extra that the class needs. 
The load object function is given an instance of the 
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object with all the elements of the base class 
already set. 

When implementing either a ITypePersistor 
or a IInheritedTypePersistor a 
WorksWith custom attribute tag needs to be 
included on the class indicating which classes it 
can persist. 

6. CALIBRATION 

Calibrating a model, or a suite of models, 
encompassing multiple scales and processes is a 
difficult task, both conceptually and practically. 
The main conceptual difficulties are the obvious 
risk of non-uniqueness of parameter sets (Beven et 
al. 2001) due here to a large number of parameters, 
the high non-linearity of many catchment 
processes, and the usual sparsity and uncertainty of 
the data to calibrate against. A practical difficulty 
is the likely requirements in terms of computing 
power due to the large number of parameters, but 
by far the main difficulty is that it is hard to design 
an easy-to-use calibration tool for complex 
systems. 

While software engineering per se can do little to 
address the sparsity of data, it is more feasible to 
reduce the tedious part of a calibration exercise 
and to turn a problem with too many degrees of 
freedom into one of a more manageable 
complexity. It was acknowledged from the start of 
the project that one key feature of E2 would be to 
facilitate the calibration process. 

E2 currently features a calibration methodology 
allowing for the creation at run time of custom sets 
of tied parameters. This allows for representing the 
variability of catchment characteristics, e.g. that a 
conceptual soil moisture store is larger over a 
forested area than pasture, while exposing only one 
parameter in an optimisation process, without 
having to recode a soil moisture model with new 
hard-coded algorithms. The groups of tied 
parameters must contain only parameters that are 
dealing with a given process, e.g. sub-catchment 
outflow or in-stream processing of total suspended 
sediment. The software mechanism building the 
group of parameters relies on the Builder and 
Factory patterns, as shown in figure 4, in order to 
filter the candidate model parameters that can be 
grouped. The values of model parameters included 
in this group are tied by a factor to a “master 
value” held in a 
GroupedItemsCharacteristics, thus 
removing a degree of freedom for every model 
parameter grouped. The idea of grouping or tying 
parameters has been exploited previously in other 
model optimisation tools like PEST (Doherty 

2002). Another key feature of the calibration tool 
is the ability to crop a sub-set of the full network to 
calibrate and input time series as required in the 
headwater elements of the sub-set, thus drastically 
reducing the model runtime by up to several orders 
of magnitude for large catchments. 

 

Figure 4. Parameter group builder 

7. CONCLUSIONS 

A flexible catchment modelling software 
framework, named E2, is under ongoing 
development within the Catchment Modelling 
Toolkit (www.toolkit.net.au). It blends the unique 
capabilities of several water quantity and quality 
catchment models currently in use in Australia and 
elsewhere, and tries to overcome some of their 
limitations. It has been designed from the ground 
up to cater not only for the physical modelling of 
unregulated river systems but also for regulated 
systems, ecological response models and possibly 
for economical modelling. Using a plug-in 
approach, modellers can tailor their catchment 
model not only by choosing amongst alternate 
models for various sub-systems, but potentially 
customise the user interface for a non-expert 
audience if required, though the latter remains to 
be done in practice. The architecture of E2 relies 
heavily on object oriented design patterns and 
software introspection to achieve this flexibility 
and manage the complexity stemming from this 
integration exercise. Upcoming work on E2 
includes improvements of the modelling 
capabilities of regulated systems, water 
temperature, the addition of ecological response 
models, and enhancements to the calibration 
capabilities. 
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