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EXTENDED ABSTRACT 

Translocation—the deliberate, human-mediated 
movement of organisms—is a useful conservation 
tool most often employed in attempts to increase 
persistence of threatened or depleted species. 
Translocation projects involve difficult 
management decisions regarding the allocation of 
animals between sites. This research provides a 
rational scientific basis for these decisions. We use 
a stochastic population model and Stochastic 
Dynamic Programming to determine optimal 
translocation strategies for theoretical populations, 
and apply this framework to a case study on the 
Bridled Nailtail Wallaby (Onychogalea fraenata). 

The translocation problem is defined as follows: in 
each time step of the translocation program, a set 
number of individuals are sourced from a captive 
population and translocated to two sites. 
Management decisions involve the allocation of 
these individuals between the two sites, over time. 
We use a first-order Markov chain stochastic 
population model to simulate each translocated 
population. This model follows females only, and 
does not consider age structure. Translocated 
populations A and B are limited by carrying 
capacities KA and KB, with population dynamics 
governed by Markov chain transition matrices AA 
and AB. In the time step of their translocation, 
translocated individuals are governed by a separate 
transition matrix AT with a higher mortality rate 
and no reproduction.  

The Stochastic Dynamic Program (SDP) has three 
states: the number of individuals in the first site (nA 
= 0,…,KA), the number of individuals in the second 
site (nB = 0,…,KB), and the time period of the 
translocation project (t = 0,…,T). Populations can 
change state by natural processes—as captured in 
the transition matrices—or by receiving 
translocated individuals. With X individuals 
available in each time step, Population A receives 
d individuals and Population B receives X-d 
individuals. The SDP steps backwards from the 
terminal time T where the final reward, given by 
an objective function, is received. For each time 
step all possible decisions—represented by the 
variable d—are evaluated for every combination of 
possible population sizes. The optimal decision is 

the one that produces the highest score, determined 
by the dynamic programming equation.  

We compare the results given for two different 
objective functions. The first is a long-term 
persistence objective function, which maximises 
the persistence of translocated populations ε time 
steps after the end of the translocation program. 
The second is a total population size objective 
function, which maximises the number of animals 
present at the end of the translocation program. 
The SDP is applied to the Bridled Nailtail Wallaby 
by making each time step equal to four months, 
and by using realistic population parameters 
derived from relevant literature. The translocation 
program is assumed to run for four years (twelve 
time steps), with two individuals available in each 
time step. The carrying capacity of each site is set 
at 50. Population A has an approximate (per capita) 
growth rate of 1.305, while Population B has a 
growth rate of 0.87. 

When using the long-term persistence objective 
function (with ε = 128), the optimal decision for 
most states is to translocate both available animals 
to Population B. These results satisfy the objective 
function, but are not sensible for a real-life 
translocation program, as population B has a 
declining growth rate. This indicates that the long-
term persistence objective function considered 
here does not adequately express the goals of a 
translocation program. The results for the total 
population size objective function are more 
practically applicable. In these results the optimal 
decisions in each time step are dependent on the 
number of animals in Population A. The large 
difference in results between the two objective 
functions demonstrates the importance of careful 
consideration when specifying the goals of a 
project. This applies not only to translocation 
programs, but any project where clear decision-
making is needed. 
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1. INTRODUCTION 

Translocation is the deliberate, human-mediated 
movement of living organisms from one area to 
another (World Conservation Union (IUCN) 1987, 
Tenhumberg, et al. 2004). This movement can be 
between wild and captive populations, or between 
two or more wild populations (Tenhumberg, et al. 
2004). As a conservation tool, translocation can be 
used to increase the range of a species through 
reintroduction to an area from which it has been 
extirpated, or to increase numbers in a critical 
population by adding individuals from a wild or 
captive population. It is one of the main 
management options for restoration and 
conservation of threatened animal species (Fischer 
and Lindenmayer 2000). Translocation projects 
involve difficult management decisions, which 
need a rational and transparent scientific basis. 
This research provides that basis by framing and 
solving the translocation problem within a decision 
theory context. We use a stochastic population 
model and Stochastic Dynamic Programming to 
determine the optimal state-dependent 
translocation strategies. We apply this framework 
to a case study on the Bridled Nailtail Wallaby 
(Onychogalea fraenata). Specifically, we ask the 
question: if we have a set number of wallabies to 
translocate in each time period and two 
translocation sites, how many animals should we 
put at each site given the state of each population? 

2. MODEL 

2.1. Model Scenarios 

In each scenario we assume there is a captive 
source population and two sites to which 
individuals can be translocated. The dynamics of 
the source population are not considered 
explicitly—it is assumed to produce a set number 
of ‘excess’ individuals available for translocation 
in each time step. Management decisions focus on 
the allocation of these individuals between the two 
translocation sites. We determine the optimal 
management decisions using Stochastic Dynamic 
Programming. 

2.2. Stochastic Population Model 

We use a first-order Markov chain stochastic 
population model to simulate each translocated 
population. These models follow only the number 
of females, consequently assuming that females 
always have the opportunity to mate regardless of 
male abundance. These models also ignore the age 
structure of the populations. We assume that the 
sex ratio is constant and that females can have a 
maximum of one newborn in each time step. We 

label the translocated populations A and B, which 
are limited to a maximum size of KA and KB, 
respectively. This population size limit can be 
interpreted as the carrying capacity of the 
translocation site. The Markov chain transition 
matrix for each population from time step (t) to 
time step (t + 1) is A = LS, the matrix product of 
the recruitment matrix L and the survival matrix S. 
This assumes that within each time step survival 
occurs before reproduction—only surviving 
individuals can reproduce. The Markov chain 
matrices are constructed following Tenhumberg et 
al. (2004). The processes of immigration and 
emigration are not considered, as we believe that 
in cases of threatened species with isolated 
translocation sites and low population densities 
dispersing animals are unlikely to survive and 
reproduce. 

2.3. Stochastic Dynamic Program 

Stochastic Dynamic Programming is a 
mathematical optimisation method. It can be 
applied to any stochastic system that can be 
described as a finite set of states where a series of 
sequential decisions must be made (Lubow 1996). 
This Stochastic Dynamic Program (SDP) 
determines the exact optimal strategy for 
translocation, which is dependent on the 
management objective and the state of the system 
(i.e. the number of individuals in each population 
and the amount of decision-making time 
available).  

The population model has three states: the number 
of individuals in the first site (nA = 0,…,KA), the 
number of individuals in the second site (nB = 
0,…,KB), and the time period of the translocation 
project (t = 0,…,T). Changes in the state of each 
population (i.e. number of individuals) through 
births and deaths governed by the Markov chain 
transition matrices AA for Population A and AB for 
Population B. Populations can also change state by 
receiving translocated individuals.  

In each time period, X individuals from the source 
population are allocated between populations A 
and B. The decision variable d is an integer value 
between 0 and X. Population A receives d 
translocated individuals, while Population B 
receives X−d individuals. Translocation is assumed 
to occur early in the time step, before the death and 
birth processes. Translocated individuals have a 
separate transition matrix AT—with a higher 
mortality rate and no reproduction—describing 
their dynamics in the time step of their 
translocation. It is not known whether animals 
would breed immediately after translocation, so 
the worst case scenario is assumed.  
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Stochastic Dynamic Programming works by 
stepping backwards from the terminal time T 
where the final reward, given by an objective 
function, is received. For each time step all 
possible decisions—represented by the variable 
d—are evaluated for every combination of possible 
population sizes. The optimal decision, assuming 
all future decisions are optimal, is the one that 
produces the highest score. This score is 
determined by the dynamic programming 
equation: 
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where V is the objective function, Ani

Aa , is an 

element of the transition matrix AA, Bni
Ba , is an 

element of the transition matrix AB, and dk
Ta , , 

dXl
Ta −, are elements of the transition matrix AT. 

We compare the optimal decisions for two 
different management objectives. The long-term 
persistence objective function maximises the 
expected number of persisting populations ε time 
steps after the end of the translocation project 
(time T). This is specified by the equation: 
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where An
Aa ,0
′

is the element of the transition matrix 

A
ε
A  containing the probability that nA individuals 

at time T become 0 individuals at time T + ε, and 

Bn
Ba ,0
′

is the element of the transition matrix A
ε
B  

containing the probability that nB individuals 
become 0 individuals.  

The total population size objective function 
maximises the total number of individuals in the 
final time step of the translocation program. The 
equation describing this objective is: 

BABA nnnnTV +=),,(2   (3) 

2.4. Case Study 

To demonstrate the approach, we apply it to a case 
study of Bridled Nailtail Wallabies (Onychogalea 
fraenata). The Bridled Nailtail Wallaby was once 
distributed throughout the semi-arid inland of 
eastern Australia, from Charters Towers in the 
north to the Murray River in the south (Johnson 
2003). Due to threats such as land clearing, 
predation, and competition with livestock it was 
reduced to a small population in Taunton National 
Park, near Dingo in Central Queensland (Lundie-

Jenkins 2001, Johnson 2003). It has recently been 
successfully reintroduced to Idalia National Park, 
near Blackall (Johnson 2003). The Bridled Nailtail 
Wallaby is currently listed as endangered and 
according to its 1997-2001 Recovery Plan needs to 
be re-established at two more sites to satisfy the 
conditions of recovery (Lundie-Jenkins 2001). 

Bridled Nailtail Wallabies have one offspring at a 
time, but breed continuously in the wild and may 
raise up to three young per year (Lundie-Jenkins 
2001). We incorporate this into the SDP by 
making each time step equal to four months, so at 
each four-month interval a female may or may not 
produce a female offspring. A literature review of 
articles on the demography of the species 
established realistic ranges for model parameters. 
The probability of a female giving birth in a four-
month period ranges from 0.89 to 1 (Fisher, et al. 
2000, Pople 2005). The probability of an 
individual dying in any four-month period ranges 
from 0.01 to 0.46 (Fisher 1998, Fisher, et al. 2000, 
Pople, et al. 2001). The ratio of female to male 
newborns is assumed to be constant at 0.5, a figure 
supported by some field data  (Fisher, et al. 2000) 
and used previously in population models of the 
species (McCallum 1995, Pople 2005). 

In both scenarios the translocation program is 
assumed to run for four years, or twelve time steps. 
Translocation occurs in the first eleven time steps 
(t= 0…10), with two individuals available each 
time. The final reward, given by the objective 
function, is received at T=11. The carrying 
capacity K of each site is set at 50 individuals. 
Population parameters are chosen from the 
established ranges to create an interesting 
management situation. The birth probability is set 
at 0.9 for each population, while the death 
probability is set at 0.1 for Population A and 0.4 
for Population B. A higher death probability of 0.5 
is given to translocated individuals (matrix AT). 
An approximation of the per capita growth rate r 
for each population can be calculated using the 
equation: 
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where A is a Markov chain transition matrix. 
Given the above parameters, r is 1.305 for 
Population A and 0.87 for Population B. In cases 
where the long-term persistence objective function 
(2) is used, ε is set at 128 time steps, or 42 years 8 
months. As in Tenhumberg et al. (2004), a power 
of 2 is used to simplify calculations by enabling 
the repeated squaring of a matrix. 
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3. RESULTS AND DISCUSSION 

The use of a carrying capacity K in the SDP is 
mathematically convenient, but is not particularly 
realistic for the Bridled Nailtail Wallaby. For this 
reason the most relevant and applicable results of 
the SDP are those not affected by carrying 
capacity. The focus of analysis is therefore on 
those results for which both populations are small.  

3.1. Comparison of Objective Functions 

For the SDP with the long-term persistence 
objective function (2), the optimal decision for 
most system states is to translocate both available 
animals to Population B—the population with the 
lower growth rate. In the first time step (Figure 1), 
it is optimal to put both individuals into Population 
A if Population B is greater than 40 individuals and 
Population A is less than around 35 individuals. 
This is an effect of the imposed carrying 
capacities. When both populations are small, it is 
optimal to put both individuals into Population A 
only if Population A is zero. This changes only 
slightly over the time period, as can be seen at 
t=10 (Figure 2). In this time step it is optimal to 
put at least one animal into Population A if that 
population has less than three individuals. 
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Figure 1: Optimal Decisions for t=0, using the 
long-term persistence objective function 

Legend: Light grey – Two to Population A, 
Medium grey – One to each population,  

Dark grey – Two to Population B 
 

On initial inspection these results seem counter-
intuitive—how can we maximise long-term 
persistence by translocating animals into a 
declining population? However, these results are 
driven by the long-term persistence objective 
function. If Population A contains one individual at 
the terminal time, the probability of the population 
persisting 128 time steps into the future is 

approximately 0.75. If Population A has two 
individuals, this probability increases to 0.94, and 
if it has three individuals it increases to 0.99. So 
with an estimated growth rate of 1.305, Population 
A is almost guaranteed to persist if it contains three 
or more individuals. This explains the results seen 
in Figures 1 and 2. If Population A has three or 
more individuals, the benefit of translocating 
animals into the population is very low, as the 
population is already extinction resistant. A greater 
increase in the probability of persistence results if 
the translocated individuals are added to 
Population B. This is therefore almost always the 
optimal decision. Furthermore, Population A only 
needs three individuals at time T to have a high 
probability of persisting to time T + ε. It is not 
important to ensure Population A’s viability in the 
time steps prior to this, as it is known that by 
adding two individuals as a result of the final 
decision, a persistence probability of at least 0.94 
can be achieved. This explains the slight change in 
optimal decisions through time from t=0 to t=10. 
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Figure 2: Optimal Decisions for t=10, using the 
long-term persistence objective function 

Legend: as for Figure 1 
 

Although these results make sense mathematically, 
they do not seem practically applicable—it is 
doubtful whether the advice: ‘Don’t worry about 
the good site, put them all in the bad site’ would be 
well-received by a translocation manager. 
However, the optimal decisions satisfy the 
objective function, suggesting that this objective 
function does not accurately describe the goal of 
the translocation program. 

The results of the SDP using the total population 
size objective function (3) are very different to 
those found with the long-term persistence 
objective function. At t=0, it is optimal to put both 
individuals into Population A if the population is 
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smaller than six individuals (Figure 3). This 
threshold increases over the time period, and by 
t=9 it is optimal to put both individuals into 
Population A if it has less than 28 individuals 
(Figure 4). The results of the final decision at t=10 
are not shown here, as they are not as indicative of 
general trends due to their proximity to the receipt 
of the final reward at t=11.  
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Figure 3: Optimal Decisions for t=0, using the 
total population size objective function 

Legend: as for Figure 1 
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Figure 4: Optimal Decisions for t=9, using the 
total population size objective function 

Legend: as for Figure 1 

 
This objective function produces optimal decisions 
that make practical, as well as mathematical, sense. 
By making the reward dependent on the state in 
the final time step instead of far into the future, 
decisions made earlier in the program become 
more important. Focusing on the number of 
animals rather than extinction/persistence 
probabilities is more suited to the goals of a 

translocation program for threatened species, as we 
want to maximise growth rather than just prevent 
extinction. The optimal decisions according to this 
objective can also be easily condensed into rules of 
thumb for managers to follow, as they are 
dependent on the number of individuals in 
Population A. Although both objectives seem 
reasonable, the total population size objective 
function more accurately describes the goals of the 
translocation program, and produces results that 
are practically applicable. 

3.2. Future Directions 

This method provides a useful framework to 
generate rules of thumb for translocation managers 
when the specifics of translocated populations are 
known. However, a real-life situation in which we 
know all population parameters would be 
extremely unlikely. A more useful model would be 
one in which at least one of the parameters for one 
population is unknown. We could incorporate this 
into the current SDP by assuming a prior 
distribution for the unknown parameter, and 
updating this distribution in each time step 
according to information obtained about the 
population dynamics. This has not been done 
before in research into translocation strategies and 
would be a significant and useful extension.  

4. CONCLUSIONS 

This research shows the utility of Stochastic 
Dynamic Programming for developing rules of 
thumb for translocation managers. More 
importantly, it demonstrates the necessity of 
having a clear goal for decision-making. The two 
objectives used in this study, although superficially 
similar, produced very different results when used 
as part of a Stochastic Dynamic Program. One of 
these results was practically applicable, and the 
other was not. The choice of an appropriate and 
specific objective for a translocation program—or 
any venture where clear decision-making is 
essential—is the most important decision to be 
made. 
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