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EXTENDED ABSTRACT 
 
Within the industrial metals industry, there has 
been a great deal of interest surrounding trends in 
volatility over time.  This paper uses a rolling 
AR(1)-GARCH(1,1) model to estimate and 
forecast the volatility processes for daily returns on 
the futures prices of two important non-ferrous 
metals, aluminium and copper.   
 
The LME is the major international market for the 
main industrially-used non-ferrous metals, namely 
aluminium, aluminium alloy, copper, lead, nickel, 
tin, and zinc.  Aluminium has the highest volume 
of spot and futures trade on the exchange, followed 
closely by copper.  The two metals are also 
amongst the most important metals in an industrial 
sense.   
 
Changes in the prices of aluminium and copper are 
often closely aligned with changes in global 
industrial production, but also reflect market 
specific events, compliment and substitute 
relationships between the physical metals in 
production, and financial market type influences. 
Brunetti and Gilbert [1995] characterise two 
sources of volatility in non-ferrous metals markets, 
those related to financial market considerations and 
those related to market fundamentals. Financial 
considerations include information effects, 
speculative pressures and hedging activity, usually 
giving rise to short-run volatility effects. Market 
fundamentals refer to the underlying availability, 
supply and demand of physical metal. 
Fundamentals are a source of long term volatility 
in metals markets, primarily due to the lags 
involved in demand and supply side changes.  
 
In this paper, the rolling model is used to examine 
how the processes driving aluminium and copper 
returns volatility have evolved over a long sample.  
Settlement price data on 3-month futures contracts 
traded on the London Metals Exchange (LME) is 
used to calculate the daily returns series.  The 

sample consists of daily data for 3-month futures 
settlement prices in US dollars for aluminium over 
the period 1 October 1982 to 15 July 2005, and for 
copper over the period 5 January 1976 to 15 July 
2005.  The model is estimated using a rolling 
window of 1000 observations, which iterates 4671 
times for aluminium, and 6448 times for copper. 
 
The models are used to examine when and in what 
manner the α and β coefficients, as estimated 
parameters of the volatility process, change over 
time. Estimates are presented graphically.  The α 
estimates for both metals indicate that short-run 
persistence varies in magnitude through each 
sample.  Similarly, the β estimates also vary 
markedly over time.  The long run persistence of 
volatility, α+β, is also non-constant over the 
sample.  Moment conditions, specifically the 
second and fourth, are examined in order to 
evaluate the statistical properties of the empirical 
models. One-step-ahead forecasts are also 
generated and compared with a measure of the 
‘true’ volatility, as defined by Pagan and Schwert 
[1990].  Several forecast evaluation criteria are also 
applied to the series of forecasts.  
 
The results of the paper suggest that, while the 
volatility of returns does not appear to display an 
upward trend, relative to the 1980’s there are 
periods over the following years where the process 
driving time-varying conditional volatility appears 
to have become more variable, and to some degree 
harder to model at some times using a simple 
GARCH specification. The variation over time 
seen in the volatility process as modelled by 
GARCH suggests that, while volatility in returns 
has not necessarily increased, volatility in metals 
markets is itself volatile when analysed over a long 
horizon. Of course, instability in the GARCH 
model may indicate that a more complex volatility 
model is required to better reflect the volatility 
process in the data. 
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1. INTRODUCTION 
 
Within the metals industry, there has been a great 
deal of interest surrounding trends in volatility over 
time. These have been examined in a number of 
studies which look at variability in prices and 
market structure. Metals market participants suggest 
that volatility in non-ferrous metals prices has 
increased over time. Furthermore, this increase in 
volatility is thought to be associated with a change 
in market organization from pricing on a producer 
list basis, to exchange-based pricing. Although 
exchange-based pricing allows access to hedging 
products, such as exchange traded futures and 
options, some argue that the associated hedging 
costs and increased volatility has led to higher cost 
structures for metal produces than those connected 
with producer list pricing.  
 
Slade [1991] provided empirical evidence to 
support the proposition that metals price volatility is 
higher during the 1980s relative to the 1970s, and 
that this increase in volatility was associated with 
the transition from producer list to exchange 
determined prices. However, Figuerola-Ferretti and 
Gilbert [2001] show that by extending the Slade’s 
[1991] sample to include more recent data, there is 
no significant difference in the variability of 
exchange-based prices and producer list prices. 
Brunetti and Gilbert [1995, 1996] argue that while 
the volatility of non-ferrous metals prices is itself 
highly volatile, volatility does not trend 
stochastically over a sample covering 1972 to 1995. 
Periods of high volatility in metals markets are due 
to tighter metals balances, rather than speculative 
activities. Speculative and informational pressures 
are not precluded from influencing volatility. 
However, the effects are short lived, and 
fundamentals regarding the availability of metal 
generate persistence in volatility. 
 
2. ROLLING VOLATILITY MODEL 
 
This paper uses a rolling volatility model to 
examine how the processes driving aluminium and 
copper volatility have evolved over a long sample. 
Bollerslev’s [1986] GARCH model is used, 
specifically AR(1)-GARCH(1,1). This is one of the 
most widely used time-varying financial volatility 
models in practice. In this model, the conditional 
mean of futures price returns is given by the AR(1) 
model: 
 
rt = μ + ϕrt −1 +εt ,   ϕ < 1, (1) 
 
and the conditional variance of εt is: 
 
ε t = ηt ht , (2) 

ht = ω +αεt−1
2 + βht−1 , (3) 

 
where rt denotes returns on the futures price from 
period t-1 to t; εt is the unconditional shock; ηt is a 
sequence of normally, independently and identically 
distributed random variables, with zero mean and 
unit variance; and ht is the conditional variance of 
returns. For the GARCH process to exist, ω > 0, α 
≥ 0 and β ≥ 0 are sufficient conditions for the 
conditional variance to be positive. The ARCH 
coefficient, α, measures short-run persistence in 
volatility, and the GARCH effect, β, measures the 
contribution to long-run persistence, namely α+β. 
 
Several statistical properties have been established 
for the GARCH(p,q) process in order to define the 
moments of the unconditional shock (see for 
example, Ling and McAleer [2002]). The necessary 
and sufficient condition for the second moment to 
exist for the GARCH(1,1) model, guaranteeing that 
the process is strictly stationary and ergodic, is 
given by: 
 
α+ β <1. (4) 
 
If the conditional shocks, ηt, are iid random 
variables, the fourth moment of the unconditional 
shock will exist if the following condition is 
satisfied: 
 
3α 2 +2αβ +β 2 <1. (5) 
 
The model is estimated using a rolling window of 
1000 observations, which iterates 4671 times for 
aluminium, and 6448 times for copper. Each model 
is estimated by maximum likelihood. Non-
normality in the residuals is likely in the presence of 
extreme returns observations. Robust t-ratios based 
on the standard errors of Bollerslev and Wooldridge 
[1992], which are designed to be robust to non-
normality, are used. Estimates from the rolling 
samples are treated as “data” in the descriptive 
discussion below.  
 
An empirical measure of volatility is required 
against which to evaluate the rolling one-step-ahead 
forecasts generated by the model. The measure 
defined in Pagan and Schwert [1990] is used at the 
“true” or actual empirical volatility: 
 
vt = rt − r  (7) 
 
where vt refers to the ‘true’ volatility at time t, and 
r  is defined as the mean return over the estimation 
window for the sample used. The 1-day ahead 
forecast error, ut+1, is defined as: 
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ut +1 = ˆ h t +1 − vt +1. (8) 
 
A positive forecast error implies that the GARCH 
model has over-forecast the empirical volatility, 
while a negative forecast error means the empirical 
volatility has been under-forecast.  
 
3. NON-FERROUS METALS DATA 
 
The sample consists of daily data for 3-month 
futures settlement prices in US dollars for 
aluminium over the period 1 October 1982 to 15 
July 2005, and for copper over the period 5 January 
1976 to 15 July 2005. Each returns series is 
calculated as: 
 
rt−1,t = ft − f t−1( ) ft −1 , (6) 
 
where rt-1,t is the return over period t-1 to t, and ft is 
the futures price at time t. This gives a sample of 
5671 returns on aluminium futures and 7448 returns 
on copper futures, noting that 79 zero returns 
observations were eliminated from the aluminium 
sample. 
 
Plots of the price and returns series for aluminium 
and copper are presented in Figures 1 and 7. While 
copper and aluminium sometimes share periods of 
clustered volatility at similar times, each market 
also contains periods of volatility not occurring in 
the other. Industrial metals markets, while being 
affected by macroeconomic shocks, are also 
strongly influenced by financial and physical 
market-specific events. The extent to which these 
permeate between metals markets depends on a 
number of factors, including the complimentary and 
substitute relationships between the particular 
metals. 
 
4 PARAMETER ESTIMATES 
 
Plots of the rolling α coefficient estimates and their 
t-ratios are provided in Figures 2 and 8 for 
aluminium and copper, respectively. Rolling β 
estimates and their t-ratios are shown in Figures 3 
and 9. Dates on the x-axis of these figures indicate 
the last trading day contained in the estimation 
window. 
 
The α estimates for both metals indicate that short-
run persistence varies in magnitude through each 
sample. A number of the features apparent in the 
rolling α estimates coincide with extreme 
observations that occur as a result of shocks to the 
returns series. There appears to be an upward bias 
in the α estimates when large extreme observations 
are within the estimation window. A high α implies 
that the GARCH process will allow the level of 

estimated conditional variance to increase quickly 
in response to periods of high volatility in returns. 
The majority of the rolling β estimates for both 
metals series are greater than 0.8 and less than 1, as 
expected. However, β estimates also display 
varying characteristics over time. 
 
Periods in which the α estimates appear biased 
upward often coincide with periods of apparent 
downward bias in β. A low β estimate allows for 
the rapid decay of volatility, as might be expected 
following an extreme observation. However, the 
presumption under the GARCH model is that 
observations from high volatility periods and low 
volatility periods follow the same parametric 
volatility process. If extreme observations generate 
a lower degree of persistence, and that cannot be 
captured in the GARCH(1,1) parameterisation, it 
would be expected that biases will occur in the 
estimates. In this case, the β estimate may be biased 
downward following an extreme observation. 
 
5. ROBUST ROLLING T-RATIOS 
 
For the results prior to December 1998, all 
aluminium α estimates are significant at the 5 
percent level. Toward the end of the sample, the t-
ratios generally sit just above the 5 percent 
significance level, however while the majority of 
estimates appear significant, the null is not rejected 
for some estimates. Copper t-ratios for the 
estimated α are above 2 for much of the sample. 
However there are some periods where the t-ratio 
varies around the 5 percent critical value. There is 
an extended period over which the null is not 
rejected, from March 2003 to May 2004. 
Interestingly, a level shift in the alpha estimate 
around September 1987 coincides with noticeably 
higher significance levels. 
 
Typically, the β t-ratios for both series are large, 
particularly so when the coefficient estimates are 
between 0.8 and 1. The copper β estimates are 
significant over the entire sample. Between July 
2000 and December 2001, when the aluminium β 
estimate becomes extremely variable, its t-ratio 
becomes low and most estimates appear not to be 
significant. 
 
6. ROLLING MOMENT CONDITIONS 
 
The percentage of the rolling estimation windows 
for which the second and fourth moment conditions 
are satisfied is shown in Table 1. Both the second 
and fourth moment conditions are satisfied more 
frequently in models for copper than for the 
aluminium returns data.  
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Moment Aluminium Copper
Second 85.38 89.41
Fourth 83.41 86.74  
Table 1. Moment conditions satisfied (in %) 
 
Plots of the moments are given in Figure 4 for 
aluminium and Figure 10 for copper. The 
aluminium moments exceed one for several periods 
over the sample, including for over two years of 
trading days from November 1987 to December 
1990. Similarly for copper, there is an extended 
period where the moment conditions are violated, 
between October 1987 and October 1990.  
 
Clearly, market conditions surrounding the fallout 
of the equity market melt-down at that time have 
influenced volatility in both aluminium and copper 
prices. It is interesting to note that, at the time when 
market participants would be expected to be most 
concerned with accurate estimates of returns 
volatility, inferences the simple rolling GARCH 
model cannot be relied upon. For copper, there are 
also instances when the forth moment condition is 
violated, between December 1991 to June 1993.  
 
Despite these moment condition violations, the 
long-run persistence in volatility is generally closer 
to unity for copper than it is for aluminium. Long-
run persistence for aluminium is low in the early 
1990s and from September 2000 to December 2001, 
while for copper it is low in the mid-1980s. 

7. VOLATILITY FORECASTS 

Forecasts of volatility generated by the models, and 
the actual of ‘true’ volatility, are shown in Figures 5 
and 11. Table 2 compares the forecasts using mean 
error (ME), mean absolute error (MAE), root mean 
squared error (RMSE), smoothed mean absolute 
percentage error (SMAPE), smoothed weighted 
median absolute percentage error (SMedWAPE), 
and smoothed weighted mean absolute percentage 
error (SWMAPE). Forecast errors are graphed in 
Figures 6 and 12. 
 
The criteria suggest a broadly similar forecast 
performance in each market. Median errors are 
always smaller than the comparable mean errors, 
and errors are slightly greater for copper volatility 
than for aluminium. When RMSE calculated 
separately for positive and negative forecast errors, 
RMSE(-) is substantially larger than RMSE(+) for 
both markets. Volatility forecast errors from the 
GARCH(1,1) model are negatively biased. The 
weighted forecast performance measures are 
considerably lower than their non-weighted 
counterparts. This suggests that a large proportion 
of forecast errors occur when the actual volatility of 

the forecast period is lower than the average 
volatility in the entire sample. 
 
Table 2: Forecast evaluation criteria  

Criteria Aluminium Copper
ME 0.00315 0.00365
MAE 0.00680 0.00785
MedAE 0.00590 0.00683
RMSE 0.00898 0.01028
RMSE(-) 0.01131 0.01262
RMSE(+) 0.00804 0.00931
RMedSE 0.00590 0.00683
SMAPE 74.13 74.61
SMedAPE 63.36 62.85
SMWAPE 51.89 51.11
SMedWAPE 32.97 33.30
R2 0.15 0.12
R2E 0.70 0.74
Forecasts Under 25.26 26.05
Forecasts Over 74.74 73.95  
 
R2 is obtained by regressing ex-post volatility on 
forecast volatility, and being relatively low for both 
metals it suggests a poor overall predictive 
performance. Similarly, R2

e obtained by regressing 
the forecast errors on the ex-post volatility show 
that the actual volatilities have a high degree of 
explanatory power over forecast errors. The final 
two criteria show that the GRARCH model tends to 
over-predict volatility for both metals. 
 
Looking at figures 5 and 11, forecasts from the 
GARCH models capture the major features of the 
actual volatility in aluminium and copper returns 
over the sample.  
 
A clear period of heightened volatility is evident 
between October 1987 and early 1990, coinciding 
with the October 1987 equity market melt-down, 
and flow on volatility in global financial markets 
and the major macroeconomies. However, during 
this period, the forecast errors suggest that the 
model tends to over-predict the persistence of 
volatility in both markets. 
 
While for aluminium, the October 1987 crash 
corresponds with the highest volatility forecasts, the 
largest copper forecasts occur in early 1996. The 
LME copper market was systematically 
manipulated by a trader in the Sumitomo 
Corporation of Japan during the early and mid 
1990s [see Gilbert 1996]. Substantial volatility can 
be observed in returns around early to mid 1996, 
when conditions in the copper market made 
Sumitomo’s position untenable. At that time, hedge 
funds saw an opportunity to attack the inflated 
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copper price, which fell by USD700 per tonne over 
a four-week period. 
 
In general, large negative forecast errors tend to be 
associated with the model under predicting when a 
substantial shock to returns hits the market, while 
positive forecast errors tend to be associated with 
the model over predicting the persistence of these 
shocks. In periods of relatively low volatility, the 
model tends to under-predict actual volatility. 
Extreme observations associated with a period of 
relatively higher volatility appear to be the source 
of adverse effects on the predictive ability of the 
GARCH model in subsequent periods.  
 
8 EMPIRICAL SIGNIFICANCE 
 
The α and β estimates for both aluminium and 
copper indicate that short- and long-run volatility 
persistence can vary over a relatively wide range as 
the models move through time. At times the 
estimates exhibit a high degree of stability. 
However shocks in returns can move the process 
dramatically. At some points, the α estimates are 
close to zero, suggesting no short-term persistence. 
In general, the β contribution to long-run 
persistence becomes relatively more important than 
short-run persistence, towards the end of each 
sample. 
 
Tail events have a clear effect on the likelihood 
function, and thus on estimation of volatility models 
using maximum likelihood methods. Biased 
GARCH model estimates occur because the (quasi) 
maximum likelihood estimator seeks a model in 
which the estimated conditional variance may 
increase quickly, while also allowing for rapid 
volatility decay. The means by which a 
GARCH(1,1) model achieves this is with a high α 
parameter which allows a quick increase in 
conditional variance and a low β parameter which 
provides for rapid decay. 
 
The rolling GARCH models produce a number of 
results that have interesting economic implications, 
particularly with regard to the perception within the 
non-ferrous metals industry that metals prices and 
returns became more volatile over time. Inspection 
of the aluminium and copper returns plots does not 
support this proposition. On the contrary, it would 
appear that returns are less volatile in both the 
aluminium and copper markets in the later portion 
of the sample, particularly in terms of the 
prevalence of tail or extreme events. Moreover, 
Brunetti and Gilbert [1996] contend that volatility 
itself has become more volatile. Several of the 
results presented in this paper support their 
conclusion. While the volatility of returns does not 
appear to display an upward trend, relative to the 

1980’s there are periods over the following years 
where the process driving time-varying conditional 
volatility appears to have become more variable, 
and to some degree harder to model at some times 
using a simple GARCH specification. The variation 
over time seen in the volatility process as modelled 
by GARCH suggests that, while volatility in returns 
has not necessarily increased, volatility in metals 
markets is itself volatile when analysed over a long 
horizon. Of course, instability in the GARCH model 
may indicate that a more complex volatility model 
is required to better reflect the volatility process in 
the data. 
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Figure 2: Aluminium alpha estimates and t-ratios
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Figure 3: Aluminium beta estimates and t-ratios
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Figure 4: Aluminium second and fourth moments

0.00

0.50

1.00

Sep-
86

Sep-
87

Sep-
88

Sep-
89

Sep-
90

Sep-
91

Sep-
92

Sep-
93

Sep-
94

Sep-
95

Sep-
96

Sep-
97

Sep-
98

Sep-
99

Sep-
00

Sep-
01

Sep-
02

Sep-
03

Sep-
04

fourth moment second moment

Figure 5: Aluminium forecast and actual volatility
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Figure 6: Aluminium forecast error
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Figure 1: Aluminium prices and returns
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Figure 8: Copper alpha estimates and t-ratios
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Figure 9: Copper beta estimates and t-ratios
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Figure 10: Second and fourth moment
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Figure 11: Copper forecast and actual volatility
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Figure 12: Copper forecast error
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Figure 7: Copper prices and returns
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