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EXTENDED ABSTRACT 
 
The main driver for the large research effort 
devoted to developing and improving seasonal 
climate prediction models is the fact that El Nino 
Southern Oscillation (ENSO) events (quasi-
periodic fluctuations in Indo-Pacific Ocean sea 
surface temperatures and mean sea level pressure) 
represent, on a global scale, the greatest source of 
interannual climate variability and are, to some 
extent, predictable. Australia is considerably 
impacted by these fluctuations and although is 
served by several operational prediction schemes, 
the associated degree of skill is, at best, only 
moderate.  
 
There now exist quite a number of dynamically-
based seasonal prediction models which are 
global in extent and there is considerable interest 
in developing methods for maximizing and 
quantifying their skill and utility to potential end-
users. It is also possible to assess their 
performance by accessing hindcast (retrospective 
prediction) data. One of these models was 
developed by CSIRO and is based on the CSIRO 
Mk3 global coupled climate model.  Results from 
seven other models which comprise the 
DEMETER ("Development of a European 
Multimodel Ensemble system for seasonal to 
inTERannual prediction") project were also 
assessed. 
 
This paper focuses on an assessment of the skill 
of the models at predicting rainfall for a 
catchment region of south-east Australia. In each 
case, rainfall hindcasts are compared with 
observed rainfall totals and also compared with 
observed inflows into one of the major reservoirs, 
the Burrinjuck dam. 

 
 
The major findings are: 
• It is not possible to distinguish between the 

performance of the different models due to 
different sample sizes and periods for which 
hindcasts are available.  

• Overall, the models exhibit an ability to 
capture, to some extent, variations in seasonal 
rainfall associated with ENSO events and this 
is evident in the fact that they exhibit skill in 
the extreme categories but not in the average 
category.  

• The average success rate, while greater than 
that expected by chance or the strategy which 
assumes climatology, is not high and is 
expressed in the slight shifts in the 
probabilities for below average and above 
average tercile categories. As a rough guide, 
the model-based predictions provide an 
advantage over climatology 1 year in every 
10.   

• Taking into account the fact that rainfall and 
inflow predictions can be somewhat 
redundant when dealing with water storages, 
this may overestimate the potential utility to 
end –users.  

• Finally, it has to be recognised that the 
economic value of predictions, no matter how 
skilful, can be diminished according to the 
costs/benefits associated with decisions made 
by the end-user. Assessing value is a more 
task which needs to be done on a case-by-
case basis. 
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1. Introduction 
 

The basis of most current seasonal forecast 
schemes is the fact that El Nino Southern 
Oscillation (ENSO) events represent the largest 
source of interannual climate variability beyond 
the seasonal cycle. ENSO events can be predicted 
to some extent since they evolve over the course 
of several months and there are a number of 
indices which can be used to predict the likelihood 
of occurrence. This method of seasonal prediction 
is described as statistical (as opposed to 
dynamical) and tends to only provide information 
about key ENSO indices such as sea surface 
temperatures or the Southern Oscillation Index 
(SOI). In general, dynamical based prediction 
schemes take an initial state of the atmosphere and 
ocean, and predict the evolution of both well into 
the future. This is analogous to weather prediction 
except that the aim is to predict seasonal averages 
of quantities such as rainfall and temperature 
rather than specific events. The genesis of ENSO 
events appears to lie in a complex interaction 
between Pacific surface wind stresses, sub-surface 
heat content and sea surface temperatures during 
the early part of the year. One potential advantage 
of dynamical schemes over statistical schemes lies 
in the fact that they can be initialized with this 
type of information and should, in theory, be more 
capable of correctly predicting the evolution of 
ENSO events.  

Another advantage of dynamical prediction 
schemes is that they tend to be global and predict 
a range of climate variables such as temperature 
and rainfall. Reliable long-term rainfall 
predictions would, obviously, be of enormous 
benefit to a wide range of industries – particularly 
in Australia where the year to year variability of 
rainfall is relatively high compared to other 
continents. However, predictive skill varies 
considerably with the variable being predicted, 
the geographic location, the time of year and lead 
time. While researchers who develop prediction 

models mainly focus on maximizing their level of 
skill, possibly more important is the need to 
convey any predictive information in a manner 
that provides end-users with the best opportunity 
to benefit from any skill (Hartmann et al, 2002, 
various authors, 2005) A high level of skill does 
not automatically translate into economic value. 
In fact, the overall value of seasonal predictions to 
the community can be difficult to assess because 
of the multitude of factors which affect decisions 
made by climate affected industries (grazing, 
cropping, water resource management etc.). 
 
Here we assess the skill of a suite of dynamical 
seasonal prediction models, with regard to how 
well they can predict rainfall fluctuations over a 
region of Australia. Specifically, we assess the 
potential for better predicting inflows into a dam 
within the Murrumbidgee water catchment region 
since these affect total storage at the end of 
winter/spring which, in turn, is a large 
determinant of water releases made over the dry 
summer season. Rainfall in this region is known 
to be affected by ENSO events (c.f. Smith, 2004) 
which, if predictable, could potentially provide 
much earlier, and therefore more useful, estimates 
of likely water allocations to downstream 
irrigators.  
 
2. Burrinjuck dam – rainfall and inflows 
 
The Burrinjuck dam was the first major dam built 
for irrigation in New South Wales and is situated 
in the upper catchment of the Murrumbidgee 
River (see Figure 1).  It was one of the first dams 
in NSW to have environmental flow releases 
based on inflows. The holding capacity is 1,026 
gigalitres, (almost half the volume of water in 
Sydney Harbour), the surface area is 5,500 
hectares (more than 8,000 football fields), and its 
catchment area is 13,953 square kilometres (larger 
than the catchment area of the whole of the 
Snowy Mountains).  

 
Figure 1. Map of the Murrumbidgee catchment region with the location of the Burrinjuck reservoir 
indicated.  
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Figure 2 indicates how total storage in the 
Burrinjuck Dam has varied over two recent years. 
In general, storages are replenished during the 
winter/spring period and diminish over the 
summer part of the year when water is released 
for both downstream irrigation purposes and 
environmental flows. In 2001 there was much 
more water available for release than in 
subsequent years which were persistently dry. 
Irrigators, who depend on releases over the 
summer are provided with estimates of likely 
releases and hence water allocations well before 
summer. While this allows time for appropriate 
management decisions to be made, it would be 
more advantageous to extend this lead time by 
actually predicting likely winter/spring inflows. 
Therefore, although the water resource 
management strategy is fixed, predictive 
information about inflows combined with 
information about current storage levels could 
improve forward estimates of summer releases 
which affect the irrigators.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Burrinjuck Dam total storage as a 
percentage of capacity for two recent 12-month 
periods, August 2001 to August 2002 and August 
2004 to August 2005. 
 
 
Figures 3 provides an indication of the 
relationship between observed total rainfall over 
the catchment region for the 6-month period May 
to October and observed total inflows over the 
same period, for each year 1967 to 2003.  As 
expected, inflows are related, to some extent, to 
rainfall with the correlation between both time 
series being +0.70. Another way of expressing 
this relationship is to note how often inflows are 
above average (i.e. fall within the top tercile of all 
value) when rainfall does the same, and how often 
they are below average (bottom tercile) when 
rainfall does the same. If we describe these tercile 
categories as “extremes”, then there were 15 
extreme rainfall years (out of a total of 24) which 
coincided with extreme inflows. This represent a 
success rate of 63% compared to the expected 
success rate of only 33% due to chance (or 
random guesswork). It should be noted that this 
represents a relatively crude comparison since; (a) 
it assumes that: the gridded, observed rainfall data 

set used to calculate total rainfall is representative 
of what actually fell within the catchment region; 
(b) neither total inflows nor total rainfall are 
normally distributed quantities (for example, the 
total inflow in 1974 is about 4 standard deviations 
above the mean); (c) inflows are not simply 
dependent on in-season total rainfall, but can also 
depend on pre-season soil moisture content and 
therefore pre-season rainfall. Despite these issues, 
it is apparent that a skillful prediction of total 
rainfall can provide information about expected 
total inflows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The relationship between inflows to 
Burrinjuck Dam and catchment area average May 
to October rainfall 1967 to 2001. The values 
shown are  normalized anomalies.  
 
Figure 4 shows the same comparison, except for 
the late season period August to October. In this 
case the correlation between the two time series is 
higher (+0.77) and the number of matched 
extreme events is 16 (or 67%). Despite the sample 
comprising only 37 years, these numbers also 
suggest that there may be useful information 
contained with skilful predictions of late season 
rainfall. In both cases, the occurrence of average 
(middle tercile) total rainfall does not appear to be 
useful since average inflows only occur on about 
33% of these occasions (i.e. the same fraction that 
could be expected by chance). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. As for Figure 2 except for August to 
October. 
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3. Models 
 
Here we asses the performance of rainfall 
hindcasts (i.e. retrospective predictions) from a 
suite of 8 dynamical models. The models are 
fundamentally similar insofar as they are global 
atmospheric and ocean models, they differ in 
terms of their horizontal and vertical resolution, 
parameterizations and methods of initialization 
for prediction purposes.  
 
One of these models was developed by CSIRO 
and is referred to by the acronym COCA2 and is 
based on the CSIRO Mk3 global coupled climate 
model.  The Mk3 model is an evolution of the 
CSIRO Mk 2 coupled model which has been used 
in a numerous coupled model studies (see for 
example Hirst et al., 2000).  The model is global 
and simulates both the evolution of SSTs and 
associated climate variables including rainfall, 
mean sea level pressure (MSLP), winds etc. For 
each year, the COCA2 model was initialized at 
four specific dates (January 1, April 1, July 1 and 
October 1) and each time run forward for 12 
months. This resulted in 24 separate 12-month 
sets of results for January to December, April to 
March, July to June and October to September – 
in all, a total of 96. Ideally an ensemble of results 
would be generated for analysis but this has not 
been possible since the resolution of the model 
(331,776 atmospheric grid points and 1,142,784 
oceanic grid points) and the time step employed 
(15 minutes) places a serious demand on 
computing resources.  
 
DEMETER is the acronym of the EU-funded 
project entitled "Development of a European 
Multimodel Ensemble system for seasonal to 
inTERannual prediction". (DEMETER was the 
goddess of fertility in ancient Greece and in 
classical Rome became Ceres). The objective of 
the project is to develop a well-validated 
European coupled multi-model ensemble forecast 
system for reliable seasonal to interannual 
prediction. This obviously involves models 
capable of simulating ENSO events. A 
fundamental aspect is to establish the practical 
utility of such a system, particularly to the 
agriculture and health sectors (see 
http://www.ecmwf.int/research/demeter/ ). 
 
The DEMETER set of results refers to hindcasts 
from 7 different European coupled models made 
for different periods up to the end of year 2001.  
 

 
The longest sets of results are associated with 
models which begin in 1958 and the shortest set is 
with the CERFACS model which begins in 1980. 
For each year, the DEMETER hindcasts were 
initialized on four specific dates (February1, May 
1, August 1 and November 1) and each time run 
forward for 6 months. Unlike the COCA2 results, 
the DEMETER results comprise an ensemble of 9 
members for each hindcast. For further details see 
Palmer et al. (2004). 
 
 
4. Assessment of rainfall hindcasts 
 
Given that observed rainfall and observed inflows 
are related, we firstly compare predicted and 
observed rainfall at model grid points which 
approximately cover the catchment region of the 
Burrinjuck dam. Again, the two periods analysed 
are May to October and August to October. Note 
that the number of years available for comparison 
vary from model to model. Secondly, we also 
compare predicted rainfall with observed inflows. 
In this case inflow data is only available from 
1967 onwards and so the number of years 
available for comparison is less than that for 
rainfall. 
 
The results are tabulated in Table 1 which lists 
each model, the hindcast years used in the 
analysis, and then the percentage of successes in 
each of three tercile categories (BA=below 
average, A=average, AA=above average). The 
columns refer to the different periods and the two 
rows of results for each model represent the 
comparisons with observed rainfall and observed 
inflows. Note that in each case the hindcasts and 
observations are ranked over the period for which 
hindcasts are available.  This means that there are 
equal (or near to equal) numbers in each of the 
three categories. Therefore, the “no-skill” 
percentage value is 33% and values close to this 
indicate little or no skill. Values in excess of this 
value indicate potential skill, but may not be 
significant due to the relatively small sample size 
involved. For example, the COCA2 sample size is 
only 24 for rainfall corresponding to 8 years in 
each of the three categories. The success rates in 
each category can therefore be regarded as 
uncertain by about 13 % (i.e. 1 out of 8) and so 
cannot be regarded as certain as the METEO 
model values (total sample size = 44, uncertainty 
in each category ~7%).  
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Table 1. The skill of the different models as measured by the percentage matching of hindcast rainfall 
categories with observed rainfall categories and observed inflow categories. The two hindcast periods are 
May to October and August to October. Values less than 40% in smaller font, values greater or equal to 50% 
are bolded.  
 

May to October: 
Rainfall 
Inflows 

August to October: 
Rainfall 
Inflows 

 

Below 
Average 

Average Above 
Average 

Below 
Average 

Average Above 
Average 

UKMO          
1959-2001 51 38 42 46 41 45 
1967-2001 47 34 25 53 34 44 
       
MPI              
1969-2001 45 29 38 45 30 43 
1969-2001 40 29 36 47 34 42 
       
METEO       
1958-2001 45 32 41 41 30 47 
1967-2001 46 33 47 53 35 46 
       
LODYC        
1974-2001 49 39 35 38 41 37 
1974-2001 44 36 40 47 41 36 
       
CERFACS        
1958-2001 47 39 37 40 49 49 
1967-2001 48 38 43 40 38 35 
       
INGV        
1973-2001 53 36 44 49 37 53 
1973-2001 53 33 44 50 27 34 
       
ECMWF        
1958-2001 49 33 44 37 30 43 
1967-2001 40 34 45 47 31 48 
       
COCA2        
1980-2003 51 38 42 63 38 38 
1980-2001 38 25 50 

 

63 38 50 
 

The acronyms for the models refer to the DEMETER modelling partners: CERFACS (European Centre for 
Research and Advanced Training in Scientific Computation, France), ECMWF (European Centre for 
Medium-Range Weather Forecasts, International Organization), INGV (Istituto Nazionale de Geofisica e 
Vulcanologia, Italy), LODYC (Laboratoire d’Océanographie Dynamique et de Climatologie, France), 
METEO (Centre National de Recherches Météorologiques, Météo-France, France), UKMO (The Met Office, 
UK) and MPI (Max-Planck Institut für Meteorologie, Germany). COCA2 refers to the CSIRO model. 
 
 
The fact that different sample sizes and different 
time periods are involved makes it very difficult 
to discriminate between the performances of the 
different models. However, it is clear that there 
exists a consistent pattern across all the model 
results corresponding to the presence of potential 
skill in the extreme categories but none in the 
average category (when the success rate is not  
 

 
 
very different to the 33% expected by chance). 
This is understandable if the models are capable  
of predicting the extreme phases of ENSO (i.e. El 
Nino and La Nina events) when the effect on 
rainfall is strongest, compared to other times 
when the signal is weak and rainfall tends to be 
controlled by other factors. 
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If there exists some potential skill at predicting 
the 6-month seasonal rainfall, it could be expected 
that there should be greater skill at predicting the 
3-month seasonal rainfall – simply because the 
lead time is less and it could be expected that skill 
would be higher during the later part of the year 
compared to autumn. However, the results do not 
indicate any such improvement. Furthermore, 
given the existence of potential skill at predicting 
catchment rainfall, it could be expected that some 
of this might be apparent, albeit degraded, in 
predictions of inflows using Figures 2 and 3 as a 
guide. It can be seen that while the skill often 
deteriorates, in some cases it improves. There is  
no obvious reason why this should be the case 
other than the effect of uncertainty due to the 
different sample sizes. 
 
Given the degree of consistency in the results 
shown in Table 1, an approximate measure of 
overall performance of the models can be 
obtained by simply averaging the values, as 
shown in Table 2. In summary: 
• potential skill is apparent in predicting 

rainfall extremes, possibly with more skill 
associated with below average conditions 
than above average conditions. This may 
suggest the models are better at predicting El 
Nino events (which are associated with below 
average Australian rainfall) compared to La 
Nina events, but has not been investigated 
here 

• there is no evidence of skill at predicting 
average rainfall conditions 

• the skill at predicting 3-month late-season 
rainfall is not greater than the skill at 
predicting the 6-month rainfall earlier in the 
year  

• skill at predicting catchment rainfall 
translates into potential skill at predicting 
inflows, although the values are not large 

 

Table 2. Arithmetic average of the results of 
Table 1. Values less than 40% in smaller font, 
values greater or equal to 50% are bolded. 
 Below Average Above  
 Average  Average 
May to 
October 
rainfall        

49 36 40    

May to 
October 
inflows        

45 33 41  

August to 
October 
rainfall    

45 37 45    

August to 
October 
inflows    

50 35 42 

 
 

To put these overall results into perspective, 
consider that over 100 years there will be close to 
67 extreme (wet or dry) years. Chance, or 
guesswork would successfully predict only 22 of 
these (with 44 failures) yet the model-based 
predictions appear capable of successfully 
predicting about 30 (with 36 failures). 
Alternatively, if average inflows were assumed 
each and every year (“climatology”), these would 
be correct about 33 times (with 67 failures) 
compared to the model-based predictions which, 
taking all years into account, would be successful 
about 43 times. i.e. the model-based predictions 
would be successful 4 years out of 10 compared 
to climatology, which would only be successful 3 
years out of 10. 
 
While only moderate, this apparent skill may, in 
fact, be far less useful for a number of reasons. 
Firstly, inflows only determine the total storage of 
any dam while it is less than 100% full. If this is 
achieved early in the year, then it is likely to 
remain at 100% independent of the winter/spring 
season inflows. Thus, for those occasions when 
the dam is close to capacity, seasonal predictions 
of rainfall/inflows are of negligible value. The 
reverse situation is also relevant here. When 
storages are extremely low at the start of the 
season, then a prediction of average inflows may 
have very little value if these are insufficient to 
boost total storages. In other words, depending on 
the rate of recharge, a near-empty dam may never 
reach total capacity in one season. In this 
situation, predictions of inflows can be of limited 
value since the end-of-season  total storage may 
already be limited. 
 
For those occasions when a seasonal prediction 
can be valuable, it is important to know the costs 
and benefits associated with a correct prediction 
compared to an incorrect prediction. The 
conservative strategy of assuming average 
inflows/rainfall, will be correct 33% of the time 
and, when incorrect, will only be incorrect by one 
category (e.g. predicted average and below 
average occurred). Any other scheme which 
attempts to predict extreme values can suffer from 
two-category errors (e.g. predicted above average 
and below average occurred). If management 
decisions are based on these predictions then, 
over time, the gains/profits made when the 
predictions are correct could be swamped by the 
losses incurred on the relatively few occasions 
they suffer from two-category errors. It is quite 
possible that a predictive scheme can be 
objectively quantified as more skilful according to 
a number of measures, but may actually be less 
valuable than a simple strategy based on 
climatology. Quantifying this is difficult since it 
depends very much on how the end user reacts to 
predictive information and the associated costs 
and benefits. 
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Finally, it also needs to be recognised that 
streamflow or reservoir inflow predictions can be 
better obtained via a calibrated hydrological 
model and downscaled rainfall predictions. The 
method described here is relatively simple but 
sufficient, it is believed, to broadly quantify 
potential skill.  
 
 
5. Summary and Conclusions 
 
A suite of state-of-the-art seasonal dynamical 
models have been assessed with respect to how 
well they can predict rainfall (and inflows) for a 
catchment region within south-east Australia. The 
major findings are: 
• It is not possible to distinguish between the 

performance of the different models due to 
different sample sizes and periods for which 
hindcasts are available.  

• Overall, the models exhibit an ability to 
capture, to some extent, variations in seasonal 
rainfall associated with ENSO events and this 
is evident in the fact that they exhibit skill in 
the extreme categories but not in the average 
category.  

• The average success rate, while greater than 
that expected by chance or the strategy which 
assumes climatology, is not high and is 
expressed in the slight shifts in the 
probabilities for below average and above 
average tercile categories. As a rough guide, 
the model-based predictions provide an 
advantage over climatology 1 year in every 
10.   

• Taking into account the fact that rainfall and 
inflow predictions can be somewhat 
redundant when dealing with water storages, 
this may overestimate the potential utility to 
end –users.  

• Finally, it has to be recognised that the 
economic value of predictions, no matter how 
skilful, can be diminished according to the 
costs/benefits associated with decisions made 
by the end-user. Assessing value is a more 
task which needs to be done on a case-by-
case basis. 
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