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EXTENDED ABSTRACT 
 
The risk management paradigm has been proposed 
by a number of national and international research 
organisations as a useful framework for identifying 
robust decisions in the face of the inherent 
uncertainties associated with climate variability 
and anthropogenic climate change.  The pursuance 
of risk management hinges on four fundamental 
considerations:  a) a threshold for a particular 
system of interest; b) understanding of the 
response of that system to climate variability 
and/or change; c) understanding of the 
probabilities associated with different climate 
futures; d) one or more management options or 
strategies for reducing risk.   

Integrating these four components in the process of 
risk management is a non-trivial task, particularly 
for complex systems.  Stochastic simulation such 
as Monte Carlo analysis is a useful tool for 
achieving such integration in a modelling 
environment.  Monte Carlo techniques were 
applied in the analysis of impact assessment data 
from the United States to assess the uncertainty 
associated with the direction and magnitude of 
different impacts over a range of climate futures 
and estimates of sectoral responses.  Bayesian 
techniques were used in the quantification of the 
probabilistic uncertainty associated with global 
and U.S. changes in climate and sea-level in 2025, 
2050, and 2100 using different assumptions 
regarding future greenhouse gas emissions and 
climate sensitivity. In addition, the potential for 
greenhouse gas mitigation to constrain future 
uncertainty in climate parameters, and thereby 
reduce climate impacts, was assessed using the 
WRE 750/550/350 stabilisation scenarios as 
constraints on future emissions.  Monte Carlo 
simulation was used to integrate posterior 
probability distributions for climate variables with 
probabilistic impact response functions for a 
number of key sectors including agriculture, 
energy, coastal protection, water resources, 
freshwater biodiversity, and human mortality. 

Impact distributions indicated there is significant 
uncertainty associated with future climate change 
impacts.  This uncertainty becomes increasingly 
less constrained as one’s time horizon extends 
further into the future.  For a number of sectors, 
even the direction of impacts (e.g., damages vs. 

benefits) could not be determined with a high 
degree of confidence.  Nevertheless, the results 
indicated that significant climate change impacts 
are likely in future decades including economic 
impacts of plus-or-minus several billion dollars, 
thousands of excess deaths, significant reductions 
in suitable habitat for wildlife, and reductions in 
runoff and subsequently, water availability. The 
impact distributions also revealed that where 
potential benefits are likely, there remains a lower, 
but not necessarily negligible, probability of 
significant adverse effects, and vice versa.  

Given a particular critical threshold, these impact 
distributions can be used to estimate the likelihood 
of threshold exceedences, and subsequently, 
provide guidance on the need for risk treatment 
actions.  More stringent thresholds create greater 
perceptions of risk and thus greater demand for 
risk treatment, while less stringent thresholds have 
the opposite effect. Greenhouse gas mitigation 
generally reduced the risk of adverse climate 
change impacts.  However, the benefits of 
mitigation were quite limited pre-2050, and even 
in later decades, stringent stabilisation levels were 
needed to significantly reduce risk.  Mitigation 
largely benefited the avoidance of large-scale 
consequences, but did little toward avoiding near-
term and/or smaller scale consequences, which are 
likely those of most relevance to current decision-
making activities.     

Probabilistic risk assessment offers a useful 
framework for managing decision-making events 
challenged by uncertainty.  Yet there are important 
challenges to consider.  Uncertainty regarding 
appropriate ranges and distributions for model 
parameters introduces subjectivity into Bayesian 
analysis. Uncertainties associated with impact 
estimates increase rapidly over time, and 
dynamical system properties can influence 
estimates of risk.  The spatial scale of analysis 
must be tailored to ensure results are relevant to 
decision-making.  Finally, in order for the 
development of methodologies for climate change 
risk analysis to ultimately benefit decision-making, 
considerable effort must be invested to ensure  that 
risk assessment is combined with societal 
preferences for impact thresholds, risk aversion, 
discounting, and risk treatment within the larger 
context of risk management. 
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1.   INTRODUCTION 

The uncertainty associated with the issue of 
climate change has been described variously as 
“persistent,” “deep,” and “irreducible.”  These 
uncertainties propagate from both the top-down 
(e.g., global greenhouse gas emissions and climate 
sensitivity) as well as from the bottom-up (e.g., 
regional sectoral climate sensitivity and coping 
capacity).  Such uncertainty creates a range of 
challenges not only for scientific investigations 
into climate change and its downstream 
consequences, but also for decision-making 
processes.  How does one identify the optimal 
mitigation strategy given indeterminism regarding 
future climate change and system responses, and, 
in fact, is this an appropriate framing of the climate 
challenge?  Alternatively, how do Australia’s 
dryland farmers and/or water resource managers 
identify appropriate actions to reduce their 
vulnerability to climate given that the past may no 
longer be a satisfactory analogue for the future?   

Ideally, given such uncertainty, one should opt for 
decisions that are robust, over the range of 
potential future outcomes. Traditional 
deterministic projections or scenarios of future 
climate or system responses offer little to such an 
approach, however.  There is no single “correct” 
estimate of future climate change, and, in fact, an 
infinite number of wrong answers.  Instead, 
uncertainty in climate change and its downstream 
consequences should be expressed in units of 
probability or likelihood.  This enables one to 
pursue risk-based impact assessment and 
management, whereby thresholds for climatic 
changes and/or specific impacts are integrated with 
probability distributions for climate, 
environmental, and socioeconomic variables that 
influence system outcomes (Jones 2001).   

An impact assessment model was constructed 
which utilised Monte Carlo techniques to 
stochastically generate probabilistic estimates of 
future climate change impacts in the United States.  
Probability distributions for global temperature 
and sea level and U.S. temperature and 
precipitation changes in 2025, 2050, and 2100 
were based upon Bayesian techniques utilizing an 
ensemble simulation of global and U.S. climate 
change from a simple climate model.  Posterior 
probabilities for climate variables were then 
integrated with probabilistic impact response 
functions for six different market and nonmarket 
sectors to generate probability distributions for 
climate change impacts. 

 

2.  PROBABILITY DISTRIBUTIONS FOR 
GLOBAL AND U.S. CLIMATE CHANGE  

2.1. Climate Model Simulations 

The range of uncertainty in future average U.S. 
temperature, precipitation, and sea-level changes 
was estimated from multiple climate simulation 
exercises using the publicly available Model for 
the Assessment of Greenhouse-Gas Induced 
Climate Change (MAGICC; v.4.1) coupled with a 
regional climate change scenario generator 
(SCENGEN) following the methods of Preston 
(2005a).  Global temperature changes and sea-
level rise (SLR) in 2025, 2050, and 2100 relative 
to unperturbed baseline controls were simulated 
using MAGICC tuned to seven different 
Atmosphere/Ocean General Circulation Models 
(GCMs): CSIRO, CSM, HADCM2, HADCM3, 
ECHM4, GFDL, PCM.  Default (mid-range) 
estimates were used for carbon cycle modelling 
and aerosol forcing, with variable thermohaline 
circulation and carbon cycle feedbacks.  SLR 
estimates included low, medium, and high ice-melt 
paramaterisations.  The output from different 
climate models was used to capture the range of 
uncertainty associated with climate sensitivity in 
addition to fundamental differences in model 
representation of the climate system.  To capture 
uncertainty associated with future global 
greenhouse gas (GHG) emissions, simulations for 
each GCM were conducted using the six 
illustrative scenarios (A1B, A1Fi, A1T, A2, B1, 
and B2) of the IPCC’s Special Report on 
Emissions Scenarios (SRES; IPCC 2000). 
Modelling the seven GCMs with the six emissions 
scenarios resulted in a total of 42 MAGICC 
simulations of global mean temperature change for 
each time period.  SLR estimates were based upon 
these 42 simulations with 3 different ice-melt 
parameterisations (low, medium, and high), 
resulting in a total of 126 simulations of SLR.  

Global mean temperature changes were scaled to 
the United States (25o to 50oN by 65o to 125oW) 
for each of the above GCMs and emissions 
scenarios using the SCENGEN regional modelling 
tool (with exponential/power law scaling), which 
downscales global average temperature changes to 
5ox5o grid cells using the scaling technique of 
Santer et al. (1990).  Temperature and precipitation 
changes for individual grid cells were subsequently 
averaged to yield a model estimate of annual or 
seasonal U.S. climate changes in 2025, 2050, and 
2100.  United States SLR for these three time 
periods was assumed to be equivalent to global 
means.   
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PSΔT=PSk x PmΔT,k 

2.2. Probability Distributions for 
Temperature and Precipitation Changes  

Each of the 42 simulations of global temperature 
and U.S. temperature and precipitation changes in 
2025, 2050, and 2100 from MAGICC and 
SCENGEN were assigned a probability, which 
was subsequently used to calculate continuous 
cumulative probability distributions for climate 
change.  Two different methods were used to 
assign probabilities to individual climate model 
simulations.  The first method (referred to hear as 
EQUAL) assumed all models and emissions 
scenarios performed similarly with respect to 
simulating future global or U.S. climate conditions 
(i.e., uniform or uninformed prior).  Thus, the 
probability of a particular model result was 
calculated using the following equation: 

 

 

where PSΔT is the probability of a projected 
temperature change for a particular model and 
emissions scenario, PSk is the probability of the k 
emissions scenario, and PmΔT,k is the probability of 
an individual model result for the k emissions 
scenario.     

The second method for assigning probabilities to 
climate model simulations (referred to here as 
REA), weighted the probability of model results 
based upon performance criteria following the 
reliability ensemble analysis (REA) methodology 
of Giorgi and Means (2002, 2003).  The REA 
method weights the results from an ensemble of 
GCMs based upon an indicator of a model’s 
reliability, which a function of two criteria: 1) the 
skill with which an individual model reproduces 
historical climate changes and 2) the extent to 
which the projections of an individual model 
converge on the ensemble mean.  Each model 
simulation was assigned a reliability indicator (Ri) 
based upon its performance with respect to these 
two criteria using the following formula (Giorgi 
and Mearns 2002): 

 

 

where εT represents historical climate variability 
based upon the difference in the minimum and 
maximum value for average global temperature or 
U.S. temperature and precipitation changes from 
30-year running means of (linear) detrended data 
records.  For global temperature variability, 
minimum and maximum values were derived from 
global temperature anomalies (1880–2003; Hansen 
et al. 2001; Giorgi and Mearns 2002).  For U.S. 
temperature variability, minimum and maximum 
values were derived from average annual U.S. 
temperature anomalies (1880–2003; Hansen et al. 

2001; Giorgi and Mearns 2002).  For U.S. 
precipitation variability, minimum and maximum 
values were derived from average annual U.S. 
precipitation observations (1880–2003; Hansen et 
al. 2001; Giorgi and Mearns 2002).  BT,I represents 
the average model bias in reproducing the 
historical (1961–1990) baseline mean temperature 
climatology for the geographic area under 
consideration (CRU; New et al. 1999).  Root-mean 
square errors among the seven models in 
reproducing historical global temperature change 
ranged from 0.20–2.38.  Root mean square errors 
in reproducing U.S. temperature and precipitation 
changes ranged from 1.2–3.2 and 0.13–0.51, 
respectively.  DT,I represents the distance between 
an individual model’s projection and the ensemble 
mean, and m and n represent weighting 
coefficients for the two Ri criteria (here both were 
assigned equal weights of 1).  Reliability 
indicators were used to assign probabilities to 
individual model simulations  using the following 
formula (Giorgi and Mearns 2003): 

 

 

where PSΔT represents the probability of a projected 
temperature or precipitation change; PSk is the 
probability associated with a particular emissions 
scenario; Ri,k represents the reliability indicator for 
a particular model given the k emissions scenario; 
and ΣRj,k represents the sum of Ri among all 
climate models for the k emissions scenario. 

The probabilities associated with simulated climate 
changes using the various weighting schemes 
identified above were subsequently summed and 
expressed as cumulative probabilities.  Climate 
changes and their cumulative probabilities were 
then used to estimate continuous cumulative 
probability distributions via linear interpolation 
among data points using Analytica™ 2.0 with 
median Latin hypercube sampling (n=1,000). 

2.3. Probability Distributions for Sea-Level 
Rise 

Probability distributions for SLR were calculated 
using a stochastic SLR generator.  The relationship 
between global mean temperature change and SLR 
was quantified using a least squares multiple 
regression model that regressed the 126 MAGICC 
simulations of SLR in 2025, 2050, and 2100 
against the 42 simulations of global mean 
temperature change and a stochastic dummy 
variable representing the three different ice melt 
parameterisations.  The regression models for each 
time period were highly significant (p<0.0001) 
with r2 values of 0.95, 0.98, and 0.98 in 2025, 
2050, and 2100, respectively.  Regression 
coefficients from this regression model were 
subsequently integrated with the EQUAL and 

     εT 
abs(DT,i)   

εT 
abs(BT,i) {[     ]m[        ]n}Ri= [1/(m*n)] 

   Ri,k 
    ΣRj,k 

PSΔT= PSk   [   ] 
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REA probability distributions for global mean 
temperature change via Monte Carlo simulation 
(n=1000) to generate continuous cumulative 
probability distributions for future SLR.    

2.4.  Mitigation Scenarios 

To assess the sensitivity of climate change impacts 
to global GHG emissions reductions, a series of 
climate model simulations were also conducted 
using three of the Wigley, Richels, Edmonds 
(WRE) emissions stabilisation scenarios 
(WRE350/550/750) as upper constraints on future 
emissions in the MAGICC/SCENGEN ensemble 
modelling (Wigley et al. 1996).  The WRE 
emissions scenarios constrain future GHG 
emissions in order to achieve a stable atmospheric 
CO2 concentration, thus limiting, as a 
consequence, future radiative forcing and 
temperature change.  Modelling of GHG 
mitigation cases in MAGICC/SCENGEN was 
performed for 2025, 2050, and 2100 using each of 
the three WRE scenarios as well as other SRES 
scenarios that generated equal or less net radiative 
forcing for each time period as indicated by 
MAGICC output.  Due to insufficient sample size 
for REA distributions under the WRE350 
constraint, REA weighting was not utilised in the 
analysis of climate change in response to 
mitigation.  Continuous cumulative probability 
distributions were estimated for the stabilisation 
distributions in the same manner as above.  

3.  IMPACT RESPONSE FUNCTIONS 

Continuous impact response functions relating 
climate and sea level changes to sectoral impacts 
were calculated based upon a survey of previously 
published impact assessments (see Preston 2005b).  
For each sector or impact of interest, multiple 
estimates were available based upon scenario 
exercises whereby sectoral responses were 
estimated for discrete magnitudes of temperature, 
precipitation, or sea level changes.  These data 
were used to develop reduced-form impact 
response functions for the six sectors considered in 
the current study via least-squares regression 
techniques.   

Uncertainty around regression models was 
estimated by calculating 99.9% confidence 
intervals for regression coefficients.  Regression 
coefficients and confidence limits were 
subsequently used to calculate probability 
distributions for regression coefficients using 
Analytica™ 2.0.  Probability distributions were 
calculated by assigning the regression coefficients 
cumulative probabilities of 0.5, and lower and 
upper 99.9% confidence intervals for regression 

coefficients cumulative probabilities of 0 and 1, 
respectively.   These cumulative probabilities were 
then used to generate continuous cumulative 
probability distributions.  Probability distributions 
for impact response function regression 
coefficients were subsequently used as parameters 
in risk modelling.  Damage functions for specific 
sectors are listed below (from Preston 2005b):  

3.1 Agriculture 

Annual Impacts (2000$)=10.01(ΔT)–2.22(ΔT)2  

+0.54(ΔP)–0.02(ΔP)2 

with ΔT and ΔP representing annual temperature 
(oC) and precipitation (%) changes, respectively, 
relative to baselines in the absence of 
anthropogenic perturbation.  

3.2 Energy Costs 

Annual Costs ($2000)=–1.311(ΔT)+ 1.099(ΔT)2 

with ΔT representing the change in annual U.S. 
temperature (oC).  

3.3 Coastal Protection Costs 

Costs in 2025 (2000$)=0.94(ΔSL) +0.016(ΔSL)2  

Costs in 2050 (2000$)=1.22(ΔSL) +0.026(ΔSL)2  

Costs in 2100 (2000$)=1.49(ΔSL) +0.065(ΔSL)2  

with ΔSL representing the change in global sea 
level (cm) by 2100.  

3.4 Terrestrial Runoff 

Annual Runoff (% change)=1.51(ΔP)+ 11.53(ΔT) 

–2.4(ΔT)2 +16.2   

with ΔT and ΔP representing annual temperature 
(oC) and precipitation (%) change, respectively, 
relative to baselines in the absence of 
anthropogenic perturbation.  

3.5 Cold-Water Habitat   

Habitat Loss (%)=8.3ΔT 

with ΔT representing JJA temperature (oC) change 
relative to baselines in the absence of 
anthropogenic perturbation.  
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3.6 Human Population and Mortality 

Annual Mortality (# individuals)=(HD*DT+AQD 
*DT)*(POP/100,000) 

with HD and AQD representing heat-related and 
air-quality related deaths per 100,000 individuals, 
respectively, ΔT representing annual mean 
temperature (oC) change, and POP representing 
total U.S. population in 2025, 2050, or 2100.  

4.  RISK ANALYSIS 

Estimates of the probabilistic uncertainty 
associated with 2025, 2050, and 2100 U.S. climate 
change impacts were generated by integrating 
probability distributions for climate and sea-level 
changes with the various response functions.  For 
each sector/impact and time period, a series of 

1,000 Monte Carlo simulations were conducted 
using Analytica™ 2.0.  Temperature, precipitation, 
and sea-level changes were sampled at random 
from the appropriate probability distribution and 
used as input in the response functions with 
regression coefficients for those damage functions 
being similarly sampled at random from their 
corresponding probability distributions. This 
procedure was repeated for each of the two 
weighting schemes for climate and sea-level 
changes.  

5.    RESULTS AND DISCUSSION 

Impact distributions generated through the 
integration of climate and sea-level distributions 
with the sector-specific impact response functions 
demonstrated the broad range of uncertainty 
associated with estimates of future U.S. climate 

 
Table 1.  Estimated impacts of climate change in 2025, 2050, and 2100.  For each time period, estimated 
impacts are presented as a range corresponding to the 95% confidence intervals.  For agriculture, positive 
numbers indicate benefits while negative numbers indicate costs/damages.  For all other sectors, positive 
numbers indicate costs/damages/mortality, while negative numbers indicate benefits. 

Impact/Year Effect (95% Confidence Interval) 
 REA  EQUAL EQUAL-750 EQUAL-550 EQUAL-350 

Agriculture (change in annual welfare [109 2000$]) 
2025 -4.3–20.6 -6.6–21.2 -8.9–21.6 -9.2–22.0 -6.3–23.3 
2050 -10.5–30.8 -12.8–30.7 -10.2–30.5 -8.3–29.0 -9.2–27.4 
2100 -60.7–42.6 -73.4–41.4 -32.1–40.2 -27.8–37.6 3.2–25.0 

Energy (change in annual costs 109 2000$) 
2025 -5.4–6.3 -5.7–6.3 -5.3–6.5 -5.3–6.7 -5.1–9.0 
2050 -4.6–18.5 -4.9–20.9 -4.7–16.1 -4.9–14.8 -4.9–11.3 
2100 -5.0–67.1 -4.4–82.0 -4.5–36.2 -4.1–30.4 -5.1–9.2 

Coastal Protection (annual protection/abandonment costs [106 2000$]) 
2025 1.5–16.4 1.1–16.6 0.7–14.4 0.9–14.6 0.5–13.1 
2050 7.1–61.3 5.4–60.7 5.0–53.8 3.5–49.6 1.3–41.7 
2100 15.8–429.5 10.7–442.6 7.8–340.4 4.9–346.9 0.0–257.4 

Terrestrial Runoff (annual % change) 
2025 -34.3–16.8 -36.3–16.4 -36.8–15.3 -38.1–14.1 -36.4–20.4 
2050 -42.4–36.0 -43.4–35.0 -42.4–32.5 -39.2–30.5 -37.8–26.0 
2100 -100.0–59.8 -100.0–59.4 -59.8–50.7 -57.0–42.6 -33.7–25.2 

Cold-Water Habitat  (cumulative % reduction) 
2025 9.7–16.5 6.9–18.7 6.7–18.7 6.6–18.7 6.3–15.2 
2050 13.5–27.9 9.6–34.2 9.7–31.3 8.9–30.2 8.2–25.6 
2100 20.5–50.3 15.1–70.3 13.8–46.6 10.7–38.8 7.1–22.0 

Population/Mortality (annual population change [103 individuals]) 
2025 -39.8–23.2 -37.4–22.1 -36.9–20.3 -38.1–21.0 -48.4–24.9 
2050 -72.7–40.6 -71.4–40.9 -66.2–33.1 -63.4–32.1 -53.5–30.6 
2100 -133.3–71.7 -133.5–67.0 -96.3–51.7 -91.1–47.4 -47.0–23.9 
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A 

B 

C 

D

E

F

change impacts (Table 1).  The range of plausible 
impacts often spanned an order of magnitude, and 
for some sectors, simply the direction of impacts 
(i.e., positive or negative) could not be identified 
with a high degree of confidence.  Although this 
analysis reveals the difficulty of identifying a 
single best-estimate of future impacts, it enables 
one to evaluate which magnitudes are likely to 
occur, including economic impacts of plus-or-
minus several billion dollars, thousands of excess 
deaths, significant reductions in suitable habitat 
for wildlife, and reductions in runoff and 
subsequently, water availability. The impact 
distributions also reveal that where potential 
benefits are likely, there remains a lower, but not 
necessarily negligible, probability of significant 
adverse effects, and vice versa.  

How does one use information about probabilities 
to manage risk and make better decisions?  The 
successful management of risk first requires some 
a priori criteria or context that articulates what 
risks are of concern, what magnitude of impact is 
considered excessive (i.e., beyond society’s 
ability or willingness to cope) and what options 
are available for reducing risk (Australian 
Standards 1999; Jones, 2004). For example, 
Figure 1 presents cumulative probability 
distributions for impacts to each sector in 2050. If 
one assumes that society is primarily concerned 
with the likelihood of adverse consequences 
(regardless of magnitude), then  Figure 1 indicates 
that for coastal protection costs and habitat loss, 
adverse effects are certain.  For energy and water 
resources there is a high risk of adverse impacts.  

Figure 1.  Probability distributions for climate change impacts in 2050 for six market and nonmarket sectors 
(A: Agriculture, B: Energy, C: Coastal Protection, D: Terrestrial Runoff, E: Cold-Water Habitat, F: 
Mortality).  EQUAL and REA distributions represent no mitigation cases, while EQUAL-750/550/350 
represent results assuming emissions are constrained according to one of the WRE stabilisation scenarios. 
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For human mortality, the odds of adverse effects 
are almost even, and for agriculture, the risk of 
adverse impacts is relatively low.   

If society judges these risks to be too high, how 
can risk treatment reduce the risk of adverse 
effects?  In the current study, a series of CO2 
stabilisation pathways was utilised to illustrate the 
sensitivity of climate change impacts to risk 
treatment efforts in the form of GHG mitigation.  
In general, mitigation constrained the range of 
future impacts (Table 1, Figure 1). But how 
effective is mitigation at reducing the likelihood of 
specific impacts such as (as above) the risk of 
adverse effects?   Interestingly, mitigation reduces 
the likelihood of adverse effects to agriculture and 
energy, but has little to no effect for the other 
sectors. Thus, given these management criteria, 
mitigation does not appear to be a particularly 
effective strategy for treating risk.   

However, by changing the risk management 
criteria, a decision-maker may arrive at a very 
different conclusion regarding the efficacy of 
mitigation.  Quite often it is not simply adverse 
effects per se that are of concern, but large-scale 
consequences. Economic losses of a few million 
dollars are of little impact to an economy the size 
of the United States’.  However, institutions may 
want to ensure that losses of $50 billion or more 
are avoided.  Such losses are indeed possible by 
2100 for both the agricultural and energy sectors 
(Table 1), albeit at relatively low probabilities.  A 
modest hedge, such as mitigation consistent with a 
750 ppmv stabilisation pathway, eliminates the 
likelihood of such losses. Given these criteria, 
GHG mitigation yields potentially valuable 
benefits.   

What is clear from this theoretical exercise is that 
successfully using probabilistic information about 
climate change consequences to improve decision-
making under uncertainty necessitates 
incorporating objective risk analysis into a larger 
risk management decision-making framework.  
Establishing such a framework generally falls 
outside the purview of the climate change research 
community, because it is fundamentally a 
subjective exercise.  Nations, communities, 
industries, and institutions must first engage in 
evaluating what resources should be protected, 
what magnitude of impacts are of concern, what 
are acceptable risks, and what are the range of 
treatment options available for reducing risk.   
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