
Semantic links in integrated modelling frameworks
1Rizzoli, A.E, 2M. Donatelli, 1I. Athanasiadis, 3F. Villa, 4R. Muetzelfeldt, and 5D. Huber

1IDSIA-USI/SUPSI, 2CRA, UVM, 4Simulistics, 5AntOptima, E-Mail: andrea@idsia.ch

Keywords: Integrated modelling frameworks; Ontologies; Model linking; Model reuse.

EXTENDED ABSTRACT

It is commonly accepted that modelling frame-
works offer a powerful tool for modellers, re-
searchers and decision makers, since they allow
the management, re-use and integration of models
from various disciplines and at different spatial
and temporal scales.

However, the actual re-usability of models de-
pends on a number of factors such as the accessi-
bility of the source code, the compatibility of dif-
ferent binary platforms, and often it is left to the
modellers’ own discipline and responsibility to
structure a complex model in such a way that it is
decomposed in smaller ‘re-usable’ sub-
components. What reusable and interchangeable
means is also somewhat vague; although several
approaches to build modelling frameworks have
been developed, little attention has been dedicated
to the intrinsic re-usability of components.

In this paper we focus on how models can be
linked together to build complex integrated mod-
els. We review and investigate the various ap-
proaches to model linking adopted by a number of
Integrated Modelling Frameworks and we aim at
describing the advantages and disadvantages of
each approach.

We stress that even if a model component inter-
face is clear and reusable in software terms, this is
not a sufficient condition for reusing a component
across different Integrated Modelling Frame-
works. This remark reveals the need for adding
rich semantics in model interfaces; we do such an
attempt through the use of domain classes and
ontologies.

A domain class can be considered as an abstract
data structure for defining a set of a model vari-
ables and their attributes (Rizzoli et al. 1998). A
model interface (in terms of inputs, outputs, states
and parameters) can be defined using a domain
class, providing some advantages: first of all, an
instance of a domain class can be accessed at run-
time to supply the model component with the ap-

propriate data. Secondly, it annotates model vari-
ables with attributes that can be used for pre-post
condition checks. Thirdly, it supports compliance
with the requirement that asks for model compo-
nents to be separated from their data structures.
And, last but not least, it provides an easy way for
linking model components at a higher level. This
practice uses shared domain classes for interchang-
ing data across models, taking full advantage of
component-based software engineering primitives.

Then, we present an approach based on the formali-
sation of ontologies to describe models’ interfaces
and relationships. The use of ontologies is advan-
tageous as it (a) supports the automatic generation
of code templates for models and domain classes in
different Integrated Modelling Frameworks, (b) it
facilitates the application of a reasoner (inference
engine) on the structured knowledge, which can
detect abnormalities or conflicts in model inter-
faces, and (c) it supports model linking in a content-
enriched way, which can be proven valuable for
avoiding common problems related to poor seman-
tics of model interfaces.

Finally, this paper presents a working example of
an ontology formalisation developed for the Seam-
less project1. This ontology (called SeamAg) aims
to formally describe biophysical models related to
agronomic and environmental domain to be devel-
oped by a large community of modellers within the
Seamless project. Modellers’ knowledge, related to
model subsystems, variables and interfaces, is kept
separated from the actual implementation. The use
of the SeamAg ontology for storing model inter-
faces supports the independence of software design
choices from modelling knowledge, which be easily
reused, integrated in different environments, or
shared with third parties. The potentials of extend-
ing the presented ontology-driven approach is dis-
cussed not only for model linking, but also in the
context of building model component workflows
using web services.

1 http://www.seamless-ip.org

704

1. INTRODUCTION

Since System Theory introduced the concept of
modular and hierarchical decomposition of models
(Padulo and Arbib, 1974), researchers were quick
in porting this concept into the implementations of
their models, which were mostly done in FOR-
TRAN. Subroutines were the logical counterpart
to submodels, and function parameters were used
to represent model inputs and outputs in the source
code implementations. The use of global variables
for passing values between submodels was still
very common, but this was (and in some cases still
is) a very bad programming habit, which has been
spotted quite early by Parnas (1972): good modu-
lar programs must have subroutines which display
a strong cohesion (lots of internal references to
variables in the local scope), but that are loosely
connected (very few data exchanges among sub-
routines, well defined by the subroutine signatures,
i.e. their parameters).

Procedural programming has been used to write
good implementations of mathematical models.
This programming paradigm was well suited to
representing modelling problems, where the de-
composition of a system in simpler functions
comes natural. Yet, the software designers were
missing more powerful programming concepts,
which could better support the representation of
data, and not only their flow in the program.

The advent of object-oriented programming an-
swered to the issue of organising and structuring
model data. The programming language, together
with inheritance, encapsulation and polymorphism,
finally supported the concept of abstract data
types.

Abstract data types allowed the programmer to
define a closer matching between the concept of a
system and its software representation, as shown
by Zeigler (1991). A system component, e.g. a
population in an ecosystem, was described as a
data type (a class) with attributes such as its bio-
mass, and with methods implementing the state
transitions and output transformations. Thanks to
inheritance it was possible to create taxonomies of
models, facilitating both the structuring of model-
ling knowledge and also the reuse of existing
knowledge, by overriding methods in child classes
(Del Furia et al. 1995). The concept of encapsula-
tion allowed to clearly define the interface of the
abstract data type, clearly facilitating the imple-
mentation of Parnas’ ideas of strong cohesion
(what is behind the interface) and loose connection
(the interface exposed to other abstract data types.
Finally polymorphism allowed implementing dif-

ferent behaviours behind a common interface. The
simulation of a composite model could be as sim-
ple as calling the same update() method on a
list containing all the submodels.

Nevertheless, after an initial hype, the relevance of
object-orientation to writing good modelling sys-
tems has been considerably re-dimensioned (We-
hie, 1997). For instance, despite the object-
oriented formalism, it was still possible to build
monolithic models. A monolithic model is a mod-
elling system where everything depends on every-
thing: the model is interspersed with data, with the
numerical integration, calibration, optimisation
algorithms, with graphical display and everything
is entangled. Most object-oriented modelling sys-
tems have been developed as monolithic models.

A paradigm shift was needed once again. Such a
shift did not require a major rethinking from the
software engineering point of view, but it was sim-
ply the acknowledgement that software should be
built as any complex piece of engineering, by reus-
ing simpler and robust (in the sense of their
quality) components.

2. COMPONENT-ORIENTED SOFTWARE
ENGINEERING IN MODELLING
FRAMEWORKS

Component-oriented software engineering is a
current trend, which places the concept of software
component at the centre of the development proc-
ess. Rewording Szyperski et al. (2002), software
components are software units, which can be de-
ployed independently, they can be easily re-used
by third parties and they do not have an externally
observable state. These properties enforce the
concept of a component as something different
from an object, which has a unique identity (com-
ponents should be externally undistinguishable),
and it has an externally observable state.

Implementing models as components has some
clear advantages. Reusability is facilitated by the
simplicity of the interface and the limited scope of
dependencies from other components. While it is
still possible to build components with lots of de-
pendencies and a complex interface, this would fail
the first requirement of independent deployment,
that is, the ability to deliver components, which are
well separated from their environment and other
components.

Adopting a well-behaved approach to component-
oriented software engineering also reduces the risk
of building monolithic applications: your own
components should be easy to integrate with third
party components. This principle, when applied to

705

modelling, leads to develop model components
that are independent of the data processing and
visualisation components and where the separation
of concerns between model computation and
graphical user interface is also clear-cut.

Yet, there are different ways to apply component-
oriented software engineering to the implementa-
tion of models. We distinguish between model
equation components and model application com-
ponents.

The straightforward way of developing a compo-
nent of a dynamic model is to define its interface
allowing the user to define the simulation horizon,
the sequence of model inputs u(·), the initial state
x(0) and the sequence of outputs and states, y(·)
and x(·) respectively (see figure 1).

Figure 1. A model application component.

We call this software component a model applica-
tion component. Given the inputs and the parame-
ters, together with the simulation horizon, it is pos-
sible to compute the output trajectories. Its inter-
face will allow initialising the model, to set the
simulation parameters, and, finally, to call the
function that performs the computations.

Figure 2. A model equation component embedded
into a model application component.

Still, we can decompose further the model execu-
tion application, detailing the model equation com-
ponent, which simply computes the rate of change
of the state variables and the relative output trans-
formation by means of an update method, and
other service components. Such auxiliary compo-
nents are: the numerical integration component,
which integrates the rate of change of the state and

feeds it back into the model equation component;
the data provider component, which feeds the ex-
ogenous inputs u(t) one at a time and optionally
stores the outputs and the states, and a simulation
control component, required to initialise the model
with the initial state and parameters and to manage
the invocation of the numerical integration rou-
tines.

The model application component is therefore split
into the declarative part (the equations) and the
imperative parts (the other components). Such an
approach allows for a greater flexibility in term of
the development of the models and the simulation
algorithms, since these two activities often require
different specialist knowledge and this also in-
creases the testability of the smaller and lighter
components. Moreover, the reusability of the
‘lighter’ components across different modelling
frameworks is increased, as it will be shown later
in this paper.

3. LINKING MODEL COMPONENTS

We define model linking as the activity of assem-
bling a set of model equation components together
in a composite structure (composite model). A
composite model is a complex model that all its
sub-models can be simulated simultaneously, and
(numerically) integrated in the same time step.

On the other hand, we define workflow linking, as
the activity of assembling a sequence of model
application components, where also the interaction
of the user, during the execution of the workflow
can take place. In this paper we will focus on
model linking, while we refer the reader to previ-
ous works on scientific workflows2 for workflow
linking (Lüdascher, 2005). One critical issue in
model linking, when assembling model equation
components in a composite model, is the difficulty
of finding a component design that satisfies the
requirement of ‘third-party composition’. My com-
ponent must be compatible with your component,
but more than often this is not the case.

The problem is that component design choices,
rather than be peculiar of a specific architecture,
should rather promote reusability, selecting design
traits which represent a compromise between level
reusability and complexity of the design chosen to
maximize adaptability of components. Using a
pragmatic approach, simplification can be obtained
if the target use of components is within a specific

2 A comprehensive list of software tools for scientific
workflows, which are very useful in grid computing
applications, is available online at
http://www.extreme.indiana.edu/swf-survey/.

706

knowledge domain; this has an impact not only in
simplifying the design of components, but it also
clearly defines the scope of the knowledge domain,
which is embedded in the modelling exercise, as
we will point out in Section 4, where we discuss
the role of ontologies in representing modelling
knowledge.

Yet, restricting to a knowledge domain has often
meant also to restrict to a specific framework,
where implementations of model components
strongly depend on the modelling framework core.
Targeting model component design to match a
specific interface requested by a modelling frame-
work decreases its reusability. This can partly
explain why modelling frameworks, although in
theory a great advance with respect to traditional
model code development, are rarely adopted by
groups other than the ones developing them.

A possible way to overcome this problem is to
adopt a component design, which targets intrinsic
reusability and interchangeability of model com-
ponents (e.g. Donatelli et al., 2005). This may
lead, in the worst cases, to the need of a wrapper
class (specific to a modelling framework) as pro-
posed by the Adapter pattern (Gamma et al. 1994)
that makes possible the migration to other model-
ling frameworks. Nevertheless, the use of appro-
priate techniques in designing model components
interfaces, such as using references to objects as
parameters in the interface methods, greatly re-
duces the overhead due to the extra layer of the
wrapper class.

A key design criterion, which enhances reusability
and interchangeability, and which allows concur-
rent development of both components and clients,
is separating the model equation component inter-
face and its implementations, in different software
units (Löwy, 2003). This is known as the Bridge
pattern (Gamma et al., 1994) and it allows defin-
ing units of reusability (model component imple-
mentations and model component interfaces) and
units of interchangeability (model component im-
plementations alone). As an example application
of the concept of separating interfaces and models
in the domain of biophysical components, see Do-
natelli et al. (2005b). Note that the model inter-
face is defined by the set of its parameters and
input, output, state variables and it is not the model
equation component interface, which is the set of
methods offered by the software component.

In the model equation interface we define an ab-
stract data type called the domain class, following
the approach by Rizzoli et al. (1998). The domain
class is characterised a set of data attributes, which
are the inputs, states, outputs and parameters of the

model and a set of accessor methods to set and get
the attribute values. The data attributes contain the
numerical value, the variable’s range, the default
value, the measurement units. In Section 4, we
exemplify how to construct such a domain class
from an ontology.

If the implementation of a model component re-
quires data provided by another model, it is suffi-
cient to pass an instance of the domain class of the
provider component in the signature of the update
method of the receiving component. An example is
shown in the diagram of Figure 3.

In the component diagram, Component1 has a
dependency to its interfaces component Compo-
nent1.interfaces. The access method of the
component has in its signature a reference to a
instance of the domain class A. Let’s assume that
Component1 simply reads a data stream from a
database and it writes its outputs in domObjA,
instance of DomainClassA.

Figure 3. A component diagram showing the sepa-
ration of the interface from the implementation.

Component2 references the DomainClassA
and using an instance of it in the signature of the
update method Estimate(). The communica-
tion between components is automatically estab-
lished. Also, there is no dependency among com-
ponents, and dependencies are to interfaces com-
ponents only. Components can be replaced and a
component linker must primarily check the match-
ing of inputs in a component to outputs of another,
in the same domain object.

4. FROM KNOWLEDGE REPRESENTA-
TIONS TO SOFTWARE COMPONENTS

In a component-based approach, assembling a
composite model involves the linking of constitu-
ent models inputs and outputs. Such an activity
can be consistent and sound when models are de-
veloped by a small group of modellers. However,
common experience has shown that model compo-
sition within large developer communities is a
struggling task that can easily lead to incoherent

707

results. Reusing “components–off–the–shelf” in
environmental modelling is a demanding activity,
as usually environmental model components are
characterized by poor documentation, insufficient
or vague interfaces and suboptimal implementation
patterns. Most environmental models have been
developed so far without considering reusability
and sharing needs as critical requirements of the
process. In this sense, although a component bi-
nary is by default reusable (in software terms),
accessing its interface in a sound fashion (in mod-
elling terms) is a much more complicated task.

Even assuming an effective component-oriented
design, most of the problems in component linking
tasks emerge due to the poor semantics of the
component model interfaces. In the approach
presented in this paper the component model inter-
face uses domain classes to describe the model
inputs and the outputs classes which also stores
information related to variable dimensions, cardi-
nality, units, sampling frequency, model character-
istic time, etc.

As model components promote the reuse of mod-
els outside a specific framework, in the same way
domain classes provide a way to reuse data struc-
tures outside the specific domain. Yet, there is a
strict dependency on the specific modelling
framework. This dependency can be removed.
We propose a solution based on declarative model-
ling and ontologies.

4.1. Declarative models for model equation
components

Model equation component can be implemented in
source code and they will depend on the specific
framework. Wrappers can be written conforming
to the Bridge pattern, thus targeting different mod-
elling environments. Yet, model equation compo-
nents can be successfully designed and imple-
mented adopting the declarative modelling para-
digm (Muetzelfeldt, 2004). In fact, an analysis in
terms of component architecture does not deny the
advantages of using declarative modelling in
model building. One key advantage of using a
declarative language to store models is the capabil-
ity to export models according to different imple-
mentation requirements and even platforms.

4.2. Ontologies for model interface represen-
tation

By analogy, there is no need to write the imple-
mentation of domain classes in source code, which
is specific to a framework, when we can success-
fully formalise a common ontology using a repre-
sentation language such as OWL for defining ad-

vanced semantics of a model interface, in order to
overcome the common problems described above
and to support effective and sound model compo-
nent linking.

An ontology-mediated approach for defining
model interfaces involves the definition of models
and their interfaces using a common (public) on-
tology, where modellers share their knowledge.
This ontology could also accommodate the de-
clarative models, but this is not a necessity. A
clear requirement is rather to add rich semantics in
a model’s interface, in terms of model parameters,
inputs, outputs, and states (as discussed above),
which are publicly available and shared. Through
an ontology formalisation, modellers can commu-
nicate both knowledge and models independently
from their implementation, as their interfaces are
no longer tighten up to a particular modelling
framework, or programming language, rather they
are defined in a independent format in the ontol-
ogy, that can be later transformed to specific im-
plementations.

4.3. A working example: from ontologies to
model interfaces

We focus on the role of ontologies to represent
model interfaces and as an example, we present an
ontology we developed for biophysical models in
agricultural production simulation, within the
Seamless project, called SeamAg ontology3. We
conceptualise the modelling task in three levels:
(a) the Seamless agro-environmental domain
(SeamAg Domain), (b) the Modelling domain, and
(c) the Application domain.

SeamAg Domain

Actor

Action

Condition

Environment

SeamAg Ontology

SeamCore Domain

Dimension

Measurement

ObservationContext

QuantityUnits

Application Domain

Link

Linkable

Application

Workflow

Modeling Domain

Model

Component

Figure 4. An abstract view of the SeamAg ontol-
ogy.

3 A working version of the SeamAg ontology is avail-

able at: http://seamless.idsia.ch/ontologies/

708

Each level (domain) is a discrete perspective of the
modeled world, each one orthogonally to the oth-
ers. The three domains can be seen as complemen-
tary abstractions that define links between the
three modelling levels. The SeamAg Domain de-
fines all concepts involved within the agro-
environmental process, following the Actors –
Actions – Conditions – Environment scheme.
Components and models are defined in the Model-
ling Domain, while the Application Domain de-
scribes the way model application components are
assembled in stand-alone software applications,
defining workflows. An abstract view on the on-
tology structure is depicted in Figure 4.

The SeamAg ontology has been built upon a core
ontology, which provides fundamental concepts,
related to physical quantities, units, space and
time. The SeamAg ontology has been developed
in OWL using the Protégé-OWL (Noy et al. 2001,
Horridge et al. 2004). OWL is the W3C standard
Web Ontology Language, which intends to be used
for explicitly representing the meaning of terms in
vocabularies and the relationships between those
terms (McGuinness and Harmelen, 2004). Note
that OWL has more facilities for expressing mean-
ing and semantics than XML, RDF, and RDF-S,
and thus OWL goes beyond these languages in its
ability to represent machine interpretable content
on the Web.

Such a generic-purpose ontology can accommo-
date the specification, development and exploita-
tion of model interfaces: to describe a model using
the SeamAg ontology, we start from the SeamCore
domain, that defines Dimensions, Units and Quan-
tities. A Quantity is considered as a concept that
can be observed, measured, or computed in Seam-
less. A Quantity has the following properties: (a)
data type (e.g. float), (b) default unit (e.g. Celsius),
(c) dimension (e.g. temperature), and (d) domain
(e.g. soil). In this respect, we can define a
SoilTemperatureQuantity that is a Temperature,
measured in Celsius, on Soil, and is stored as a
float number. The SoilTemperatureQuantity can
be observed in different Spatial and Temporal
Contexts, (e.g. as a time series of hourly observa-
tions, or in several soil depth levels), which defines
a Measurement of Soil Temperature that can be
used as a Model’s input, output or state.

In such a way, a Model Interface is defined as a
collection of Measurements associated with its
inputs, outputs and states. Wider collections of
Measurements that are associated with particular
domains define the Domain Classes. E.g. we
could define the SoilDomainClass as the collection
of all measurements that are measured on Soil.
Such collections can be manually entered by a user

or they can be automatically built, using the built-
in reasoning features of an ontology. Having de-
fined a Model Interface or a Domain Class in the
ontology, an OWL file can be parsed to generate
the source code of the model interface or the do-
main class respectively. In this way, a modeler can
exploit the knowledge structured in the ontology in
different modeling frameworks or different pro-
gramming languages.

The adoption of an ontology-driven approach for
defining a model interface has clear advantages as
it enables the reusability of models in a more easy
way, while common problems related to poor se-
mantics of model interfaces can be effectively
tackled.

5. DISCUSSION

Ontologies should be taken with a grain of salt,
since they are not the solution to every modelling
and knowledge representation problem, they could
be a mean to reach such a solution, but sometimes
it looks like they are part of the problem. Often we
are torn between taking the side of the ‘semantic
knight’ rather than the ‘wily hacker’4. Formalising
an ontology will only help you in structuring your
knowledge, but it will not replace the knowledge
engineer. The hacker could be tempted to find ‘ad
hoc’ solutions, based on powerful techniques such
as introspection (i.e. reflection), but ontologies are
a useful complement to the ability to extract
knowledge and structure from the code by intro-
spection. Via reflection we can discover what is
stored into binaries, but it is by means of ontolo-
gies that we can structure and represent the infor-
mation we will extract via reflection, such as co-
herence of units, time steps and check of pre post
conditions.

Ontologies also play a fundamental role when
model linking happens over the web. The seman-
tic web tries to provide a standard way to auto-
matically discover and run web services. In com-
putational ‘grids’ for environmental science
(Jeffery, 2004) it will be possible to create
‘workflows’ of web services to execute a given
task. Ontologies provide the semantic layer on top
of metadata languages such as RDF, thus allowing
for ‘reasoning’ when building such workflows.

Finally, it is worth to remark that, in the majority
of cases, and as long as latency will be an issue in
modern Internet networks, web services will be

4 The ‘semantic knight’ and the ‘hacker’ are two perso-
nae of a parody of a famous Monty Phyton joke made by
Michael Champion: http://lists.xml.org/archives/xml-
dev/200504/msg00260.html

709

implemented as model application components,
rather than model equation components, since the
communication overhead in integrating a model
equation component a thousand time for a single
simulation step would make this approach practi-
cally unusable.

6. CONCLUSIONS

In this paper we have presented an approach to
linking models based on semantically enriched
model components. The key points of this ap-
proach are: design of lightweight model equation
components, with no dependency from the model-
ling framework core; definition of domain classes
in the component interface to abstract the depend-
ency of the model from the data and to foster the
extensibility of models via design patterns. Finally,
the use of ontologies for structuring and represent-
ing the knowledge on data structures made possi-
ble the automatic generation of semantically rich
component interfaces onto which reasoning possi-
ble.

7. ACKNOWLEDGMENTS
This publication has been partially funded under
the SEAMLESS integrated project, EU 6th
Framework Programme for Research, Technologi-
cal Development and Demonstration, Priority
1.1.6.3. Global Change and Ecosystems (European
Commission, DG Research, contract no. 010036-
2)

8. REFERENCES

Del Furia, L., A. Rizzoli, and R. Arditi, 1995. Lake-
Maker: a general object-oriented software tool
for modelling the eutrophication process in
lakes. Environmental Software, Vol. 10, No.
1, pp 43-64.

Donatelli, M., G. Bellocchi, and L.Carlini, 2005. A
software component for estimating solar ra-
diation. Envrionmental Modelling and Sof-
tware. (in press).

Donatelli, M., L. Carlini, G. Bellocchi, M. Colauzzi,
2005b. CLIMA: a component based weather
generator. Proc. of the MODSIM05 confer-
ence, Melbourne, Australia, December 11-15,
2005.

Gamma, E., R. Helm, R. Johnson, J. Vlissides. 1994.
Design Patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston,
MA.

Horridge, M., H. Knublauch, A. Rector, R. Stevens,
C. Wroe. 2004. A Practical Guide To Build-
ing OWL Ontologies Using the Protégé-OWL
Plugin and CO-ODE Tools, Technical Report,
Ed. 1.0, The University Of Manchester.

Jeffery, K.G. 2004. Next generation GRIDs for envi-
ronmental science. In: Pahl-Wostl, C.,
Schmidt, S., Rizzoli, A.E. and Jakeman, A.J.
(eds), Complexity and Integrated Resources
Management, Transactions of the 2nd Bien-
nial Meeting of the International Environ-
mental Modelling and Software Society,
iEMSs: Manno, Switzerland, 2004. ISBN 88-
900787-1-5

Löwy, J., 2003. Programming .NET components.
O’Reilly & Associates, Sebastopol, CA.

Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E.
Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y.
Zhao. 2005. Scientific Workflow Manage-
ment and the Kepler System. Concurrency
and Computation: Practice & Experience,
Special Issue on Scientific Workflows, to ap-
pear.

McGuiness, D. L., and F. V. Harmelen (Eds). 2004.
OWL Web Ontology Language Overview,
W3C Recommendation, Available online:
http://www.w3.org/TR/owl-features/

Muetzelfeldt, R.I. 2004. Declarative Modelling in
Ecological and Environmental Research.
European Commission Directorate-General
for Research, Position Paper no. EUR 20918.
European Commission, Brussels, B.

Noy, N. F., Sintek, M., Decker, S., Crubezy, M.,
Fergerson, R. W., and Musen, M. A. Creating
semantic web contents with Protege-2000.
IEEE Intelligent Systems 16, 2 (2001), 60-71.

Padulo, L., and Arbib, M.A. 1974. Systems Theory: a
Unified State-Space Approach to Continuous
and Discrete Systems. W.B. Saunders, Phila-
delphia, PA.

Parnas, D.L. 1972. On the criteria to be used in de-
composing systems into modules. Communi-
cations of the ACM, Vol. 15, No. 12, pp. 1053
– 1058.

Rizzoli, A.E., Davis, J.R., Abel, D.J. 1998. A model
management system for model integration and
re-use. Decision Support Systems,Vol. 4, No.
2, pp. 127-144.

Weihe, K. 1997. Reuse of algorithms: still a chal-
lenge to object-oriented programming. In:
Proceedings of the 12th Annual ACM Confer-
ence on Object-Oriented Programming Sys-
tems, Languages and Applications (OOP-
SLA'97), 34-48.

Szyperski, C., Gruntz, D., Murer, S. 2002. Compo-
nent Software – Beyond Object-Oriented Pro-
gramming, Second Edition. ACM Press, New
York, NY.

Zeigler, B. P. 1991. Object-Oriented Modeling and
Discrete-Event Simulation. Advances in Com-
puters, Vol. 33, pp. 67 – 114.

710

