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EXTENDED ABSTRACT 

The property of saddle-path instability often arises 
in economic models derived from optimising 
behaviour by individual agents.  In the case when 
underlying functional forms are nonlinear, it is 
likely that the stable and unstable arms defining 
the saddle-path dynamics will also have nonlinear 
properties.  While closed-form analytic solutions 
can always be derived for linearised deterministic 
versions of these models, it will be necessary to 
use numerical techniques to derive the dynamic 
properties of calibrated versions of the associated 
nonlinear models.  

There are a range of different approaches by which 
it is possible to solve the dynamics of nonlinear 
models with the saddle-path property.  In this 
paper we examine the extent to which the success 
of alternative approaches can be evaluated.  For 
some models the only information known with 
certainty about the model are values taken by 
steady-state solutions.  In some special cases it is 
possible to derive a closed-form analytic solution 
of the entire path.  Any method of evaluation will 
be dependent upon the amount of information that 
is known about a particular model solution. 

We start by considering the Ramsey (1928) model 
of a representative consumer.  This is a simple 
two-dimensional dynamic model with the saddle-
path property.  We are able to demonstrate that the 
general form of the solution involves nonlinear 
equations which will lead to nonlinear dynamics 
and can only be solved using nonlinear solution 
techniques.  We are also able to show how the 
model can be linearised and a full closed-form 
solution of the linearised model can be derived 
using matrix techniques. 
 
Next, alternative solution methods using numerical 
techniques are discussed.  In all cases, the success 
of the solution can be assessed by evaluating 
whether or not the chosen solution gives a time-
path for each variable that goes from the chosen 

initial condition to (a small neighbourhood of) the 
steady-state.  Unfortunately, however, there is 
generally no way of evaluating whether 
intermediate points on the path between  the initial 
condition and the steady-state are close 
approximations to the “true” solution.  In order to 
evaluate the “goodness-of-fit” along the entire 
dynamic path, it is necessary to have a closed-form 
solution of the entire solution path.   
 
This can only be achieved in special cases.  One 
such special case occurs when the underlying 
model is linear (and so a solution can be derived 
using standard matrix techniques) but has 
complex-valued eigenvalues so that the true 
solution exhibits oscillatory behaviour.  Two linear 
models with complex-valued eigenvalues   are 
considered. 
 
In our first example, we extend the Ramsey model 
(discussed earlier) to incorporate habit persistence 
in consumption.  It is argued that, while such a 
model does have the desired complex-valued 
eigenvalues, the empirical solution path of the 
linearised model does not exhibit exceptionally 
nonlinear behaviour.  Thus the linearised version 
of the model is not particularly suitable for 
examining the ability of solution algorithms to 
solve models with highly nonlinear saddle-paths. 
 
In our second example, we consider a perfect 
foresight version of the Cagan (1956) Model 
augmented by the introduction of sluggish 
adjustment for wages and labour.  Using this 
model, it is possible to define an indexing 
parameter that, when varied, determines a range of 
values for the stable eigenvalues including 
generating complex-valued eigenvalues with large 
imaginary parts and hence significant cycles. 
 
The model can then be employed as a benchmark 
to compare the properties of solutions derived 
using a range of solution algorithms.  This will 
allow assessment of the factors that ensure the 
success or failure of different solution approaches.   
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1. INTRODUCTION 

The property of saddle-path instability often arises 
in economic models derived from optimising 
behaviour by individual agents (see, for example, 
Turnovsky, 2000).  In a standard approach 
formalized by Blanchard and Kahn (1980), 
solutions to an unanticipated shock are constructed 
by requiring “jumps” in endogenous variables  so 
that the economy evolves along the stable arm of 
the saddle (or along the stable manifold in higher-
dimensional models).  This paper provides further 
insights into related issues previously discussed by 
Herbert, Stemp and Griffiths (2005)  

In the case when underlying functional forms are 
nonlinear, it is likely that the stable and unstable 
arms defining the saddle-path dynamics will also 
have nonlinear properties.  While closed-form 
analytic solutions can always be derived for 
linearised deterministic versions of these models, it 
will be necessary to use numerical techniques to 
derive the dynamic properties of calibrated 
versions of the associated nonlinear models.  

There are a range of different approaches by which 
it is possible to solve the dynamics of nonlinear 
models with the saddle-path property.  Forward-
shooting and reverse-shooting are two of the most 
common approaches.  In this paper we examine the 
extent to which the success of alternative 
approaches can be evaluated.   

For some models the only information known with 
certainty about the model are values taken by 
steady-state solutions.  In some special cases it is 
possible to derive a closed-form analytic solution 
of the entire path.  Any method of evaluation will 
be dependent upon the amount of information that 
is known about a particular model solution. 

In the rest of this paper we consider various 
models with the saddle-path property.  We 
demonstrate how success of alternative solution 
methods can be evaluated.  We start in Section 2 
with a basic optimising model of the consumer.  In 
Section 3 we discuss the information available for 
evaluating alternative solution approaches in this 
basic model and also in higher dimensional models 
with the saddle-path property. 

Evaluating different solution approaches would be 
much easier if we had a closed form analytic 
solution to a model with nonlinear properties.  In 
Sections 4 and 5, we consider linear models with 
complex-valued eigenvalues.  These have the 
potential to have nonlinear-type oscillatory 
dynamics but, because the model is actually linear, 
they also have the desired property of a closed –

form analytic solution.  We suggest that these 
models could be used to evaluate the success of 
alternative solution approaches in solving truly 
nonlinear models.   
 

2.   OPTIMISING MODEL OF CONSUMER 

We start by considering the Ramsey (1928) model 
of a representative consumer whose objective is to 
choose c  so as to maximize 

( )
0

tV e u cδ∞ −= ∫ dt    (1) 

subject to 

( ) ( )k f k n k cρ= − + −    (2) 

( ) 00k k=     (3) 

( ) ( )0, 0, 0 , 0 0, 0, 0u u u f f f′ ′′ ′ ′ ′′> < = ∞ = > <  

This model can be solved in a variety of ways 
including by using the Pontryagin Maximum 
Principle.  We can derive for  the  Pontryagin paths 
by first setting up a Hamiltonian: 

( ) ( ) ( )tH e u c f k n k cδ ψ ρ−= + − + −⎡ ⎤⎣ ⎦  (4) 

thus, yielding, 

( ) 0tH e u c
c

δ ψ−∂ ′= − =
∂

   (5) 

( ) ( )H f k n
k

ψ ψ ρ∂ ′= − = − − +⎡ ⎤⎣ ⎦∂
  (6) 

( ) ( )k f k n k cρ= − + −    (7) 

Totally differentiate (5) and use it in conjunction 

with (6) to yield 

( ) ( )t te u c e u c cδ δδ ψ− −′ ′′− + =   (8) 

( ) ( )
( ) ( ) ( )   t

f k n

e u c f k nδ

ψ ψ ρ

ρ−

′= − − +⎡ ⎤⎣ ⎦
′ ′= − − +⎡ ⎤⎣ ⎦

  (9) 

Hence 

( )
( ) ( ) ( )

u c
c f k n

u c
ρ δ

′
′= − − + +⎡ ⎤⎣ ⎦′′

  (11) 

Hence dynamic system comes down to form  

( ) ( )k f k n k cρ= − + −    (12) 
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( )
( ) ( ) ( )

u c
c f k n

u c
ρ δ

′
′= − − + +⎡ ⎤⎣ ⎦′′

  (13) 

For typical functional forms of  and , (12) 
and (13) are nonlinear equations which will lead to 
nonlinear dynamics and can only be solved using 
nonlinear solution techniques. 

(.)u (.)f

Dynamics with linear properties can be derived by 
linearising the model around steady state yielding 
(14). 

( ) ( )
( )
( ) ( )

*

*

1

0

f k n
k kk

u c
c cc f k

u c

ρ∗

∗

∗∗

⎛ ⎞′ − + −
⎜ ⎟⎛ ⎞ ⎛ ⎞−⎜= ′⎜ ⎟ ⎜

−⎜ ⎟′′− ⎝ ⎠⎝ ⎠ ⎜ ⎟′′⎝ ⎠

⎟ ⎟ . (14) 

The determinant of the system is given by 

( )
( ) ( )

*

*
0

u c
f k

u c
∗

′
′′−

′′
< .   (15) 

Hence, the eigenvalues are real-valued and have 
opposite signs so that we have a saddle-path 
solution.  For the linearised model we can then 
derive a closed-form analytic solutiuon given by: 

1

2

1

1 2 2

1 1 t

t

A ek k
A ec c

µ

µµ δ µ δ

∗

∗

− − ⎛ ⎞⎛ ⎞− ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −− ⎝ ⎠⎝ ⎠ ⎝ ⎠

. (16) 

One of the eigenvalues is unstable. Without loss of 
generality, assume 2 0µ > , 1 0µ < . Then, the 
solutions along the stable arm of the saddlepath are 
given by:  
 

1
1

tk k A eµ∗− = −     (17) 

( ) 2
1 1

tc c A eµµ δ∗− = − .   (18) 

Hence the stable path is positively sloped since 

 1

1 0
STABLE ARM

dk
dc µ δ

⎛ ⎞ = − >⎜ ⎟ −⎝ ⎠
.  (19) 

We can then plot the dynamics of c and k in the 
phase diagram given by Figure 1.  With an 
inherited capital stock of  consumption will 
start on the stable arm as indicated and move along 
the stable arm until c and k reach their steady-state 
values. 

(0)k

 
3. SOLVING SADDLE-PATH MODELS 
USING SHOOTING METHODS 

This solution defines an infinite number of paths – 
these are called the Pontryagin paths.  In the 
typical economic problem (such as the model of a 

representative firm or of a representative 
consumer), with one state and one co-state 
variable, each of these paths is saddle-path 
unstable so that the phase diagram of the 
Pontryagin paths is as shown in Figure 2. 

 

 

 

 

 

 

 

 

 
k

c

(0)k ( )k ∞

Figure 1 
Phase Diagram of Optimal Consumption 

 
 1x  

 

 

 

 

 

 

 
 

2x  

Figure 2 
Phase Diagram of Generic Saddle-Path 

 
There is a range of approaches to solving non-
linear models with saddlepath properties (see, for 
example, Judd, 1998).  Two of the most well-
known approaches are reverse-shooting and 
forward-shooting.  Other approaches are generally 
a variant on these two.  Since all approaches to 
solving nonlinear models are numerical 
approaches, in all approaches it is necessary to 
parametrise the model before using computational 
techniques to derive solutions for the stable 
path(s). 
 
In the case of the standard two-dimensional model, 
reverse-shooting involves just one search in 
reverse time starting from the neighbourhood of 
the steady-state.  The model dynamics throw the 
dynamic solution onto the stable arm of the saddle-
path.  See Figure 3. 
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Figure 3 
Reverse-Shooting in Two-Dimensional Model 

For the same model, forward-shooting requires 
searching over a grid (see Figure 4). 

 
 

 

 

 

 

 

 

 

 

 
Figure 4 

Forward-Shooting in Two-Dimensional Model 

Reverse-shooting for higher dimensional models 
with more than two stable eigenvalues requires 
searching over a grid (the stable manifold) with the 
dimension of grid equal to the number of stable 
eigenvalues (see Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
Reverse-Shooting in Higher-Dimensional 

Models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
Forward-Shooting in Higher-Dimensional 

Models 

Forward-shooting for the same higher dimensional 
model requires searching over a larger grid (equal 
to the entire space) with the dimension of grid 
equal to the sum of stable and unstable eigenvalues 
(see Figure 6). 
 
In all cases, the success of the solution can be 
assessed by evaluating whether or not the chosen 
solution gives a time-path for each variable that 
goes from the chosen initial condition to (a small 
neighbourhood of) the steady-state.  Unfortunately, 
however, there is generally no way of evaluating 
whether intermediate points on the path between  
the initial condition and the steady-state are close 
approximations to the “true” solution. 
 
In order to evaluate the “goodness-of-fit” along the 
entire dynamic path, it is necessary to have a 
closed-form solution of the entire solution path.  
This can only be achieved in special cases.  One 
such special case occurs when the underlying 
model is linear (and so a solution can be derived 
using standard matrix techniques) but has 
complex-valued eigenvalues so that the true 
solution exhibits oscillatory behaviour.  Examples 
of two such cases are considered in Sections 4 and 
5 of this paper. 
 
4. MODEL OF CONSUMER WITH HABIT 
PERSISTENCE 
 
In our first example of a linear model with 
complex-valued eigenvalues, we extend the model 
of Section 2 to incorporate habit persistence in 
consumption as previously discussed by Stemp 
(2005). 
Then the objective of the representative consumer 
is to choose c so as to: 

21
2

0

Max exp( )[ ( ) ( ) ]
c

V t u c cδ η
∞

= − −∫ dt  (20) 

start here 

1x  

2x  

search  here 
1x  

2x  

2x  

1x  

search here

3x  

2x  

1x  search here

3x  
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subject to: 

( ) ( )k f k n k cρ= − + −    (21) 

where 
k = capital/labour ratio; 
c = consumption/labour ratio; 
δ = discount rate; 
ρ = rate of capital depreciation; and 
n = rate of population growth. 
and . ' 0, '' 0, ' 0 and '' 0u u f f> < > <
 
This is the Ramsey (1928) model of optimal 
saving with an additional term in the criterion 
function used to model habit persistence, given by: 

( )21
2" "cη− .  

The solution to these equations can be written as 
the following four-dimensional equation system, 
with endogenous variables given by: c, k, ψ  and 
x. 
c x=   (22) 

( ) ( )k f k n k cρ= − + −    (23) 

{ ''( )[ ( ) ( ) ]}x f k f k n k cψ δψ η ρ= + − + −  

  '( )[ '( ) ]u c f k nρ− − −  (24) 

1[ '( )] [ '( )]x x n f k u cρ δ ψ
η

= + + − + −  (25) 

Using an asterisk, ‘*’, to denote steady-state 
values, the system can be linearised about its 
steady-state yielding: 

*

*
* * *

*
*

*

0 0 0 1
1 0 0

''( ) '( ) ''( ) 0
''( ) 10 0

c c c
k k k

u c u c f k
u cx x x

δ
δ δ

ψ ψ ψ

η η

⎛ ⎞
⎛ ⎞−⎛ ⎞ ⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎜ ⎟⎜ ⎟ ⎜ ⎟= − − ⎜ ⎟⎜ ⎟ −⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠
     (26) 

As 0δ → , and for an appropriate choice of η , the 
eigenvalues of the system satisfy: 

* *
2

*

'( ) ''( ) (1 )
''( )

u c f k i
u c

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

±   (27) 

Then, the four eigenvalues of the system are 
complex-valued and given by: 

* *

1 2 *

'( ) ''( ), (
''( )

u c f k i
u c

λ λ
⎛ ⎞

= ± +⎜ ⎟
⎝ ⎠

1 )   

* *
4

*

'( ) ''( ) ( 2)exp
8''( )

u c f k i
u c

π⎛ ⎞ ⎛⎜ ⎟= ± ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

⎞
⎟  (28) 

 

1 2 1 21, 0, 0, 0A A B B= = = =  
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Figure 7 
Time-Plots of Consumption for Consumer with 

Habit Persistence 
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The general closed-form solution of the model is 
then given by: 

* *

3 4 *

'( ) ''( ), (
''( )

u c f k i
u c

λ λ
⎛ ⎞

= ± −⎜ ⎟
⎝ ⎠

1 )  

[ ]

*
1 2 1

*
1 2 2

3 4*
1 2 3

*
1 2 4

( ) exp(
( )exp( )

( ) ( ) ( ) ( )
( ) exp( )
( ) exp(

)

)

A iA tc c
A iA tk k
B iB t
B iB tx x

λ
λ

λ λ λ λ
λψ ψ
λ

+⎛ ⎞− ⎡
⎜ ⎟ ⎢ ⎥−−⎜ ⎟ ⎢ ⎥=⎜ ⎟ ⎢ ⎥+−
⎜ ⎟ ⎢ ⎥⎜ ⎟ −− ⎣ ⎦⎝ ⎠

1 2v v v v

⎤

 

* *
4

*

'( ) ''( ) 7( 2)exp
8''( )

u c f k i
u c

π⎛ ⎞ ⎛⎜ ⎟= ± ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

⎞
⎟  (29) 

For each pair of equations (28-29), one complex-
valued eigenvalue has positive real part and one 
has negative real part.  Thus there is total of two 
stable eigenvalues, given by 1( )iλ α β= − +  and 

2 ( i )λ α β= − −  and two unstable eigenvalues given 
by 3 ( )iλ γ ε= + and 4 ( )iλ γ ε= − .   

     (30) 

where there are two “jump” variables, ψ  and 
( )x c= , so that the constants: 1 2 1 2, ,  and A A B B  are  

determined by initial values for c and k, and by the 
No-Ponzi game condition. 

 We can use equation (30) to yield the following 
solutions for c: Restricting our analysis to the case when all 

eigenvalues are complex-valued, we will write the 
stable eigenvalues as 1( i )λ α β= − +  and 

2 ( i )λ α β= − −  and the unstable eigenvalues as 

3 ( i )λ γ ε= +  and 4 ( i )λ γ ε= − , where 
, ,α β γ and ε  are positive real-valued constants.    

*
1 2exp( )[2{ ( ) }cos( )c c t A A tα δ α β β− = − + +  

 1 22{ ( )}sin( )]A A tβ δ α β+ − +  

 1 2exp( )[2{ ( ) }cos( )t B B tγ δ γ ε ε+ − +  

 1 22{ ( )}sin( )]B B tε δ γ ε+ − −  (31)   
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Time-Plots of Wages for Ad-Hoc Model 
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Stemp (2005) uses a calibration exercise to show 
that the empirical solution path associated with 
(31) does not exhibit exceptionally nonlinear 
behaviour with sample plots as given in Figure 7.  
Thus the linearised version of the model 
considered in this paper is not particularly suitable 
for examining the ability of solution algorithms to 
solve models with highly nonlinear saddle-paths. 

In the next section we provide an alternative model 
that exhibits more useful properties. 
 
5. AD-HOC MODEL WITH COMPLEX-
VALUED EIGENVALUES 

Consider the following model: 

1 2m p y pα α− = −    (32) 

(1 ) ,0 1y nβ γ γ= + − < <    (33) 

(n n w )pθ δ γ= − − +    (34) 

(w n n)η= −     (35) 

where all variables are functions of time, lower-
case letters denote logarithms and 
y = output; 
n = employment; 
p = price level; 
m = nominal money stock, assumed to be constant;  
w = wage rate; 
and 
n = full employment expressed in logarithms. 

This is the perfect foresight version of the Cagan 
(1956) Model augmented by the introduction of 
sluggish adjustment for wages and labour. 

An investigation of the dynamic properties of this 
model shows that it is possible to generate 
complex-valued eigenvalues and associated 
oscillatory behaviour.  The periodicity of the 
cycles can be controlled by changing just one 
parameter, η . 
 
Figure 8 employs a calibrated version of the model 
given by (32)-(35) to show the time-plots of wages 
for four chosen values of η .  The largest cycles  
are associated with the largest value for η  leading 
to the largest imaginary parts of the complex-
valued eigenvalues. 
 
This model can then be employed as a benchmark 
to compare the properties of solutions derived 
using a range of solution algorithms as the 
magnitude of η  (and hence of the cycles) is 
allowed to vary.  This will allow assessment of the 
factors that ensure the success or failure of 
different solution approaches.   
 

6. CONCLUSION 

In this paper we have investigated the extent to 
which the success of solutions to models with 
nonlinear saddle-paths can be evaluated.  We have 
argued that in the general case only the steady-
state values of a range of variables is available and 
this contains very limited information about 
success of the algorithm along the entire path.  
However, it has been suggested that linear models 
with complex-valued eigenvalues may provide a 
benchmark for evaluating the success of solution 
algorithms when the model is highly nonlinear. 
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