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EXTENDED ABSTRACT 

A major challenge facing freshwater ecologists 
and managers is the development of models that 
link stream ecological condition to catchment-
scale effects, such as land use. Previous attempts 
to make such models have followed two general 
approaches. The bottom-up approach employs 
mechanistic models, which can quickly become 
too complex to be useful. The top-down approach 
employs empirical models derived from large data 
sets, and has often suffered from large amounts of 
unexplained variation in stream condition. 

We believe that the lack of success of both 
modelling approaches may be at least partly 
explained by scientists considering too wide a 
breadth of catchment type. Thus, we believe that 
by stratifying large sets of catchments into groups 
of similar types prior to modelling, both types of 
models may be improved. This paper describes 
preliminary work using a Bayesian classification 
software package, ‘Autoclass’ (Cheeseman and 
Stutz 1996) to create classes of catchments within 
the Murray Darling Basin based on physiographic 
data. 

Autoclass uses a model-based classification 
method that employs finite mixture modelling and 
trades off model fit versus complexity, leading to 
a parsimonious solution. The software provides 
information on the posterior probability that the 
classification is ‘correct’ and also probabilities for 
alternative classifications. The importance of each 
attribute in defining the individual classes is 
calculated and presented, assisting description of 
the classes. Each case is ‘assigned’ to a class 
based on membership probability, but the 
probability of membership of other classes is also 
provided. This feature deals very well with cases 
that do not fit neatly into a larger class. Lastly, 
Autoclass requires the user to specify the 
measurement error of continuous variables. 

Catchments were derived from the Australian 
digital elevation model. Physiographic data were 

derived from national spatial data sets. There was 
very little information on measurement errors for 
the spatial data, and so a conservative error of 5% 
of data range was adopted for all continuous 
attributes. The incorporation of uncertainty into 
spatial data sets remains a research challenge. 

The results of the classification were very 
encouraging. The software found nine classes of 
catchments in the Murray Darling Basin. The 
classes grouped together geographically, and 
followed altitude and latitude gradients, despite 
the fact that these variables were not included in 
the classification. Descriptions of the classes 
reveal very different physiographic environments, 
ranging from dry and flat catchments (i.e. 
lowlands), through to wet and hilly catchments 
(i.e. mountainous areas). Rainfall and slope were 
two important discriminators between classes. 
These two attributes, in particular, will affect the 
ways in which the stream interacts with the 
catchment, and can thus be expected to modify the 
effects of land use change on ecological condition. 
Thus, realistic models of the effects of land use 
change on streams would differ between the 
different types of catchments, and sound 
management practices will differ. 

A small number of catchments were assigned to 
their primary class with relatively low probability. 
These catchments lie on the boundaries of groups 
of catchments, with the second most likely class 
being an adjacent group. The locations of these 
‘uncertain’ catchments show that the Bayesian 
classification dealt well with cases that do not fit 
neatly into larger classes. 

Although the results are intuitive, we cannot yet 
assess whether the classifications described in this 
paper would assist the modelling of catchment-
scale effects on stream ecological condition. It is 
most likely that catchment classification and 
modelling will be an iterative process, where the 
needs of the model are used to guide 
classification, and the results of classifications 
used to suggest further refinements to models. 

1497



1. INTRODUCTION 

One of the primary challenges currently facing 
freshwater ecologists and managers is that of 
modelling catchment-scale effects (e.g. patterns of 
land use) on ecological condition of rivers and 
streams. Although it has long been realized that 
aquatic ecosystems are inextricably linked to their 
catchments (e.g. Borman and Likens 1979), 
attempts to explicitly model the effects of 
catchment-scale influences on waterways have 
met with limited success (Allan 2004). 

Attempts to model the link between the catchment 
and stream have historically tended to follow two 
paradigms. The first of these is the ‘bottom up’ 
approach, in which mechanistic models based on 
theories of ecosystem function are employed. 
Such models are usually most effective if the 
system can be simplified into few components – 
both in terms of catchment scale influences, and 
the ecological response being examined. Attempts 
to create generic models quickly become too 
complex to be parameterised, and thus cannot be 
used in a predictive sense. The second approach to 
modelling is the ‘top down’ approach where 
statistical models are developed between 
catchment-scale effects and ecological condition, 
with little attempt to impose structure on the 
models beyond those mandated by the statistical 
approach being used. Despite some successes, the 
amount of variation in ecological condition 
explained by these statistical models is often 
insufficient to draw unambiguous conclusions 
about the direct impacts of land-use change (Allan 
2004). 

We argue that the limited success of both bottom-
up and top-down modelling may at least be partly 
explained by researchers simultaneously 
considering too wide a breadth of catchment type. 
As stated above, generic conceptual models of 
catchment-scale influences on stream condition 
are too complex to be used. Moreover, it is 
reasonable to suppose that influences of a given 
catchment-scale variable on a particular aspect of 
stream ecology may vary with other catchment 
characteristics, but only a very complex model 
could incorporate such interactions. In contrast, by 
considering a wide range of catchment types 
simultaneously, the top down model may be 
introducing too much unexplained variation, as the 
differences in catchments moderate the ecological 
response to a given stressor. 

We hypothesise that by stratifying sets of 
catchments into different types prior to modelling, 
both bottom-up and top-down approaches might 
be improved. Bottom up models would benefit 
from a reduced requirement for complexity, as 
models could be built for the particular dominant 

catchment-scale effects. The models would also 
benefit from knowledge of the particular type of 
stream to which the model was being applied. Top 
down models would benefit due to a reduction in 
the amount of unexplained variation, as above. 
The question then is how such groups of 
catchments should be formed. In this paper, we 
describe the application of a Bayesian 
classification software package ‘Autoclass’ to 
define classes of catchments within the Murray 
Darling Basin, Australia using physiographic data 
derived from national-coverage spatial data sets. 

2. BAYESIAN CLASSIFICATION 
WITH AUTOCLASS 

There are dozens of different methods that can be 
used to classify cases based on multivariate data, 
and classification is an area of active and diverse 
research. All methods have strengths and 
weaknesses, and the ‘best’ choice of a 
classification method is determined largely by the 
application in question. For this exercise, we 
chose Autoclass (Cheeseman and Stutz 1996, 
Hanson et al. 1991), and in particular Autoclass C 
for MS-DOS. A brief description of how this 
package works, along with the features that 
attracted us to it, follows. 

Autoclass employs a model-based classification 
method, in that it attempts to fit statistical models 
to the data to derive classes. Specifically, 
Autoclass treats the distribution of data for a 
specific attribute (e.g. catchment area) as a 
mixture of K distributions, where K is the number 
of classes. The user can specify the number of 
classes, or the software can operate in 
‘unsupervised’ mode, where both K and the 
membership of each class are determined by the 
data. For a Bayesian model, overall fit to the data 
is measured by the posterior probability of the 
model. Autoclass searches randomly over the 
space of possible classifications from multiple 
starting points, replacing its ‘best’ choice with the 
new classification if the estimated posterior 
probability for the new classification is greater. 
When using non-informative prior distributions 
for model parameters, this method effectively 
compromises between model complexity and 
model fit, providing the most parsimonious 
solution to the classification problem (Cheeseman 
and Stutz 1996).  

Following a search, the system gives basic 
information for the 10 most likely classifications 
found, including the number of classes in each, 
and the posterior probability that each 
classification is the ‘correct’ one (i.e. the 
probability of the classification given the data at 
hand). Detailed reports can be generated for any 
number of these classifications. The probabilities 
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reported allow the user to determine whether the 
best classification found is sufficiently more 
probable than other classifications to render them 
of no interest, or whether the two or three most 
likely classifications are worthy of consideration 
due to their similar posterior probabilities. 

Autoclass models several attribute types, and 
allows for both continuous and categorical data. In 
this study, the various attributes were modelled as 
either continuous lognormal variables (following 
loge transformation), or as multinomial variables. 
Some implementations of Autoclass allow a wider 
range of attribute types (Cheeseman and Stutz 
1996). The software also allows groups of 
continuous variables to be defined as a correlated 
set, and classifications then are based on 
differences in the relationship between the 
variables, rather than on the distributions of the 
individual variables (Hanson et al. 1991). 

As output, Autoclass provides information on the 
relative strength of each of the classes found, and 
on how far each class diverges from the global 
distribution of data. Each case is ‘assigned’ to a 
class, based on membership probability, but the 
user is also supplied with membership 
probabilities for other classes. This is a particular 
strength of the approach, because it deals well 
with isolated cases that do not fit neatly into one 
larger class. 

Information is also presented on the importance of 
the individual attributes – both in terms of their 
overall effect on the classification, and their effect 
on each class. The importance of each attribute is 
ranked based on the Cross Entropy or Kullback-
Leibler distance (Cover and Thomas 1991) 
between the modelled class-level distribution of an 
attribute and the global distribution of that 
attribute. The Kullback-Leibler distance (hereafter 
KLD) is a convenient measure of distance between 
probability distributions, because it takes into 
account both differences in the central tendencies 
of the distributions (e.g. mean) and also the 
variability of the distribution (e.g. standard 
deviation). It is also calculable for both continuous 
and discrete distributions. The KLDs for the 
individual attributes in a class show which 
attributes were important in distinguishing this 
class from the global distribution. Between 
classes, the KLDs for a particular attribute give a 
rank ordering of how far from ‘average’ each class 
is for that attribute. Along with the KLD, 
Autoclass supplies information on the modelled 
class distribution for each attribute, which can 
then be compared to the global distribution for 
descriptive purposes. 

As a fully Bayesian approach, Autoclass explicitly 
deals with and presents uncertainties for all 

aspects of the classification. Moreover, the 
software requires the user to specify a 
measurement error for each of the continuous 
attributes in the classification. Thus, although the 
data may list the length of an object at 10 m, the 
software treats this datum as say 10±0.5 m. The 
practical consequence of specifying uncertainty is 
that a relatively uncertain variable has less 
influence on a classification than a more certain 
variable, even if the two have the same 
distribution of data values. Although being forced 
to specify uncertainty may initially appear as a 
weakness (or at least an inconvenience) of the 
software, it is really a strength. We are never 
completely certain of measured data values, and if 
information on our certainty or lack of it is 
included in statistical analyses, the results will be 
more robust. 

3. SPATIAL DATA 

The aim of this exercise was to classify 
catchments within the Murray Darling Basin 
(MDB). To obtain catchment boundaries within 
the basin, a digital elevation model (DEM) was 
used.  The latest version of the 9” DEM of 
Australia (Hutchinson et al. 2000), and the 
associated flow directions were provided by the 
Centre for Resources and Environmental Studies. 
This elevation model uses the ANUDEM 
interpolation algorithm (Hutchinson 1989) to 
enforce drainage structure and produce gridded 
estimates of elevation. This is the underlying 
dataset to all derived catchment boundaries, and 
has an approximate cell size of 250 m. Using 
standard terrain analysis functions in ESRI 
ArcGIS 9.0 (ESRI 2004), catchments of different 
orders were defined and their scale characterized 
using Strahler stream ordering (Strahler 1957). To 
define the first order streams for this study, a 
threshold accumulation area of 6 km2 was used, 
which coincides approximately with headwater 
streams in 1:250,000 topographic mapping of 
Australia. For this demonstration of the 
classification results, we confine our attention to 
order 4 catchments. Under the catchment 
definition, some areas of the MDB were excluded 
from consideration (see Figure 1). 

The classification described in this paper was 
based on physiographic characteristics of the 
catchments. The attributes described for each 
catchment were generated from either the DEM, 
the Climatic Atlas of Australia (BOM 2003), or 
from the MDB Soil Information Strategy (Bui and 
Moran 2003). A complete list of attributes 
recorded for each catchment is given in Table 1. A 
deliberate decision was made to focus on variation 
in attribute values as much as mean values.  
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The majority of attributes were modelled as 
normally distributed continuous variables, after 
loge-transformation of the original data. However, 
the lithology data could not be modelled in this 
way. These data did not fit any standard 
distribution, and often contained a predominance 
of 0% values. To incorporate these data into the 
classification, we discretised the % cover data into 
10 bins (0-10%, 11-20% etc.), and treated the 
results as multinomial data, which unfortunately 
doesn’t use the natural ordering of bins. 

Obtaining estimates of errors for the spatial data 
proved difficult. The only spatial data for which 
any firm measure of measurement error could be 
ascribed was the elevation model, for which a 
comparison with independent data points found 
peaks to have a RMSE of 20m (GA 2001). This 
error estimate is for a single cell, while catchment 
level data are compiled from thousands of cells. 
Multiple cells will act to greatly reduce the 
average error, but positive spatial autocorrelation 
of the data will partly counteract this effect by an 
amount that is virtually impossible to state. 
Elevation was not actually used as an attribute in 
the classifications due to its close statistical 
correlation with many of the other attributes being 
used, but a number of attributes were derived from 
the elevation model. Errors on these derived 
indices may be calculable at the single cell level, 

but the effects of multiple cells in the catchment 
will again be impossible to enumerate. For the 
climatic data, there was no indication of the 
accuracy of the monthly or yearly estimates. The 
errors are likely to be greater than for elevation 
data, because the climatic surfaces are based on 
interpolations of many fewer data. For these data, 
there is the additional consideration of errors 
across time, since the averages are built up from 
30 individual yearly estimates. In the face of such 
intractable difficulties with estimating reliable 
errors, the measurement error rate was set as 5% 
of the data range for all attributes. We believe that 
this is an overestimate for most (if not all) of the 
attributes considered, and is thus conservative. 

4. RESULTS AND DISCUSSION 

Autoclass found nine classes of catchments within 
the MDB at order-4 scale. The classes are shown 
in Figure 1. It is immediately apparent that the 
geographic clustering of the class members 
suggests strongly that real geographic gradients 
are being identified. The classes seem to reflect an 
altitude and latitude gradient, although neither of 
these variables were included as attributes for the 
classification (Table 1). 

To describe how the classes differ from one 
another, we used the information on the 
importance of the various attributes as given by 
the KLD. As suggested in the Autoclass 
documentation, a cut off of KLD > 1 was 
established to define the point at which an 
attribute distribution was sufficiently different 
from the global distribution to warrant discussion. 
Table 2 shows those class-by-attribute 
combinations that met this criterion. The contents 
of Table 2 can be translated into a brief description 
of each class. 
0 No attributes substantially different from the 

overall distribution for the MDB. 
1 Wet and hilly. High slope, rainfall and 

evapotranspiration. 
2 High levels of coarse-grained sediments, 

variable rainfall. 
3 Long stream segments, few confluences. 

Suggests a fairly uniform landscape, but not 
necessarily flat. 

4 Dry. Low rainfall and evapotranspiration. 
5 Indistinguishable from Class 0. 
6 Flat. Low slope. 
7 Similar to Class 1, but without as much 

evapotranspiration 
8 Wet, hilly and cold. High slope, rainfall and 

evapotranspiration. In addition, low potential 
evapotranspiration suggests cool climate. 

The classes are clearly describing groups of 
catchments with very different physiographic 
profiles, with rainfall and slope being key 

Table 1. Catchment Attributes used in the 
classification 

Attribute 
Area & Perimeter* 
Average Slope 
Stream Segment Length (mean) 
Stream Segment Length (SD) 
Stream Density (i.e. km km-2) 
Stream Confluence Density 
Annual Rainfall (mean) 
Annual Rainfall (range)† 
Annual Actual Evapotranspiration (mean) 
Annual Actual Evapotranspiration (range) † 
Annual Potential Evapotranspiration (mean) 
Annual Potential Evapotranspiration (range) † 
% Coarse Grained Sediments 
% Fine Grained Sediments 
% Acid Volcanic Substrate 
% Basic Volcanic Substrate 
% Granite Substrate 
% Limestone Substrate 
% Water bodies 
* Area and Perimeter were entered separately, 
but are treated as a correlated variable in the 
classification. 
† Data for rainfall and evapotranspiration were 
supplied as monthly averages. Range is highest 
monthly value minus the lowest. 
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variables (Table 2). These two characteristics in 
particular will dramatically affect the ways in 
which streams operate, and thus arguably will 
moderate or exacerbate the effects of land use 
change on the ecological condition of the 
waterways. 

Several features of the results are worth 
highlighting. There are different degrees of 
divergence from the global distribution amongst 
the classes. In accordance with the attribute-level 
divergences noted in Table 2, class 8 exhibits the 
greatest class-level divergence with respect to the 
global class, while classes 0 and 5 have the lowest 
values (actual divergence values not shown). 
However, divergence of the class from the global 
distribution does not necessarily imply class 
strength – the probability that the class model 
could have predicted any given member of the 

class. The class strength data (not shown) tell us 
that class 2 is the strongest, whilst class 4 is the 
weakest. 

Depending on the application, expert opinion 
could be used to lump classes. For example, the 
information in Table 2 suggests that classes 1 and 
7 may be sufficiently similar to combine into a 
single group. Figure 1 shows that catchments in 
these classes lie adjacent to one another, 
supporting such a decision. Similarly, we might 
also consider lumping classes 0 and 5 into a larger 
class. 

The existence of classes 0 and 5 is problematic, in 
that they cannot be readily distinguished from the 
global distribution of attribute values using the 
criteria we have defined here. The value of 
classification for the improved modelling of these 

 
Figure 1. Classes of Order 4 catchments within the Murray Darling Basin. Shading indicates class number, 
according to the key. Blank areas within the MDB are those that cannot be included in the definition of an 
Order 4 catchment as described above. Numbered catchments highlighted by a red border are those for which 
the class was assigned with probability < 0.80 (detailed in Table 3). 
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catchments is limited, as we have not selected a 
subset of physiographic conditions that differs 
from the entire data set. Despite this, it is 
interesting to note that the catchments within these 
classes still tend to group together geographically 
(Figure 1), and thus represent defined groups of 
catchments that are more similar to each other 
than they are to the global set. 

The colouring of classes in Figure 1 does not take 
into account uncertainty in the assignment of 
catchments to classes, and we have previously 
argued that this is a particular strength of the 
Autoclass system. The vast majority of cases were 
assigned to their classes with great certainty (92% 
of cases assigned to their class with probability > 
0.95). However, a small number of catchments did 
not fit ‘neatly’ into the classes defined. Eight 
catchments were assigned to their respective 
primary classes with a probability of < 0.80. 
Arrows and red borders in Figure 1 are used to 
indicate these catchments. Each of these 
catchments had a substantial probability of 
belonging to another class, as shown in Table 3. 

By comparison of these probabilities with the 
locations of the catchments in Figure 1, it is clear 
that these catchments lie on the boundaries 
between clusters of catchments that belong to a 
single class. For all cases, except catchment 167, 
the second most probable class for each catchment 
corresponds to an adjacent group of catchments on 
the map. This is further confirmation that the 

method treats the individual cases in a reasonable 
fashion. How we would choose to use the 
information above is open. We might ignore these 
borderline cases and focus modelling efforts on 
those catchments that belong to their class with 
greater certainty. Alternatively, we may treat these 
cases as special, and attempt to develop specific 
models for each of them. What is clear is that the 
information provided by Autoclass gives us a 
choice, rather than making a definite assignment 
of each case to a class, and then providing no 
information on uncertainty. 

From the results, it is clear that a number of the 
attributes did not contribute to the classification in 
a substantial fashion. The presence of such 
‘nuisance variables’ in the data set can affect the 

Table 2. Distinguishing attributes for the nine classes. Filled cells in the table are those for which the KLD of 
the class-by-attribute combination was > 1. The cell entries show how the modelled class-level distribution 
for the attribute differs from the global distribution. For the continuous attributes the number of ‘+’ or ‘–’ 
shows the number of class-level standard deviations that separate the class-level mean from the global mean, 
with ‘+’ indicating that the class-level distribution is on average greater than the global distribution, while ‘–’ 
implies the opposite. ‘0’ indicates less than one class-level standard deviation separates the two means. For 
the discrete attributes, ‘C’ refers to a particular feature of the class-level multinomial distribution, which is 
compared to the global distribution at the same point ‘G’. Symbols: μ = mean, σ = standard deviation. 
Attributes for which no KLDs were > 1 for any class are not included in this table.  

Class # → 0 1 2 3 4 5 6 7 8 
Mean Slope  + + +     – – – + + + + + + + + + + + 
Seg. Length (μ)    + +      
Seg. Length (σ)        – –  
Stream Density       0   
Conf. Dens.    –      
Rainfall (μ)  + + +   – – –   + + + + + + + 
Rainfall (Range)   + +  –    + + + + + 
AAET (μ)  + +   – – –    + + + 
AAET (Range)  + +   –  – –  + + + 
APET (μ)         – 
APET (Range)         – 
% Coarse 
Grained seds. 

  C: 96% > 0.8 
G: 30% > 0.8 

      

% Granite 
substrate 

        C: 86% > 0.1 
G: 20% > 0.1 

          

Table 3. Borderline cases. Catchments that were 
assigned to their class with p < 0.80, along with 
information on their second most likely class.  

 Primary 
Assignment 

Secondary 
Assignment 

Case # Class Prob. Class Prob. 
12 2 0.718 0 0.282 
19 2 0.534 0 0.464 
21 0 0.714 2 0.286 
23 0 0.618 3 0.382 

116 0 0.785 3 0.171 
167 3 0.587 5 0.413 
175 4 0.662 0 0.332 
359 1 0.685 7 0.315 
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results of classification algorithms (Upal and 
Neufeld 1996), and a new analysis of these data 
might exclude these attributes from further 
consideration. 

One aspect of the results we have not explored is 
the alternative classifications produced by the 
software. In this case, the posterior probability of 
the second most likely classification was relatively 
similar to that for the most likely. A more 
complete treatment would include an examination 
of this second classification to see by how much it 
differs from the first. Lack of space prohibits this 
analysis here, but we believe that a formal 
comparison of alternative models with similar 
posterior probabilities may be a useful way of 
extracting more inferential value from the data. 

5. CONCLUSIONS 

This work is a first attempt to apply Autoclass to 
spatial data to create classes of catchments. The 
question of whether the classes produced by this 
analysis are useful for modelling of catchment-
scale effects on stream ecological condition has 
not yet been addressed. To determine whether the 
described classes are useful for the application 
described in the introduction, we must attempt to 
build some models. It is likely that models will 
suggest that the catchments be re-classified, with 
perhaps fewer or more attributes, and possibly 
with the inclusion of other attributes not 
considered here. Such expert interpretation of the 
results of classification should be viewed as an 
integral part of the iterative classification process, 
and it would be foolish to accept the results of any 
classification without subjecting them to this sort 
of ‘expert filter’ (Cheeseman and Stutz 1996). 

Our work also highlighted that very little 
information is available on the uncertainty of 
spatial information. If such data are to be used for 
robust and realistic model development, 
uncertainties must be quantified and 
communicated. This will form a challenge for 
those responsible for creating and updating these 
data sets. 
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