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ABSTRACT 
 
In order to minimize water quality problems 
caused by cyanobacteria blooms, it is desirable 
to either operationally control or prevent them. 
Computational modelling using artificial neural 
networks (ANN) is one way to contribute to 
both.  It enables not only the forecasting of 
growing algal population abundances several 
days in advance, but also a better understanding 
of both processes and environmental conditions 
that accelerate algal growth and response 
behaviour of algal populations to different 
management. Appropriate measures can then be 
determined and implemented to control the 
growth of algal populations before they reach 
bloom proportions.   
A new approach using both supervised artificial 
neural networks (SNN) and non-supervised 
artificial neural networks (NSNN) was applied 
as a framework to explore 20 years of water 
quality time-series from the Myponga 
Reservoir, South Australia, for knowledge 
discovery and forecasting of phytoplankton 
dynamics.  
The Myponga Reservoir has a history of 
summer blooms of the toxic cyanobacteria 
Anabaena.  Anatoxin-a, produced and released 
by Anabaena, not only disintegrates aquatic 
food chains bottom up but also imposes costs 
for water treatment and restrictions on water 
consumption.  In order to prevent summer algal 
blooms in the Myponga Reservoir artificial 
mixing has been implemented as an operational 
control measure since the 1980s. 
In the present study, firstly recurrent SNN 
demonstrated their capability to perform 7-
days-ahead forecasting of timing and 
magnitudes of chlorophyll-a (Chl-a) for two 
years of unseen data, which were different in 
management. Secondly, the combination of 

ordination by NSNN and sensitivity analysis by 
SNN revealed relationships between water 
temperature, PO4-P and NO3-N concentrations 
and Chl-a dynamics. Finally, ordination and 
clustering of four 2-year-periods of water 
quality time series, which differed in intensity 
and methods of artificial mixing, provided 
insights into effects of management on 
chemical and biological water quality 
properties. 
Results of the Chl-a forecasting by SNN 
demonstrated that using PO4-P, NO3-N, water 
temperature and turbidity as input variables 
only allowed forecasting of basic trends in Chl-
a dynamics. The integrated application of 
NSNN and SNN demonstrated that qualitative 
relationships between water quality parameters 
discovered by ordination and clustering could 
be quantitatively determined by sensitivity 
analyses.  It revealed specific temperature and 
nutrient ranges that favour phytoplankton 
growth.   
NSNN applied to the more complex task of 
examining water quality changes between 
periods of years with different management 
regimes indicated that both seasonal shifts as 
well as changed magnitudes of nutrients, metals 
and Chl-a occurred in response to periods with 
stratification and changed mixing strategies.   
It can be concluded from this study that the 
combined applications of SNN and NSNN 
provide a useful framework not only for 
forecasting phytoplankton dynamics but also 
explaining complex ecological relationships 
driving these dynamics.  The so gained 
information can facilitate early warning and 
improve causal understanding of algal blooms. 
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1.   INTRODUCTION 
 
Cyanobacteria blooms in drinking water 
reservoirs impose high water treatment costs 
and restrictions on water consumption.  To 
prevent or operationally control such events is 
therefore highly desirable. Computational 
modelling by using artificial neural networks 
(ANN) can contribute to this aim.  ANN enable 
not only the forecasting of phytoplankton 
growth several days in advance but also a better 
understanding of processes and environmental 
conditions that accelerate algal growth, and how 
specific algal populations respond to different 
management (Recknagel et al. 2005a; 
Recknagel et al., 2005b) 
The Myponga Reservoir has a history of 
summer blooms of the toxic cyanobacteria 
Anabaena.  Anatoxin-a, produced and released 
by Anabaena, not only disintegrates aquatic 
food chains bottom up but also imposes public 
health risks.  One ongoing practice to 
operationally control the biomass of 
cyanobacteria in the Myponga Reservoir is the 
application of CuSO4 as algicide up to 5 times 
during the summer season (Lewis et al. 2003).   
In an attempt to prevent algal blooms and 
therefore avoid the controversial CuSO4 
treatment, different artificial mixing strategies, 
including aeration and mechanical mixing have 
been applied since the 1980s with insufficient 
success.   
This paper features preliminary results from an 
integrated application of supervised artificial 
neural networks (SNN) and non-supervised 
artificial neural networks (NSNN) for water 
quality ordination, clustering and Chl-a 
forecasting for the Myponga Reservoir, South 
Australia, based on 20 years of data.  Firstly 
recurrent SNN demonstrated their capability to 
perform 7-days-ahead forecasting of timing and 
magnitudes of Chl-a for two years of unseen 
data, which were different in management. 
Secondly the combination of ordination by 
NSNN and sensitivity analysis by SNN 
revealed relationships between water 
temperature, PO4-P and NO3-N concentrations 
and Chl-a dynamics. Finally, ordination and 
clustering of three 2-years-periods of water 
quality time series, which differed in intensity 
and methods of artificial mixing, provided 
insights into effects of management on 
chemical and biological water quality 
properties.  
 
 
2.  STUDY SITE & DATA 
 
Myponga Reservoir is situated approximately 
70km south of Adelaide and is fed by the 

Myponga River.  It provides vital water supply to 
southern metropolitan areas of Adelaide and the 
Fleurieu Peninsula.  The catchment area has an 
average annual rainfall of 750mm and originates 
in the Adelaide foothills with dominant land use 
estimated to be 62% livestock grazing and 24% 
dairying (Smalley, 1998; Thomas et al., 1999).  
Table 1 summarises major characteristics of the 
reservoir. 
Every summer Myponga Reservoir undergoes 
thermal stratification due to the increased energy 
from radiation and decreased water inflow from 
the catchment.  In the past the stratification 
combined with the highly coloured and nutrient 
rich water created optimal conditions for the 
growth of algae, particularly cyanobacteria (Kelly 
1998).  Major bloom events are often in mid-
January, although management is on alert from 
December to March annually (Burch, personal 
communication, 2005).  Artificial mixing is in 
place from October to March annually. 

Table 1. Characteristics of Myponga Reservoir 

Surface area 2.8 km2 
Max. volume 26,800 ML 
Max. depth 36m 
Mean depth 15m 
Water residence time Approx. 3 years 
Catchment area 124 km2 

 

Table 2.  Myponga Reservoir database details 

Variable Years Mean/Min/Max 
PO4 1986-2003 0.022/0.005/0.09
NO3 1986-2003 0.11/0.001/0.37 
Chl-a 1986-2003 7/0.2/41.6 
Turbidity NTU 1986-2003 4.4/1.2/30 
Water temp. 1986-2003 16.1/8.4/25 
Iron 1986-2003 0.55/0.05/1.11 
Manganese 1986-2003 0.025/0.005/0.12
 
As the measurement intervals of the raw data (see 
Table 2 for summary) were highly irregular and 
sampling dates were different for physical, 
chemical and biological data, it was necessary to 
interpolate the data to create consistent daily 
values as required for the development of ANN 
models. 
 
 
3.  METHODS 
 
A recurrent SNN (Pineda, 1987) was used for the 
present study, as they have proved very powerful 
for time-series modelling of phytoplankton 
dynamics (Recknagel, 2001; Walter et al., 2001; 
Gurbuz et al., 2003; Jeong et al., 2003).  
Recurrent SNN are modifications of a typical 
backpropagation SNN in that when calculating 
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the output for a given time (t), not only external 
input variables are considered, but also fed back 
activation weights from the time step before (t-1). 
 A recurrent SNN was developed using 
NeuroSolutions 4.2 (NeuroDimension, 2003) to 
forecast Chl-a values 7 days ahead, using 16 
years of data for training (1986, 1988-1999 and 
2001-2003), and two years for testing (1987 and 
2000).  Data used for training consisted of the 
input variables water temperature, PO4, NO3 and 
turbidity.  The forecasting results were validated 
with the two years of independent data that were 
not used for training of the SNN.  The SNN was 
designed with one Hidden Layer of 16 processing 
elements (nodes), the Tanh Axon (hyperbolic) 
transfer function and the Momentum learning 
rule. A comprehensive sensitivity analysis was 
conducted by means of the recurrent SNN to 
discover relationships between the input variables 
water temperature, PO4, NO3 and turbidity and 
the output variable Chl-a. 
NSNN, specifically Kohonen SOMs (Kohonen, 
1982), were developed using Matlab 6.5.1 (The 
Math Works Inc, 2003) and the SOM toolbox to 
ordinate, cluster and visualise water quality and 
Chl-a data with respect to seasons, water 
temperature, ranges of nutrients and artificial 
mixing strategies.  This method allows the 
discovery of significant patterns in the input data 
similar to the traditional Principal Component 
Analysis (Jongman et al., 1987), whilst also 
having the ability to cope with non-linearities 
(Boddy & Morris, 1999). 
 
 
4.  RESULTS & DISCUSSION 
 
Figure 1 illustrates the 7-days-ahead forecasting 
results for Chl-a by the recurrent SNN where two 
independent testing years were selected from 
periods of different management regimes, 1987 
was without artificial mixing and during 2000 
surface mixers and a 200m aerator were used.  

Figure 1.  7 day ahead forecasting of Chl-a 
dynamics using SNN for 2 testing years. 

 

The results show that the recurrent SNN predicts 
the seasonal dynamics well but underestimates 
peak events of Chl-a concentrations in summer 
1987.  The testing year 1987 experienced a 
unique autumn peak which has not been observed 
in any of the remaining years used for training.  
The slight overestimation of Chl-a in early 2000 
may reflect realistic conditions, but algal biomass 
control by CuSO4 took place, resulting in the 
drastic drop of Chl-a and prediction inaccuracy.  
Unpredictable events, such as CuSO4 dosing, lead 
to difficulties in accurate forecasting for highly 
managed water bodies such as Myponga 
Reservoir. 

 
Figure 2. K-means map for temperature ranges 

(top left) with corresponding component plane for 
Chl-a (top right) in Myponga Reservoir; 
sensitivity curve for Chl-a in response to 

temperature change. 
 
Sensitivity analyses produced in conjunction with 
the SNN demonstrated relationships between the 
input variables and the output (Chl-a), and were 
combined with qualitative ordination and 
clustering by NSNN.  Figure 2 shows the 
relationship between Chl-a and water 
temperature.  As the SNN sensitivity curve (Fig. 
2, bottom) indicates, Chl-a increases steadily 
between 13 and 18°C, and levels off at its 
maximum between 19 and 20°C.  These findings 
are backed up by the NSNN-based ordination and 
clustering of Chl-a regarding 3 temperature 
ranges (Fig. 2, top).  Whilst Chl-a concentration 
is lowest in the temperature range below 14°C, it 
reaches its maximum in the range above 19°C.  
As previously explained, cyanobacteria tend to 
have high abundances in summer and autumn in 
Myponga Reservoir, and in general, 
cyanobacteria are known to prefer high water 
temperatures (Shapiro, 1990; Reynolds, 1984).  
The stimulating effect of temperature can be both 
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direct and indirect.  The indirect effect occurs 
when the pelagic zone thermally stratifies, typical 
for Myponga data before 1988. It may not be 
exclusively the water temperature that attracts the 
higher algal abundances, it may also be some 
other conditions which coincide with the warmer 
weather.  Thermal stratification enables buoyancy 
regulation by some types of cyanobacteria 
possessing gas vacuoles, allowing them to adjust 
their vertical position in the water column for 
access to solar radiation at the surface layers and 
nutrients near the thermocline (Reynolds, 1984). 

 
Figure 3. K-means map for NO3 ranges (top left) 
with corresponding component plane for Chl-a 
(top right) in Myponga Reservoir; sensitivity 
curve for Chl-a in response to NO3 change. 

 
Figure 4. K-means map for PO4 ranges (top left) 
with corresponding component plane for Chl-a 
(top right) in Myponga Reservoir; sensitivity 
curve for Chl-a in response to PO4 change. 

 

The sensitivity analysis in Fig. 3 (bottom) shows 
that Chl-a decreases with increasing NO3 
concentrations, and peaks at concentrations of 
0.02 to 0.03mg/l.  The corresponding ordination 
and clustering of Chl-a related to 3 ranges of NO3 
concentrations (Fig. 3, top) confirms these 
findings with Chl-a abundance peaking in an area 
corresponding to the lowest NO3 concentration 
range (<0.1mg/L) on the k-means map.  There are 
two possible explanations for this result.  On the 
one hand, it could be postulated that at the time of 
fast algal growth, NO3 consumption is highest 
causing inverse effects.  Alternatively Anabaena, 
the dominating cyanobacteria in summer, is well 
known to perform nitrogen fixation by 
heterocysts and continue to grow during stages of 
NO3 deficiency (Reynolds, 1984). 
Fig. 4 reflects the relationship between PO4 and 
Chl-a concentrations.  Similar to Fig.3, it reveals 
that highest Chl-a concentrations coincide with 
low PO4 concentrations.  PO4 is most likely to be 
the limiting nutrient in Myponga Reservoir due to 
minimal nutrient influx from the catchment runoff 
during summer (Smalley, 1998), so its inverse 
relationship with Chl-a seems to be determined 
not just be the PO4 consumption by algae.   
Anabaena often peaks in summer at low PO4 
concentrations, which may be due to their 
capability to maximise nutrient uptake during 
times of depletion (Sommer, 1989).  
Fig. 5 visualises results of the seasonal 
ordination and clustering of major water quality 
variables of the Myponga Reservoir, by means of 
NSNN, for four periods with different mixing 
conditions.  It shows that during the period from 
1986 to 1987 (Fig. 5, left column), when no 
artificial mixing was used and the reservoir 
experienced thermal stratification, Chl-a was 
highest in summer and autumn with a maximum 
of 15.9ug/L.  Anabaena reached highest 
abundance at 1320 cells/ml in autumn and PO4 
concentration was greatest in winter and spring 
with a maximum of 0.056mg/L.  The 
concentrations of Manganese (Mn), that also 
have implications for drinking water quality 
were high in summer and autumn with a 
maximum of 0.03mg/L. 
During the period from 1988 to 1989, when 3 
submersible mixers were used (Fig. 5, second 
column from left), the abundance of Anabaena 
was highest in spring with a much lower 
maximum of 852 cells/ml compared to the 
previous period with stratification.  This result 
suggests that the introduction of artificial mixing 
succeeded in creating an unsuitable environment 
for the species, leading it to peak in a different 
season, at a level of half its abundance in the 
previous period where no mixing was used.  
Although Chl-a was lower as well, it still peaked 
in autumn, and was obviously not caused by 
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Anabaena.  The lower Anabaena and Chl-a 
abundances in 1988 to 1989 were also reported 
by Velzeboer et al. (1991), with the conclusion 
that the mixers were successful in reducing total 
algal biomass.   Interestingly, the results in Fig. 5 
indicate a slight decrease of PO4 concentrations 
in 1988 to 1989 compared to the previous period 
with stratification.  This result may hint at lower 
internal PO4 loading from anaerobic sediments 
since mixing aims to maintain aerobic conditions 
at the sediment.  In contrast, the Mn 
concentrations increased in the same period and 
peaked in summer. During the period from 1990 
to 1991 (Fig. 5, third column from left) an 
aerator was implemented to the Myponga 
Reservoir, which resulted in an increase of Chl-a 
similar in concentration to the period with 
stratification, but different regarding seasonality 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with maximum concentrations in autumn and 
winter.  The PO4 and Mn concentrations also 
increased slightly.  
Finally, the period from 2000 to 2001 (Fig. 5,  
right column), where a combination of surface 
mixers and aerators was implemented, showed 
very similar patterns as the period with 
stratification where Chl-a peaked in summer 
and autumn with higher magnitude, PO4 peaked 
in spring and winter at a higher concentration 
and Mn peaked in autumn with a higher 
concentration. Mn concentration consistently 
increased throughout the periods and peaked in 
autumn in all periods.  This is possibly due to 
sediment release that may occur during the 
warmer seasons of summer and autumn, when 
stratification can potentially occur. 
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5.  CONCLUSION 
 
The present study used a new approach for the 
exploration of ecological time-series both 
qualitatively and quantitatively.  It can be 
concluded that the combined applications of 
SNN and NSNN provide a useful framework 
not only for forecasting phytoplankton 
dynamics but also explaining complex 
ecological relationships driving these dynamics.  
A major criticism of ANNs has been that they 
are ‘black box’ models, which give no 
indication of the processes involved in the 
modelled system.  The use of sensitivity 
analyses performed on the training data of 
SNNs rectifies this issue by revealing how 
changes in the input variables affect the output, 
thereby giving SNN an explanatory quality in 
addition to predictive capabilities.  The so 
gained information can facilitate early warning 
and improve causal understanding of algal 
blooms.   In future, this method will be linked 
to online water quality monitoring, which will 
enable real-time forecasting of phytoplankton 
dynamics and the development of early warning 
systems for algal blooms.   
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