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EXTENDED ABSTRACT 

The ability to simulate the propagation of flood 
waves is of crucial importance for planning and 
operational management of river floods. 
Hydrodynamic and hydrologic numerical models 
provide such capabilities and represent 
conventional approaches to river flood modelling. 
In the recent years, data driven models such as 
artificial neural networks (ANNs), and neuro-
fuzzy systems have also emerged as viable tools 
for this purpose. 

An objective comparison of these models is 
necessary to evaluate their individual 
performances and assess strengths and limitations. 
This paper considers four different modelling 
approaches for water level simulation, using the 
same flood event data for model calibration and 
testing. The models include a full dynamic one 
dimensional hydrodynamic numerical (HN) 
model, a Muskingum-Cunge (MC) hydrological 
routing model, and two data driven models: 
artificial neural network (ANN) and adaptive 
network based fuzzy inference system (ANFIS). 
Four flood event datasets from the years 1988, 
1990, 1993 and 1994 for a reach of about 100 km 
from the rivers Rhine and Neckar in Germany are 
used in this study. The statistical performance of 
the models is assessed using the criteria of 
coefficient of efficiency, root mean square error, 
peak error and maximum absolute error. 

The results of this study indicate that carefully set 
up HN, MC, and data driven models are all 
capable of producing good results. All four 
models performed similarly for the same datasets. 
For example all four models overpredicted the 
peak of the 1990 flood event, while each of these 
models are able to reproduce the 1993 and the 
1994 flood events quite well. The ranges of root 
mean square errors for the HN, MC, ANN and 
ANFIS models are obtained as 0.17–0.38 m, 
0.08–0.15 m, 0.07–0.22 m and 0.08–0.24 m, 
respectively. Similarly, the ranges of coefficient 

of efficiency for the HN, MC, ANN and ANFIS 
models are obtained as 0.942–0.975, 0.981–0.989, 
0.979–0.991 and 0.976–0.990, respectively. The 
results also show that the MC, ANN and ANFIS 
models performed better compared to the HN 
model. Figure 1 shows a comparison of the results 
of all four models with the observations for the 
1993 flood event. 
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Figure 1. Observed, HN, MC, ANN and ANFIS 
results and errors for 1993 flood event  

A number of factors need to be considered for 
selecting the appropriate model for river flood 
prediction. The physically based HN models 
require detailed topographical data and are able to 
make predictions at every cross section. The 
simplified hydrological routing and the data driven 
models require little or no topographical data but 
are only capable of making predictions at the model 
output boundaries. These strengths and limitations 
can be a basis for complementary modelling. The 
HN model can be applied in the critical locations 
where water surface profiles are of specific interest. 
The simplified distributed or data driven models are 
more efficient for flood routing purposes. It may 
also be more reliable to use more that one model for 
flood forecasting purposes, so that the results can 
be cross validated and different scenarios tested. 
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1. INTRODUCTION 

River floods are complex dynamic processes 
characterised by spatial and temporal variations. 
The understanding of these processes and the 
capabilities to encapsulate them in terms of 
numerical models are of crucial importance for 
planning and operational management of river 
floods. Hydrodynamic and hydrologic numerical 
models provide such capabilities and represent 
conventional approaches to river flood modelling. 
In recent years, several researchers have used data 
driven models such as artificial neural networks 
(ANNs) and fuzzy systems for river flood 
modelling. (eg. Thirumalaiah and Deo 1998; Imrie 
et al. 2000; Liong et al. 2000; Bazartseren et al. 
2003; Shrestha et al. 2005).  

The fundamental notions and hypotheses of each 
of these models are entirely different with major 
differences in model structure, data requirements 
and capabilities. For the scientific and engineering 
communities to benefit more from these different 
modelling approaches, it is important to bring 
them to a common platform and analyse their 
capabilities. Khatibi and Haywood (2002) 
categorised different models for river flood 
forecasting based on the representation of physical 
systems. Abebe and Price (2004) illustrated the 
relative position of physically based and data 
driven models in the spectra of physical insights 
and data needs. A one to one comparison of these 
modelling approaches will facilitate further 
assessment of these models according to their 
individual strengths and limitations.  

A number of researchers have made a comparative 
study of different data driven modelling 
approaches (eg. Lekkas et al. 2001, Shivakumar et 
al. 2002, Bazartseren et al. 2003). However, 
studies that compare physically based 
hydrodynamic models with hydrological routing 
models and data driven models are not available. 
This paper addresses this need with a detailed 
comparison of four different models in the context 
of river flood prediction. Two conventional flood 
routing models: a full dynamic one dimensional 
HN model and a hydrological routing model based 
on the Muskingum-Cunge formulations are used. 
Similarly, artificial neural network (ANN), and 
adaptive network based fuzzy inference system 
(ANFIS) based data driven models are trained for 
the same study reach. For an objective comparison 
of these modelling tools, the same flood event data 
are used in each of these models for calibration 
and validation.  

2. STUDY AREA AND DATA 

The study is conducted in the section of the rivers 
Rhine and Neckar in South - Western Germany in 
the region of Heidelberg, Karlsruhe, Mannheim 
and Ludwigshafen (Figure 2. The study area 
consists of a reach of about 80 km in length 
between the gauging stations Maxau and Worms in 
the River Rhine and a 26 km reach from the 
gauging station Heidelberg to the confluence in the 
River Neckar. The catchment area of the River 
Rhine at the Worms station and the River Neckar 
at the Heidelberg station are 68827 km2 and 13783 
km2, respectively. There are no major tributaries in 
either of the reaches.  

The time series of flow and water level data at one 
hour intervals are available from the gauging 
stations located at Maxau, Worms and Heidelberg 
for the 1988, 1990, 1993 and 1994 flood events. 
The obtained discharge time series are derived 
from a single value stage discharge rating curve. 
The water levels are directly measured values and 
are more accurate compared to discharges. Hence, 
water levels from the Worms station are used for 
the calibration of the hydrodynamic and 
hydrological routing models and as targets for the 
training and validation of the data driven models.  

 

Figure 2. Study reach of the River Rhine and 
River Neckar 
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3. HYDRODYNAMIC NUMERIC MODEL 

The one dimensional (1D) hydrodynamic 
numerical (HN) model is the first model 
considered for the study area. The HN model is 
based on the conservation principles of mass and 
momentum, also known as the Saint-Venant 
equations and expressed in terms of the continuity 
(equation 1) and the momentum equations 
(equation 2): 
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where, y = water surface elevation [m], h = depth 
of flow [m], Q = discharge [m3/s], b = top width of 
flow [m], A = active cross sectional area of flow 
[m2], g = gravitational acceleration [m/s2], Sf = 
friction slope, S0 = bed slope, x = distances along 
the channel [m] and t = time [s]. 

The HN model is set up using the 1D modelling 
system CARIMA from SOGREAH (Cunge et al. 
1980). CARIMA is a generalised hydrodynamic 
numerical modelling system based on the full one-
dimensional Saint-Venant equations. The solution 
of these equations is based on the Preissmann 
implicit finite difference method, which is 
generally considered unconditionally stable for all 
Courant numbers (Cunge et al. 1980). As the 
system is based on the full Saint Venant equations, 
it is also capable of representing the backwater 
influence of tributaries, such as in the Rhine - 
Neckar confluence.  

The HN model is constructed as shown in Figure 3 
with cross sections at 100 m intervals in both the 
Rhine and the Neckar sub-reaches. The number of 
cross sections is 811 in the Rhine sub-reach from 
Maxau to Worms and 298 in the Neckar sub-reach 
from Heidelberg to the confluence. The flow 
hydrographs Q(t) from the gauging stations at 
Maxau (Rhine) and Heidelberg (Neckar) are used 
as upstream boundary conditions. A stage 
discharge relationship Q(y) is used as the 
downstream boundary condition, located at a 
distance of 36.6 km downstream of the Worms 
station. The initial conditions of the model are set 
up using a steady flow calculation.  

The unsteady flow calibration is done by adjusting 
the model parameter (Manning-Strickler 
coefficient) in such a way that a good match can be 
obtained between the observed and simulated time 
dependent hydrographs. The stage hydrograph 

from the Worms station from the 1988 flood event 
is used for the calibration of the model. The 1990, 
1993 and 1994 flood event data are used as test 
datasets.  
 

 

 

 
 

Figure 3. Schematisation of the reaches in the HN 
model 

4. MUSKINGUM CUNGE MODEL  

The hydrologic flood routing basically constitutes 
a reach by reach prediction of discharge 
hydrographs based on the response of the river 
reach to inflow and storage. Amongst different 
hydrological flood routing methods, the 
Muskingum-Cunge formulation (Cunge, 1969) is 
one of the most popular methods. The model is 
based on the continuity (equation 3) and storage 
equations (equation 4): 
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where, S = storage in the channel [m2], K = 
storage time coefficient [s] and X = weighing 
factor. The parameters K and X are obtained by 
forcing the numerical diffusion to match the 
hydraulic diffusion (Cunge 1969), such that the 
model parameters can be obtained in terms of the 
Manning-Strickler coefficient. 

The MC model is set up for three sub-reaches: 
Maxau – confluence, Heidelberg – confluence and 
confluence – Worms, as shown in Figure 4. The 
selection of the space time grid discretisation is 
based upon the criteria given by Ponce (1994). 
Accordingly, model reaches are further divided 
into seven sub-reaches (j) between the Maxau – 
confluence, three between the Heidelberg – 
confluence and two between the confluence – 
Worms. A simple algebraic summation is used for 
the addition of flows at the confluence. 

The MC based routing model is developed using 
the interactive MATLAB/Simulink environment, 
with the river sub-reaches represented by 
subsystem blocks. The river cross sections at 
Maxau, Heidelberg and Worms are used to define 
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the river geometry. Rating curves are used for the 
relationship between discharge and water levels. 
Lookup tables are used to calculate time varying 
cross section parameters: flow area, flow width 
and wetted perimeter. 

The MC model does not require a downstream 
boundary condition and the available downstream 
water levels can be used for model calibration. In 
this case also, the water level time series are used 
in preference to the flow time series for the 
calibration. The water levels at the Worms station 
are obtained by transforming the output discharge 
time series using a depth discharge lookup table 
(rating curve). The MC model calibration is done 
by adjusting the model parameter (Manning-
Strickler coefficient). In this case too, the 1988 
datasets are used for model calibration and the 
1990, 1993 and 1994 for model testing.  

 

 

 

 

Figure 4. Schematisation of the reaches in the 
Muskingum Cunge based model 

5. DATA DRIVEN MODELS 

The third part of this study considers data driven 
methods for the study reach. In contrast to the HN 
and MC models, the data driven models do not 
explicitly follow physical principles inside a 
system. They constitute a universal approximation 
of the input and output signals and are able to 
make abstractions and generalization of the 
processes. The prediction of downstream water 
levels based on the upstream discharges using a 
data driven model may be represented by the 
following relationship. 

)}(),({)( 2211 atQatQfty −−=        (5) 

where, y(t) = downstream water level and Qi(t) = 
upstream discharge and ai = travel time. 

Two different data driven models: artificial neural 
network (ANN) and a special neuro-fuzzy system, 
known as adaptive network based fuzzy inference 
system (ANFIS) are considered in this study. More 
details on ANNs and ANFIS are available in 
Haykin (1994) and Jang (1993), respectively. 
Since both the modelling approaches are quite 
similar, they are considered together.  

The first step in developing the ANN and the 
ANFIS based models is the selection of an 
appropriate model architecture and the model 
inputs and outputs. The ANN architecture selected 
consists of a recurrent network consisting of one 
input layer, two hidden layers and one output 
layer. The architecture of ANFIS consists of a five 
layered special network topology, with the 
domains of the antecedent variables partitioned 
into a specified number of membership functions.  

The inputs to both data driven models consist of 
flow time series from the Maxau station in the 
River Rhine and the Heidelberg station in the 
River Neckar. The water level time series from the 
Worms station is taken as the targets. The training 
sets for both the data driven models are taken as 
the 1988 flood event data, which consist of the 
highest range of data. The flood event data from 
1990 are used as validation, and 1993 and 1994 as 
test datasets. The inputs and outputs are 
normalised between –1 and 1. The 24 hours lag 
time from Maxau to Worms and 8 hours lag time 
from Heidelberg to Worms are considered. The 
inputs and outputs of the data driven models are 
shown in Figure 5. 

The structure of the ANN consists of 2 neurons in 
the input layer, 16 neurons in the first hidden layer, 
10 neurons in the second hidden layer and 1 
neuron in the output layer. It is observed during 
the preliminary trials that the use of recurrent 
feedback in the output layer enhances the 
performance of the ANN. Hence, recurrent 
networks are used, although this slowed down the 
training process considerably. The network 
consists of hyperbolic tangent activation functions 
in the hidden layers and linear activation function 
in the output layer. The ANN model is developed 
using the procedure of the MATLAB Neural 
Network Toolbox (Demuth and Beale, 2004). The 
backpropagation algorithm with Bayesian 
regularisation of the Levenberg-Marquardt 
approximation is used for ANN training. Early 
stopping criteria provided by the validation 
datasets are used to prevent overtraining. The test 
datasets are used independently for the evaluation 
of model performance. 

The ANFIS model is developed using the 
procedures of the MATLAB Fuzzy logic toolbox 
(The MathWorks Inc., 2004). The structure of the 
ANFIS model consists of a Sugeno type fuzzy 
system with generalised bell input membership 
functions and a linear output membership function. 
The network consists of 2 inputs, each with 3 input 
membership functions, 9 rules and 1 output 
membership function. The training algorithm 
consists of a backpropagation and least squares 
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estimation for the adjustment of premise and 
consequent parameters of the ANFIS, respectively. 
In this case too, early stopping criteria provided by 
the validation datasets are used to prevent 
overtraining and the test datasets are used for the 
independent evaluation of model performance. 

 

 

 

Figure 5. Input and output of the data driven 
models 

6. RESULTS 

The comparison of the observed and simulated 
results of the HN, MC, ANN and ANFIS models 
for the 1990, 1993 and 1994 flood events are 
depicted in Figures 6, 7 and 8. The performance of 
the models is assessed using the statistical criteria 
of the coefficient of efficiency (CE) and the root 
mean square error (RMSE). In addition, the peak 
error (PE) and the maximum absolute error (MAE) 
in water levels are also considered. The results of 
the statistical analysis are summarised in Table 1. 
It is to be noted that the 1990 flood event 
represents the validation dataset and the 1993 and 
1994 flood events represent the test datasets for the 
ANN and ANFIS models. All three flood event 
datasets are used as the test datasets for the HN 
and MC models. 

The comparison of performances generally 
demonstrated reasonable results for each of these 
models and all four models performed similarly for 
the same datasets. There are some problems in 
reproducing the 1990 flood event, with all the 
models showing overprediction. The 
overprediction is higher in the ANN and ANFIS 
models compared to the MC and HN models. 
There are also phase errors in the model results, 
particularly in the case of the HN and MC models. 
The MC model produced the best overall statistical 
performance of the four models considered. 

In the case of the 1993 flood event, the flood peaks 
are predicted quite well by all of the models. There 
are some problems in the reproduction of the 
secondary peak where the HN, ANN and ANFIS 
models show overprediction. The phases are well 
reproduced by these models, except for the MC 
model, which shows some phase shift. The 
statistical performance of the MC, ANN and 
ANFIS models are quite close to each other with 
the MC model performing slightly better in terms 

of RMSE and the ANN and ANFIS models 
performing slightly better in terms of CE. 

The performance of all four models for the 1994 
flood event is found to be very good, considering 
reproduction of both the phase and amplitude 
portraits of the flood wave. In this case, the 
statistical performance of the MC, ANN and 
ANFIS models is similar. 

The overall results of the model show that the 
approximate MC and ANN and ANFIS models 
performed better compared to the HN model. 
Between the data driven models, the statistical 
performance of the ANN is found to be slightly 
better in comparison to the ANFIS model. It is to 
be noted that the performance of the HN model 
may be affected by a number of factors, such as 
inadequate description of the floodplain - river 
channel interaction, which need not be considered 
in the MC, ANN and ANFIS models. 

Table 1. Statistical performance of the model 
results for 1993 datasets  
 

Flood 
event 

Model  
 

CE 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

1990 HN 0.9416 0.38 -0.32 0.46 
 MC 0.9810 0.15 -0.30 0.48 
 ANN 0.9791 0.22 -0.62 0.74 
 ANFIS 0.9755 0.24 -0.68 0.77 
1993 HN 0.9747 0.21  0.08 0.22 
 MC 0.9857 0.08  0.14 0.22 
 ANN 0.9909 0.10  0.04 0.43 
 ANFIS 0.9902 0.10 -0.04 0.50 
1994 HN 0.9696 0.17  0.14 0.41 
 MC 0.9885 0.09  0.09 0.26 
 ANN 0.9871 0.07 -0.11 0.40 
 ANFIS 0.9814 0.08 -0.02 0.52 
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Figure 6. Observed, HN, MC, ANN and ANFIS 

results and errors for 1990 flood event 

 

Data 
Driven 
Model 
(ANN/ 

ANFIS) 

Q(t-24) 
(Maxau, Rhine) 

Q(t-8) 
(Heidelberg, Neckar) 

y(t)
(Worms, Rhine) 

1898



150 200 250 300 350 400 450
87

88

89

90

91

92

Time (hrs)

W
at

er
 le

ve
l (

m
)

Observed
HN
MC
ANN
ANFIS

 

Figure 7. Observed, HN, MC, ANN and ANFIS 
results and errors for 1993 flood event 
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Figure 8. Observed, HN, MC, ANN and ANFIS 
results and errors for 1994 flood event 

7. CONCLUSIONS 

This paper has provided an objective comparison 
of the hydrodynamic, hydrologic and data driven 
models for river flood prediction. The results of 
this study indicate that carefully set up HN, MC, 
and data driven models are all capable of 
producing good results. Generally, the MC, ANN 
and ANFIS models performed better compared to 
the HN model. However, it is also important to 
consider that each of these models is based on 
entirely different philosophies, with different 
strengths and limitations. Important considerations 
in this context include data requirements and 
forecasting capabilities.  

In the context of data requirements, the HN model 
requires detailed topographical data in the river 
channel and floodplains. In contrast, the 
hydrological routing and data driven models 
require little or no topographical data. However, 
the HN model is capable of making predictions at 

every cross section, while the hydrological routing 
and data driven models are only capable of making 
predictions at the model output boundaries. On the 
other hand, the hydrological routing and data 
driven models can extend the forecast horizon 
based on the travel time of the flood wave from 
upstream to downstream. This gives the 
possibilities of making short term flood forecasts, 
only based on upstream flows. 

The strengths and limitations of these models can 
be a basis for complementary modelling. As an 
example, hydrological routing and data driven 
models can be used to predict flows at the gauging 
stations. The HN model can be applied at the 
critical locations where water surface profiles and 
inundation extents are of specific interest. It may 
also be more reliable to use more that one model 
for flood forecasting purposes, so that the results 
can be cross validated and different scenarios 
tested. It is hence argued that these models should 
be viewed as complementary rather than 
competitive. 
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