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EXTENDED ABSTRACT 

It is commonly accepted that modelling frame-
works offer a powerful tool for modellers, re-
searchers and decision makers, since they allow 
the management, re-use and integration of models 
from various disciplines and at different spatial 
and temporal scales. 

However, the actual re-usability of models de-
pends on a number of factors such as the accessi-
bility of the source code, the compatibility of dif-
ferent binary platforms, and often it is left to the 
modellers’ own discipline and responsibility to 
structure a complex model in such a way that it is 
decomposed in smaller ‘re-usable’ sub-
components.  What reusable and interchangeable 
means is also somewhat vague; although several 
approaches to build modelling frameworks have 
been developed, little attention has been dedicated 
to the intrinsic re-usability of components.   

In this paper we focus on how models can be 
linked together to build complex integrated mod-
els.  We review and investigate the various ap-
proaches to model linking adopted by a number of 
Integrated Modelling Frameworks and we aim at 
describing the advantages and disadvantages of 
each approach. 

We stress that even if a model component inter-
face is clear and reusable in software terms, this is 
not a sufficient condition for reusing a component 
across different Integrated Modelling Frame-
works.  This remark reveals the need for adding 
rich semantics in model interfaces; we do such an 
attempt through the use of domain classes and 
ontologies. 

A domain class can be considered as an abstract 
data structure for defining a set of a model vari-
ables and their attributes (Rizzoli et al. 1998).  A 
model interface (in terms of inputs, outputs, states 
and parameters) can be defined using a domain 
class, providing some advantages: first of all, an 
instance of a domain class can be accessed at run-
time to supply the model component with the ap-

propriate data.  Secondly, it annotates model vari-
ables with attributes that can be used for pre-post 
condition checks.  Thirdly, it supports compliance 
with the requirement that asks for model compo-
nents to be separated from their data structures.  
And, last but not least, it provides an easy way for 
linking model components at a higher level.  This 
practice uses shared domain classes for interchang-
ing data across models, taking full advantage of 
component-based software engineering primitives.  

Then, we present an approach based on the formali-
sation of ontologies to describe models’ interfaces 
and relationships.  The use of ontologies is advan-
tageous as it (a) supports the automatic generation 
of code templates for models and domain classes in 
different Integrated Modelling Frameworks, (b) it 
facilitates the application of a reasoner (inference 
engine) on the structured knowledge, which can 
detect abnormalities or conflicts in model inter-
faces, and (c) it supports model linking in a content-
enriched way, which can be proven valuable for 
avoiding common problems related to poor seman-
tics of model interfaces. 

Finally, this paper presents a working example of 
an ontology formalisation developed for the Seam-
less project1.  This ontology (called SeamAg) aims 
to formally describe biophysical models related to 
agronomic and environmental domain to be devel-
oped by a large community of modellers within the 
Seamless project.  Modellers’ knowledge, related to 
model subsystems, variables and interfaces, is kept 
separated from the actual implementation.  The use 
of the SeamAg ontology for storing model inter-
faces supports the independence of software design 
choices from modelling knowledge, which be easily 
reused, integrated in different environments, or 
shared with third parties.  The potentials of extend-
ing the presented ontology-driven approach is dis-
cussed not only for model linking, but also in the 
context of building model component workflows 
using web services.  

                                                             
1 http://www.seamless-ip.org 
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1. INTRODUCTION 

Since System Theory introduced the concept of 
modular and hierarchical decomposition of models 
(Padulo and Arbib, 1974), researchers were quick 
in porting this concept into the implementations of 
their models, which were mostly done in FOR-
TRAN.  Subroutines were the logical counterpart 
to submodels, and function parameters were used 
to represent model inputs and outputs in the source 
code implementations.  The use of global variables 
for passing values between submodels was still 
very common, but this was (and in some cases still 
is) a very bad programming habit, which has been 
spotted quite early by Parnas (1972): good modu-
lar programs must have subroutines which display 
a strong cohesion (lots of internal references to 
variables in the local scope), but that are loosely 
connected (very few data exchanges among sub-
routines, well defined by the subroutine signatures, 
i.e. their parameters).  

Procedural programming has been used to write 
good implementations of mathematical models.  
This programming paradigm was well suited to 
representing modelling problems, where the de-
composition of a system in simpler functions 
comes natural.  Yet, the software designers were 
missing more powerful programming concepts, 
which could better support the representation of 
data, and not only their flow in the program. 

The advent of object-oriented programming an-
swered to the issue of organising and structuring 
model data.  The programming language, together 
with inheritance, encapsulation and polymorphism, 
finally supported the concept of abstract data 
types.  

Abstract data types allowed the programmer to 
define a closer matching between the concept of a 
system and its software representation, as shown 
by Zeigler (1991).  A system component, e.g. a 
population in an ecosystem, was described as a 
data type (a class) with attributes such as its bio-
mass, and with methods implementing the state 
transitions and output transformations.  Thanks to 
inheritance it was possible to create taxonomies of 
models, facilitating both the structuring of model-
ling knowledge and also the reuse of existing 
knowledge, by overriding methods in child classes 
(Del Furia et al. 1995).  The concept of encapsula-
tion allowed to clearly define the interface of the 
abstract data type, clearly facilitating the imple-
mentation of Parnas’ ideas of strong cohesion 
(what is behind the interface) and loose connection 
(the interface exposed to other abstract data types.  
Finally polymorphism allowed implementing dif-

ferent behaviours behind a common interface. The 
simulation of a composite model could be as sim-
ple as calling the same update() method on a 
list containing all the submodels.  

Nevertheless, after an initial hype, the relevance of 
object-orientation to writing good modelling sys-
tems has been considerably re-dimensioned (We-
hie, 1997).  For instance, despite the object-
oriented formalism, it was still possible to build 
monolithic models.  A monolithic model is a mod-
elling system where everything depends on every-
thing: the model is interspersed with data, with the 
numerical integration, calibration, optimisation 
algorithms, with graphical display and everything 
is entangled.  Most object-oriented modelling sys-
tems have been developed as monolithic models.  

A paradigm shift was needed once again.  Such a 
shift did not require a major rethinking from the 
software engineering point of view, but it was sim-
ply the acknowledgement that software should be 
built as any complex piece of engineering, by reus-
ing simpler and robust (in the sense of their 
quality) components.  

2. COMPONENT-ORIENTED SOFTWARE 
ENGINEERING IN MODELLING 
FRAMEWORKS 

Component-oriented software engineering is a 
current trend, which places the concept of software 
component at the centre of the development proc-
ess.  Rewording Szyperski et al. (2002), software 
components are software units, which can be de-
ployed independently, they can be easily re-used 
by third parties and they do not have an externally 
observable state.  These properties enforce the 
concept of a component as something different 
from an object, which has a unique identity (com-
ponents should be externally undistinguishable), 
and it has an externally observable state.  

Implementing models as components has some 
clear advantages.  Reusability is facilitated by the 
simplicity of the interface and the limited scope of 
dependencies from other components.  While it is 
still possible to build components with lots of de-
pendencies and a complex interface, this would fail 
the first requirement of independent deployment, 
that is, the ability to deliver components, which are 
well separated from their environment and other 
components.  

Adopting a well-behaved approach to component-
oriented software engineering also reduces the risk 
of building monolithic applications: your own 
components should be easy to integrate with third 
party components.  This principle, when applied to 
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modelling, leads to develop model components 
that are independent of the data processing and 
visualisation components and where the separation 
of concerns between model computation and 
graphical user interface is also clear-cut. 

Yet, there are different ways to apply component-
oriented software engineering to the implementa-
tion of models. We distinguish between model 
equation components and model application com-
ponents. 

The straightforward way of developing a compo-
nent of a dynamic model is to define its interface 
allowing the user to define the simulation horizon, 
the sequence of model inputs u(·), the initial state 
x(0) and the sequence of outputs and states, y(·) 
and x(·) respectively (see figure 1). 

 

Figure 1. A model application component. 

We call this software component a model applica-
tion component. Given the inputs and the parame-
ters, together with the simulation horizon, it is pos-
sible to compute the output trajectories. Its inter-
face will allow initialising the model, to set the 
simulation parameters, and, finally, to call the 
function that performs the computations. 

 

Figure 2. A model equation component embedded 
into a model application component. 

Still, we can decompose further the model execu-
tion application, detailing the model equation com-
ponent, which simply computes the rate of change 
of the state variables and the relative output trans-
formation by means of an update method, and 
other service components.  Such auxiliary compo-
nents are: the numerical integration component, 
which integrates the rate of change of the state and 

feeds it back into the model equation component; 
the data provider component, which feeds the ex-
ogenous inputs u(t) one at a time and optionally 
stores the outputs and the states, and a simulation 
control component, required to initialise the model 
with the initial state and parameters and to manage 
the invocation of the numerical integration rou-
tines. 

The model application component is therefore split 
into the declarative part (the equations) and the 
imperative parts (the other components). Such an 
approach allows for a greater flexibility in term of 
the development of the models and the simulation 
algorithms, since these two activities often require 
different specialist knowledge and this also in-
creases the testability of the smaller and lighter 
components. Moreover, the reusability of the 
‘lighter’ components across different modelling 
frameworks is increased, as it will be shown later 
in this paper. 

3. LINKING MODEL COMPONENTS 
 

We define model linking as the activity of assem-
bling a set of model equation components together 
in a composite structure (composite model). A 
composite model is a complex model that all its 
sub-models can be simulated simultaneously, and 
(numerically) integrated in the same time step.  

On the other hand, we define workflow linking, as 
the activity of assembling a sequence of model 
application components, where also the interaction 
of the user, during the execution of the workflow 
can take place. In this paper we will focus on 
model linking, while we refer the reader to previ-
ous works on scientific workflows2 for workflow 
linking (Lüdascher, 2005).  One critical issue in 
model linking, when assembling model equation 
components in a composite model, is the difficulty 
of finding a component design that satisfies the 
requirement of ‘third-party composition’. My com-
ponent must be compatible with your component, 
but more than often this is not the case.   

The problem is that component design choices, 
rather than be peculiar of a specific architecture, 
should rather promote reusability, selecting design 
traits which represent a compromise between level 
reusability and complexity of the design chosen to 
maximize adaptability of components.  Using a 
pragmatic approach, simplification can be obtained 
if the target use of components is within a specific 
                                                             
2 A comprehensive list of software tools for scientific 
workflows, which are very useful in grid computing 
applications, is available online at 
http://www.extreme.indiana.edu/swf-survey/. 
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knowledge domain; this has an impact not only in 
simplifying the design of components, but it also 
clearly defines the scope of the knowledge domain, 
which is embedded in the modelling exercise, as 
we will point out in Section 4, where we discuss 
the role of ontologies in representing modelling 
knowledge. 

Yet, restricting to a knowledge domain has often 
meant also to restrict to a specific framework, 
where implementations of model components 
strongly depend on the modelling framework core.  
Targeting model component design to match a 
specific interface requested by a modelling frame-
work decreases its reusability.  This can partly 
explain why modelling frameworks, although in 
theory a great advance with respect to traditional 
model code development, are rarely adopted by 
groups other than the ones developing them.  

A possible way to overcome this problem is to 
adopt a component design, which targets intrinsic 
reusability and interchangeability of model com-
ponents (e.g. Donatelli et al., 2005). This may 
lead, in the worst cases, to the need of a wrapper 
class (specific to a modelling framework) as pro-
posed by the Adapter pattern (Gamma et al. 1994) 
that makes possible the migration to other model-
ling frameworks.  Nevertheless, the use of appro-
priate techniques in designing model components 
interfaces, such as using references to objects as 
parameters in the interface methods, greatly re-
duces the overhead due to the extra layer of the 
wrapper class.  

A key design criterion, which enhances reusability 
and interchangeability, and which allows concur-
rent development of both components and clients, 
is separating the model equation component inter-
face and its implementations, in different software 
units (Löwy, 2003).  This is known as the Bridge 
pattern (Gamma et al., 1994) and it allows defin-
ing units of reusability (model component imple-
mentations and model component interfaces) and 
units of interchangeability (model component im-
plementations alone).  As an example application 
of the concept of separating interfaces and models 
in the domain of biophysical components, see Do-
natelli et al. (2005b).  Note that the model inter-
face is defined by the set of its parameters and 
input, output, state variables and it is not the model 
equation component interface, which is the set of 
methods offered by the software component.  

In the model equation interface we define an ab-
stract data type called the domain class, following 
the approach by Rizzoli et al. (1998).  The domain 
class is characterised a set of data attributes, which 
are the inputs, states, outputs and parameters of the 

model and a set of accessor methods to set and get 
the attribute values.  The data attributes contain the 
numerical value, the variable’s range, the default 
value, the measurement units.  In Section 4, we 
exemplify how to construct such a domain class 
from an ontology. 

If the implementation of a model component re-
quires data provided by another model, it is suffi-
cient to pass an instance of the domain class of the 
provider component in the signature of the update 
method of the receiving component. An example is 
shown in the diagram of Figure 3. 

In the component diagram, Component1 has a 
dependency to its interfaces component Compo-
nent1.interfaces.  The access method of the 
component has in its signature a reference to a 
instance of the domain class A. Let’s assume that 
Component1 simply reads a data stream from a 
database and it writes its outputs in domObjA, 
instance of DomainClassA.  

 

Figure 3. A component diagram showing the sepa-
ration of the interface from the implementation. 

Component2 references the DomainClassA 
and using an instance of it in the signature of the 
update method Estimate().  The communica-
tion between components is automatically estab-
lished.  Also, there is no dependency among com-
ponents, and dependencies are to interfaces com-
ponents only.  Components can be replaced and a 
component linker must primarily check the match-
ing of inputs in a component to outputs of another, 
in the same domain object. 

4. FROM KNOWLEDGE REPRESENTA-
TIONS TO SOFTWARE COMPONENTS 

In a component-based approach, assembling a 
composite model involves the linking of constitu-
ent models inputs and outputs.  Such an activity 
can be consistent and sound when models are de-
veloped by a small group of modellers.  However, 
common experience has shown that model compo-
sition within large developer communities is a 
struggling task that can easily lead to incoherent 
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results.  Reusing “components–off–the–shelf” in 
environmental modelling is a demanding activity, 
as usually environmental model components are 
characterized by poor documentation, insufficient 
or vague interfaces and suboptimal implementation 
patterns.  Most environmental models have been 
developed so far without considering reusability 
and sharing needs as critical requirements of the 
process.  In this sense, although a component bi-
nary is by default reusable (in software terms), 
accessing its interface in a sound fashion (in mod-
elling terms) is a much more complicated task. 

Even assuming an effective component-oriented 
design, most of the problems in component linking 
tasks emerge due to the poor semantics of the 
component model interfaces.   In the approach 
presented in this paper the component model inter-
face uses domain classes to describe the model 
inputs and the outputs classes which also stores 
information related to variable dimensions, cardi-
nality, units, sampling frequency, model character-
istic time, etc.  

As model components promote the reuse of mod-
els outside a specific framework, in the same way 
domain classes provide a way to reuse data struc-
tures outside the specific domain.  Yet, there is a 
strict dependency on the specific modelling 
framework.  This dependency can be removed.  
We propose a solution based on declarative model-
ling and ontologies. 

4.1. Declarative models for model equation 
components 

Model equation component can be implemented in 
source code and they will depend on the specific 
framework.  Wrappers can be written conforming 
to the Bridge pattern, thus targeting different mod-
elling environments.  Yet, model equation compo-
nents can be successfully designed and imple-
mented adopting the declarative modelling para-
digm (Muetzelfeldt, 2004).  In fact, an analysis in 
terms of component architecture does not deny the 
advantages of using declarative modelling in 
model building.  One key advantage of using a 
declarative language to store models is the capabil-
ity to export models according to different imple-
mentation requirements and even platforms.  

4.2. Ontologies for model interface represen-
tation 

By analogy, there is no need to write the imple-
mentation of domain classes in source code, which 
is specific to a framework, when we can success-
fully formalise a common ontology using a repre-
sentation language such as OWL for defining ad-

vanced semantics of a model interface, in order to 
overcome the common problems described above 
and to support effective and sound model compo-
nent linking.  
 

An ontology-mediated approach for defining 
model interfaces involves the definition of models 
and their interfaces using a common (public) on-
tology, where modellers share their knowledge.  
This ontology could also accommodate the de-
clarative models, but this is not a necessity.  A 
clear requirement is rather to add rich semantics in 
a model’s interface, in terms of model parameters, 
inputs, outputs, and states (as discussed above), 
which are publicly available and shared.  Through 
an ontology formalisation, modellers can commu-
nicate both knowledge and models independently 
from their implementation, as their interfaces are 
no longer tighten up to a particular modelling 
framework, or programming language, rather they 
are defined in a independent format in the ontol-
ogy, that can be later transformed to specific im-
plementations. 

4.3. A working example: from ontologies to 
model interfaces 

We focus on the role of ontologies to represent 
model interfaces and as an example, we present an 
ontology we developed for biophysical models in 
agricultural production simulation, within the 
Seamless project, called SeamAg ontology3.  We 
conceptualise the modelling task in three levels: 
(a) the Seamless agro-environmental domain 
(SeamAg Domain), (b) the Modelling domain, and 
(c) the Application domain. 

SeamAg Domain

Actor

Action

Condition

Environment

SeamAg Ontology

SeamCore    Domain

Dimension

Measurement

ObservationContext

QuantityUnits

Application Domain

Link

Linkable

Application

Workflow

Modeling Domain

Model

Component

 
Figure 4. An abstract view of the SeamAg ontol-
ogy. 

                                                             
3 A working version of the SeamAg ontology is avail-

able at: http://seamless.idsia.ch/ontologies/ 
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Each level (domain) is a discrete perspective of the 
modeled world, each one orthogonally to the oth-
ers.  The three domains can be seen as complemen-
tary abstractions that define links between the 
three modelling levels.  The SeamAg Domain de-
fines all concepts involved within the agro-
environmental process, following the Actors – 
Actions – Conditions – Environment scheme. 
Components and models are defined in the Model-
ling Domain, while the Application Domain de-
scribes the way model application components are 
assembled in stand-alone software applications, 
defining workflows.  An abstract view on the on-
tology structure is depicted in Figure 4.  

 

The SeamAg ontology has been built upon a core 
ontology, which provides fundamental concepts, 
related to physical quantities, units, space and 
time.  The SeamAg ontology has been developed 
in OWL using the Protégé-OWL (Noy et al. 2001, 
Horridge et al. 2004). OWL is the W3C standard 
Web Ontology Language, which intends to be used 
for explicitly representing the meaning of terms in 
vocabularies and the relationships between those 
terms (McGuinness and Harmelen, 2004).  Note 
that OWL has more facilities for expressing mean-
ing and semantics than XML, RDF, and RDF-S, 
and thus OWL goes beyond these languages in its 
ability to represent machine interpretable content 
on the Web. 

Such a generic-purpose ontology can accommo-
date the specification, development and exploita-
tion of model interfaces: to describe a model using 
the SeamAg ontology, we start from the SeamCore 
domain, that defines Dimensions, Units and Quan-
tities.  A Quantity is considered as a concept that 
can be observed, measured, or computed in Seam-
less.  A Quantity has the following properties: (a) 
data type (e.g. float), (b) default unit (e.g. Celsius), 
(c) dimension (e.g. temperature), and (d) domain 
(e.g. soil).  In this respect, we can define a 
SoilTemperatureQuantity that is a Temperature, 
measured in Celsius, on Soil, and is stored as a 
float number.  The SoilTemperatureQuantity can 
be observed in different Spatial and Temporal 
Contexts, (e.g. as a time series of hourly observa-
tions, or in several soil depth levels), which defines 
a Measurement of Soil Temperature that can be 
used as a Model’s input, output or state.   

In such a way, a Model Interface is defined as a 
collection of Measurements associated with its 
inputs, outputs and states.  Wider collections of 
Measurements that are associated with particular 
domains define the Domain Classes.  E.g. we 
could define the SoilDomainClass as the collection 
of all measurements that are measured on Soil. 
Such collections can be manually entered by a user 

or they can be automatically built, using the built-
in reasoning features of an ontology.  Having de-
fined a Model Interface or a Domain Class in the 
ontology, an OWL file can be parsed to generate 
the source code of the model interface or the do-
main class respectively. In this way, a modeler can 
exploit the knowledge structured in the ontology in 
different modeling frameworks or different pro-
gramming languages.  

The adoption of an ontology-driven approach for 
defining a model interface has clear advantages as 
it enables the reusability of models in a more easy 
way, while common problems related to poor se-
mantics of model interfaces can be effectively 
tackled. 

5. DISCUSSION 

Ontologies should be taken with a grain of salt, 
since they are not the solution to every modelling 
and knowledge representation problem, they could 
be a mean to reach such a solution, but sometimes 
it looks like they are part of the problem. Often we 
are torn between taking the side of the ‘semantic 
knight’ rather than the ‘wily hacker’4. Formalising 
an ontology will only help you in structuring your 
knowledge, but it will not replace the knowledge 
engineer.  The hacker could be tempted to find ‘ad 
hoc’ solutions, based on powerful techniques such 
as introspection (i.e. reflection), but ontologies are 
a useful complement to the ability to extract 
knowledge and structure from the code by intro-
spection. Via reflection we can discover what is 
stored into binaries, but it is by means of ontolo-
gies that we can structure and represent the infor-
mation we will extract via reflection, such as co-
herence of units, time steps and check of pre post 
conditions. 

Ontologies also play a fundamental role when 
model linking happens over the web.  The seman-
tic web tries to provide a standard way to auto-
matically discover and run web services. In com-
putational ‘grids’ for environmental science 
(Jeffery, 2004) it will be possible to create 
‘workflows’ of web services to execute a given 
task.  Ontologies provide the semantic layer on top 
of metadata languages such as RDF, thus allowing 
for ‘reasoning’ when building such workflows. 

Finally, it is worth to remark that, in the majority 
of cases, and as long as latency will be an issue in 
modern Internet networks, web services will be 
                                                             
4 The ‘semantic knight’ and the ‘hacker’ are two perso-
nae of a parody of a famous Monty Phyton joke made by 
Michael Champion: http://lists.xml.org/archives/xml-
dev/200504/msg00260.html 
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implemented as model application components, 
rather than model equation components, since the 
communication overhead in integrating a model 
equation component a thousand time for a single 
simulation step would make this approach practi-
cally unusable. 

6. CONCLUSIONS 

In this paper we have presented an approach to 
linking models based on semantically enriched 
model components. The key points of this ap-
proach are: design of lightweight model equation 
components, with no dependency from the model-
ling framework core; definition of domain classes 
in the component interface to abstract the depend-
ency of the model from the data and to foster the 
extensibility of models via design patterns. Finally, 
the use of ontologies for structuring and represent-
ing the knowledge on data structures made possi-
ble the automatic generation of semantically rich 
component interfaces onto which reasoning possi-
ble.  
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