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EXTENDED ABSTRACT 
 
Water shortage issues have been growing concerns 
in many cities around world in recent years, 
especially in eastern cities of Australia. This paper 
explores use of waste incineration energy 
complemented by alternative energy for seawater 
desalination for a drought stricken city in Eastern 
Australia. Our research is motivated by the recent 
successive severe drought conditions that hit many 
Australian cities, compounded with an additional 
strain from the fast growing population. While we 
dump our waste into the Australian landscape, in 
more densely populated cities including Vienna, 
Austria, and a large number of cities in Japan, the 
waste is incinerated to obtain thermal energy for 
various purposes including heating and electricity 
generation. The waste is used as a cheap fuel 
source while reducing the amount of space needed 
for landfill. The seawater desalination has been 
successfully practiced for quite sometime 
particularly in Middle Eastern counties. To deal 
with increasing water shortage crisis, more cities 
around the world have opted or are considering the 
seawater desalination to complement their water 
demand. At this time, to the best of our 
knowledge, the combination of both - waste 
incineration and seawater desalination - has not 
been studied or implemented. Motivated by this 
promising combination, we started investigating 
the potential of seawater desalination powered by 
waste incineration using the Gold Coast City, 
Australia as a case study. If we can incinerate the 
waste to power a desalination process, we reduce 
water shortage, and at the same time reducing an 
amount of landfill. The seawater desalination is an 
expensive production process, but it ensures 
continuation of fresh water supply in dry weather 
conditions.  
 
Our model follows a dynamic systems approach 
with control theory as basic discipline. This 
approach allows the observation of long-term 
behaviour of a system and its dynamics, with its 
effects more visible at a high level of resolution 
than with statistical modelling. The model is 

implemented with modular hierarchical structure 
in Matlab/Simulink. This allows gradual building 
of the complexity into the model. We have 
overcome a number of modelling difficulties 
including lack of accurate dam catchment data by 
incorporating other modelling techniques such as 
artificial neural networks. We then incorporated 
the mathematical model retrieved from the 
artificial neural networks into our model. The 
model presented in this paper is an extension and 
refinement of our earlier model with integrated 
specific sub-models derived from artificial neural 
networks.  
 
The focus of this work is on simulating the 
possible amount of energy and the desalinated 
water that can be generated by clean city waste 
incineration. We do this while simulating the 
increasing population, and their water demand. We 
then calculate the additional amount of alternative 
energy that would be required to complement the 
waste incineration energy for producing sufficient 
supply of desalinated water.  
 

 
Figure 1. Proportion of simulated water demand 

fulfilled by each supply 
 
In this paper we present the calibration of the 
model, followed by a long-term experimental 
simulation, while incorporating population growth, 
with its growing fresh water demand and waste 
generation. The result indicates that seawater 
desalination by incinerating the waste itself alone 
is able to supply over 40% of water demand 
continuously throughout 50 simulated years as 
shown in Figure 1. 
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Figure 2. Top level of the comprehensive model 

Acronyms 
 
ANN  Artificial Neural Networks 
EP Epoch 
GCCC Gold Coast City Council 
HLN Hidden Layer Neuron 
MSE Mean Square Error 
RO Reverse Osmosis 
TEG Training Error Goal (MSE) 
WC Water Consumption 
WS  Window Size 
 
1. INTRODUCTION 
 
This paper presents the modelling of seawater 
desalination powered by waste incineration with 
the purpose to complement fresh water supply in a 
drought-affected area. Our research is motivated 
by the increasing water shortage caused by 
successive severe drought conditions that hit many 
Australian cities compounded with an additional 
strain from the fast growing Gold Coast 
population. This is in addition to the successful use 
of waste incineration to generate energy in Europe 
and Asia as well as the seawater desalination in 
dry countries such as Saudi Arabia where the 
seawater desalination is used for 70% of drinking 
water supply (SAIR 2005). In Gold Coast, we 
currently dump 87% of our non-recyclable waste 
into landfills, despite the fact that almost 70% of 
the waste is combustible (GCCC 2005). If we can 
incinerate the waste for energy to desalinate the 
seawater, we reduce the water shortage, while at 
the same time reducing an amount of landfill. The 
use of waste as possible fuel source with additional 
alternative energy such as wind, aids to 
compensate some of the energy cost needed for 
seawater desalination operation. 
 
The Gold Coast city has somewhat recovered from 
the worst drought between 2001 and 2003 thanks 
to one substantial rainfall in 2005, but the drought 
problem has been spreading in a wider area around 
Australia. In the long term, the predicted water 
demand of 465 million litres a day with projected 

population growth of up to 1.2 million by the year 
2056, also causes an additional concern to city’s 
infrastructure (ABS 2005, GCCC 2005). So far the 
city’s solutions are transferring water from 
neighbouring Brisbane city through the pipeline 
and rise of the dam wall. However this pipeline 
option might not be risk free as the source of 
water, Wivenhoe dam, is also facing water 
shortage. Currently its dam level is less than 37% 
and the sizeable rainfall is not expected in the near 
future (SEQWater 2005, LCC 2005). 
 
Our model follows a dynamic systems approach 
with control theory as basic discipline. This is to 
observe long term behaviour of the system while 
maintaining a high level of resolution without 
being side tracked by minutes details incorporated 
implicitly into the model. Another benefit of this 
approach is that dynamics of effect are more 
visible than in statistical modelling. The model 
shown in Figure 2 is an advanced model that is a 
refined and expanded version of our earlier model 
(Udono and Sitte 2004). This refined model 
developed in Matlab/Simulink® (Mathworks 2005) 
was expanded with specific sub-models derived by 
using other modelling techniques such as Artificial 
Neural Network (ANN) to overcome several 
modelling difficulties that arose due to lack of 
accurate data of the city such as dam catchments 
(Udono and Sitte 2005). Our model is designed 
such that it can be adapted to other cities by simply 
changing the local parameters. 
 
2.  COMPREHENSIVE MODEL 
 
Our comprehensive model shown in Figure 2 can 
be divided into 3 major sections, water dynamics, 
energy dynamics, and population. Details of each 
section and its sub-modules are described below. 
 
2.1.  Water Dynamics Cycle 
 
In our model, the water dynamics cycle consists of 
two major modules, desalination and dam level 
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dynamics. The desalination module computes the 
amount of desalinated water that can be produced 
using available energy. The desalination method 
considered in our model is a Reverse Osmosis 
(RO) technique. RO is currently the most energy 
efficient desalination method and more 
desalination plants are built using this method. 
This requires energy, which in our case is the 
waste energy converted into electricity. The details 
of this are explained further below.  
 
The dam level dynamics module has two core 
components, dam level change and water demand. 
Both of these components are based on ANN 
architecture retrieved from ANN experiments. 
Two major difficulties of constructing the dam 
level dynamic model are (a) the absence of data 
and information including unknown extent of the 
catchment area and (b) the disappearance of 
distinct rainfall pattern due to irregularities of the 
rain cycles and the vast difference in amount of 
rainfall. The unavailability of information about 
the catchment made lumped conceptual or 
physically based distributed model difficult to 
apply. ANN are mathematical constructs, which 
“learn” from a set of data samples and then 
classify and store patterns into classes. ANN have 
been successfully used in modelling specific 
aspects in hydrologic cycles. A number of 
researchers have successfully used ANN for 
forecasting river flow (Shamseldin 1997, Zealand 
et al. 1999, Gautam et al. 2000, Rajurkar et al. 
2004, Lange. 1999). These researchers found an 
improvement in the predicting performance 
between 7% and 23 % with the ANN over other 
traditional rainfall-runoff models. The use of ANN 
was worthwhile move because the ANN can 
simulate without the amount and complexity of the 
data or any other effects occur in each hydrological 
cycle, but it is still able to simulate non-linearity of 
the dam level dynamics. 
 
Modelling dam level dynamics with ANN 
We collected the data including rainfall, ambient 
temperature and water consumption from the Gold 
Coast city water (GCCW 2005). We dealt with the 
time delay in the catchments water reaching the 
dam by using a window (set) of input data. We 
have used the data between the years 1999 and 
2002 for training, and the data of 2003 for testing 
that is to simulate daily changes of dam level in 
percentage. The difficulty in preparing the output 
(change of dam level) was that to capture true 
dynamics of the dam only. This is the actual 
change of dam level caused by the climatic 
condition only. This required placing back the 
amount of previously consumed water back to the 
dam. We used a single hidden layer feedforward 
network with hyperbolic tangent sigmoid transfer 

function (tansig) for the hidden layer and a linear 
transfer function (purelin) for the output layer. The 
networks weights and biased were trained with 
gradient descent with momentum and adaptive 
learning rate. For this we used the Matlab 
functions traingdx and learngdx. We experimented 
a range of input variable combinations using 
rainfall, temperature, water consumption, and day 
of the year with a variety of epoch (EP: Iteration), 
training MSE goal (TEG) and hidden layer neuron 
(HLN). The selection of the most suitable ANN 
architecture was made by comparing the simulated 
dam level. The simulated dam level is calculated 
by converting the simulated change of dam level 
into the dam level using actual water consumption. 
The chosen ANN architecture was the input 
variable combination of rainfall and temperature 
using WS of 24 (HLN:4, TEG:0.00001, EP:50).  
 

 
Figure 3. Comparison between simulated dam 

level changes and actual changes 
 
The comparison of simulated dam level change 
and actual dam level change is shown in Figure 3. 
This had a MSE of 0.000043 against the actual 
2003 dam level change. In Figure 3, a large error 
can result when dam level drops off suddenly just 
after a large raise of the dam level. This is because 
the training data contains irregularities such that at 
full dam level, and water leaving the dam through 
opened floodgates. We do not know which parts of 
the data are affected by this, neither can we 
quantity the amount of water that left the dam. As 
only limited datasets for non-El Niño years, the 
ANN has to be trained with this inconsistent 
pattern.  
 

 
Figure 4. Simulated dam level compared with 

actual dam level 
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Figure 4 shows comparison between actual dam 
level and the simulated dam level using the 
simulated dam level changes with the chosen ANN 
and actual water consumption. It has MSE of 
0.0024 and an average error percentage of 7.4%. 
 
Modelling water demand with ANN 
The water demand can be characterised as a 
variable that strongly depends on the population 
size, weather condition, and characteristic of the 
city. Numerous statistical models with multiple 
regression and time series have been developed for 
water demand modelling. Typically these models 
are developed by dividing the water use into a few 
categories such as base, seasonal and weather 
dependent water use etc. The multiple regression 
cascade model (Maidment and Parzen 1984) and 
daily water forecast transfer function model 
(Maidment et al. 1985) are some of the examples 
developed using statistical methods. Zhou et al. 
(2002) predicted daily water consumption of 
Melbourne, Australia by forecasting hourly water 
consumption from base use, daily, seasonal, and 
hourly demand according to climatic and seasonal 
data. However, these detailed models would not 
suit needs of our model. The problem of water 
demand simulation is comparable to the dam level 
dynamics as rainfall and temperature appear to be 
the most significant factors affecting the water 
demand. We believe that the daily water demand 
can be modelled with the ANN using data often 
used in the water demand model such as rainfall 
and temperature. 
 
The same neural network configuration as the dam 
level dynamics modelling was used for these 
experiments. Again a number of input options 
combining rainfall, temperature, and day of the 
year with wide range of ANN parameters, epoch, 
training error goal and hidden layer neuron were 
experimented to find the most suitable ANN 
architecture for water demand. Trainings of ANN 
were carried out using dataset between Jan 1999 
and April 2001 because of water restriction 
introduced in May 2002. The final comparisons 
were made after manually reducing the water 
demand by average reduction of same period from 
the date of a water restriction commencement. The 
chosen ANN architecture is input as a multivariate 
combination of rainfall, temperature, and day of 
the year using WS of 30 (HLN:4, TEG:0.002, 
EP:150). Figure 5 shows a comparison between 
simulated water demand from the selected ANN 
architecture and actual consumption between 1999 
and 2003. It shows the close replication of the 
water consumption with good seasonal variation 
between summer and winter months with an 
average error percentage of 7.3%. 
 

 
Figure 5. Comparison of simulated water demand 

and actual water consumption 
 
2.2.  Energy Dynamics Cycle 
 
Waste energy estimation 
For our water desalination model, we have to 
convert waste energy into electricity. The 
advantage of converting waste energy into 
electricity is that it can be linked to electricity grid 
and any remaining spare electricity could be used 
by other entities. We have collected numerous 
electricity consumption rates for RO from 
literatures. The collected consumption rates range 
between 2.04 kWh/m3 and 9.38 kWh/m3 (Busch 
and Mickols 2004, Avlonitis et al. 2003). We 
chose to use an average consumption of 5.18 
kWh/m3 from these collected data. A physical 
composition heating value estimation model by Ali 
Khan and Abu-Ghararah (1991) was chosen to 
estimate the heating value of the waste. The 
estimated heating value was found to be 9134.16 
kJ/kg. The electricity generation from incinerating 
waste typically has a lower efficiency rate than the 
efficiency of fossil combustion, which typically 
has an efficiency of 30%-40%. We collected the 
waste incineration efficiency rates from various 
literatures. These rates ranged between 15% and 
40% (Dajnak and Lockwood 2000, Morris 1996). 
We chose to use an average efficiency of 21.4%, 
which requires 16857 kJ for generating 1 kWh of 
electricity. The amount of waste generated by 
inhabitants of the city is estimated using data from 
the council report in 2002 (GCCC 2005), which is 
1.1 tonnes per person per year. 
 
Alternative energy estimation 
We created an additional simulation module for 
the alternative energy to understand how much 
energy needs to be complemented for the water 
demand that cannot be fulfilled by the dam water 
and waste-energy desalinated water. In this study, 
we chose to calculate a how many 600 kW wind 
turbines are required using a typical capacity factor 
of 0.3 as an example of an alternative energy 
requirement. This module can be easily changed 
by plugging in any other type of alternative energy 
or just use it to calculate the necessary 
conventional fossil combustion energy. 
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2.3. Modelling Population Growth 
 
The Gold Coast city is a narrow stretch along the 
coast with pronounced clusters of population 
density that cannot be simply averaged. To model 
its unique geographic characteristics and density 
distribution of Gold Coast, we decided to divide 
the city into four major sections, high-coastal, 
low-coastal, central and hinterland. We model 
them separately then combined together to obtain 
the total population of the city. High-coastal 
represents area that has already high density filled 
with high-rise buildings along the coastal area 
while low-coastal is coastal area that has a lower 
density due to less high-rise buildings, but 
expensive villas that are unlikely to be replaced by 
high-density dwellings in the next 20 or 30 years. 
In our population growth we also have taken into 
account the limitations to expansion due to the 
long shoreline and the already started merging 
with Brisbane on the northern parts. We applied 
logistic density dependent population growth 
model to each section using separate carrying 
capacity. This carrying capacity was determined 
based on the assumption that each section grows 
until it reaches the next higher up level of density. 
For example, the carrying capacity of low coastal 
is set to average density of the lower density area 
currently in the high coastal area. 
 

 
Figure 6. Simulated population of the city 

 
Figure 6 shows the comparison of the simulated 
total population of the city and actual population 
of last 20 years. The result shows close simulation 
of the past population growth. This simulated 
population also closely matches the prediction 
used by GCCC of 1.2 million by year 2056 
(GCCC 2005). The development of this growth 
model was necessary because there are only few 
population predictions at irregular intervals 
available. 
 
3. INTEGRATION AND CALIBRATION OF 
DAM AND WATER DEMAND DYNAMICS 
 
After selecting water demand and dam dynamics 
ANN architectures, these models and the 
population growth module were integrated 

together in the comprehensive model. The 
calibration focuses on finding an initial setting of 
the population, which determines the starting point 
(Date) of population growth effect on water 
demand. The calibrations were aimed at bringing 
the result as close as possible to the simulated dam 
level using the actual consumption between 1999 
and 2003 shown in Figure 4.  
 

 
Figure 7. Calibrated dam level result 

 
After several calibrations, we found that the 
population at the beginning of January 2001 was 
the best starting point. Figure 7 shows the final 
result of calibration. This final result has MSE of 
0.00014 against simulated dam level with actual 
water consumption. Compared to the actual dam 
level, this calibrated result has MSE 0.0055. 
Although this is higher than the MSE of 0.0024 for 
the simulated dam level with actual water 
consumption (Figure 4), Figure 7 suggests that this 
difference is quite acceptable. 
 
4. RESULTS AND DISCUSSION 
 
After the calibration, we have carried out a long-
term experimental simulation to study trend and 
major fluctuations. We focused on (a) amount of 
desalinated water that can be produced from waste 
incineration, (b) proportion of water demand that 
fulfilled by dam (rain) water and desalinated water, 
and (c) amount of alternative energy required to 
complement the disparity between available water 
and water demand. We study these while 
incorporating the population growth and irregular 
climatic conditions. We collected and analysed the 
El Niño record of the last 100 years. We then 
randomly distributed the dataset of 1999 and 2003 
for our 50 years simulation scenario according to 
length and frequency of El Niño occurrences (Sitte 
1998). We then applied data smoothing to each 
yearly data by using a running average of random 
periods between 1 and 7. Although the argument 
“if it happened in the past, it can happen again” is 
a valid one, we chose to do this because it is more 
moderate and realistic than attempting to randomly 
generating the climatic data sequence as it actually 
happened previously. The simulation is carried out 
based on an assumption that the water 
consumption or waste generation by an individual 

729



does not change throughout the simulation period. 
Because we neither know when (or if) nor how 
much of reduction or increase will occur. 
Validating such predictions is a complex issue. We 
start the simulation with the simulated population 
of 2006. The simulation results are compared 
using the yearly average results rather than a daily 
result for easier observation.  
 

 
Figure 8. Simulated water demand 

 
Figure 8 shows the simulated water demand for the 
simulated 50 years. It shows a clear change of 
water demand depending on the climatic 
conditions while the water demand is steadily 
increasing as the population grows. It reaches 
approximately 500 million litres a day towards the 
end of the simulation. This simulated water 
demand is found to be slightly over the water 
demand predicted of 465 million litres used by 
GCCC at year 2056. 
 

Figure 9. Distribution of simulated water demand 
 
Figure 9 shows the proportion of water demand 
fulfilled by dam water, waste energy desalinated 
water, or alternative energy desalinated water. The 
comparison is made on ten year averages to avoid 
comparing abnormal values of water demand and 
rainfall caused by El Niño. In the first decade the 
dam water fulfils over 50% of water demand, 
which drops down to just over 30% by the 5th 
decade, as the amount of rainfall does not change 
throughout the simulation period. Meanwhile 
waste-energy desalination covers 40% of water 
demand in the first decade and increases to over 
50% in the fifth decade due to increased 
waste-energy availability from the growing 
population. The needs for desalination by 
alternative energy started off with only 6% of 

water demand in the first decade. Although some 
of the increased water demand is fulfilled by 
increased waste-energy desalination, the demand 
of alternative energy desalination reaches 14% in 
the fifth decade, this is more than double of the 
first decade. 
 
Figure 10 shows the amount of alternative energy 
required to complement the gap between available 
water and water demand, which is converted into a 
number of typical 600 kW wind turbine as a source 
of alternative energy. In the first 15 years, less than 
50 turbines are required to fill the gap with 
alternative energy. In the mid period, required 
energy increases to the equivalent of 50 to 100 
turbines. In the fifth decade, it reaches between 
150 and 250. This is because the demand of 
additional energy increases toward end of the 
simulation period. 
 

 
Figure 10. Example of alternative energy required 
 
5. CONCLUSIONS  
 
This paper presented the development of a model 
that uses waste incineration energy for seawater 
desalination to complement fresh water supply 
using the Gold Coast city, Australia as a case 
study. Our study is motivated by the successful 
waste incineration in Europe and Asia as well as 
the seawater desalination in the Middle-Eastern 
countries. Our model followed a dynamics systems 
approach with control theory combined with sub-
models developed using ANN. In this paper, the 
calibration of the model as well as the long-term 
simulation including both normal year and El Niño 
affected years were presented. The results showed 
that dam water and waste energy desalinated water 
combined, fulfils 90% of water demand for 3 
decades. Initially only 6% of water demand needs 
to be complemented by alternative energy source, 
but in the last 2 decades of the simulation, over 
10% of water demand must rely on an alternative 
energy source. We also examined the required 
amount of alternative energy using a typical 600 
kW wind turbines to complement the energy 
source as an example. Future work includes 
experimenting other alterative energy and possible 
application of the model to other cities. 
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