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EXTENDED ABSTRACT 

Global modelling approaches construct a single 
model that covers all of the training data or data 
used to describe a system. However, for many 
problems, especially in the natural sciences, the 
system under consideration is best understood in 
terms of a number of distinct states, with different 
patterns and processes operating for each state. 
The issue of state-based modelling, where 
different models are constructed for different 
states, brings in several issues that need to be 
addressed, including: how are the states 
determined, how are they represented, how does 
the modelling of the system determine which 
states are appropriate during some phase of 
modelling, and how are state transitions 
determined.   

The self-organising map (SOM) is a topologically 
based unsupervised clustering algorithm 
(Kohonen 1982) that constructs prototypical 
descriptions of the dataset in a spatially structured 
format.  The resulting clusters are traditionally 
positioned on a two-dimensional map, where 
neighbors on the map are similar prototypes 
representing the cluster centers for a subset of the 
data.  Visualizing the prototype values on the map 
may then be used to indicate relationships 
between variables on the SOM – variable values 
that cluster together are associated with each 
other.  The SOM has been successfully applied to 
a variety of ecological data sets for visualization 
of relationships and representations of state 
change in ecological systems (Giraudel and Lek 
2003).    

Traditional modelling of ecological systems have 
used global models, such as artificial neural 
networks or multivariate linear regressions, to 
produce predictive models that allow the 
important variables and processes of a system to 
be studied.  Although they have been generally 
successful, a single global model may not allow 
an understanding of how the system changes in 
state and which variables are important under 
different conditions.  

This paper addresses the problem of modelling and 
knowledge elucidation for multivariate, real-valued 
data sets using a SOM to cluster the training data, 
and then construct local linear regression models 
for each SOM neuron (best matching unit, bmu).  
The minimum number of examples to be used by 
each local regression is used to specify the degree 
of generalization for each local model. The basic 
framework of the model, named SOM-MLR, is 
shown in Figure 1. 

 

 

 

 

 

 

 
 

Figure 1. The SOM-MLR Framework 

The minimum regression size is determined using 
either a cross-validation procedure, or the Akaike 
information criteria (AIC).  This allows either 
global or local tuning of each regression model to 
occur.  Since the final models are all linear 
regressions a variety of sensitivity analyses are 
possible.  This paper will demonstrate the use of 
two approaches: the local correlation coefficient for 
each regression to indicate the relationship of each 
independent variable under a variety of states, and a 
local response curve based on using the prototype 
values from the SOM. 
 

The properties of SOM-MLR are demonstrated by 
modelling the bloom dynamics of Microcystis 
aeruginosa for a regulated river system. The 
predictive performance and sensitivity analyses of 
the model highlights the benefits of using a local 
modelling approach to complex ecological systems.  
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1. INTRODUCTION 

The Self-Organising Map (Kohonen 1982, 
Kohonen 2001) is a topologically-based 
unsupervised clustering algorithm that has been 
successfully applied to a variety of ecological data 
sets for visualisation of relationships and 
representation of state changes in ecological 
systems (Giraudel and Lek 2003).    The SOM has 
been applied to such problems as aquatic insect 
richness (Park et al. 2003), fish assemblages 
(Brosse et al. 2001),  community structure (Chon 
et al. 1996, Giraudel and Lek 2001)  and stream 
ecosystems (Schleiter et al. 2002).  The popularity 
of SOMs suggests that ecological problems can 
often be described by a set of local states, with 
potentially different processes and contexts 
operating for each state.  

Traditional modelling of ecological systems have 
used global models, such as artificial neural 
networks or multivariate linear regressions, to 
produce predictive models that allow the important 
variables and processes of a system to be studied.  
Although they have been generally successful, a 
single global model may not allow an 
understanding of how the system changes in state 
and which variables are important under different 
conditions.  In particular, analysis of correlation 
with a global model can often lead to a poor or 
misleading understanding of how a variable 
interacts with the dependent variable.  For 
example, if a variable is negatively correlated with 
the dependent variable for some states of the 
system, and positively correlated for other states, 
the resulting global model may determine that 
there is no strong correlation one way or the other 
(Piras and Germond 1998).  Since understanding 
an ecological system often involves the boundaries 
of behaviour (such as when algal blooms are high 
or low), a global model is not always going to 
allow an understanding of this change in state, 
even though the model has good predictive 
behaviour.  The advantage of constructing local 
versus global regression models has been clearly 
argued by Fotheringham (2002), where spatially 
varying regression models are described.  
Although a global model can be used for overall 
trends, when a system behaves differently under 
different states a set of local models, associated 
with each state, may produce more valid 
interpretations of the underlying system behaviour.       

This paper addresses the problem of modelling and 
knowledge elucidation for multivariate, real-
valued data sets using a SOM to initially cluster 
the training data, and then constructing local linear 
regression models for each SOM neuron. A 
generalisation operator will be described that 

allows the local linear models to avoid over-fitting 
by exploiting the topological nature of the SOM.  
The use of local linear models also allows a 
number of approaches to interpreting the important 
variables of the system, their correlation with the 
dependent variable under a variety of states of the 
system, and their contribution to the dependent 
variable response as the state of the system 
changes. The system will be referred to as SOM-
MLR.  

The remainder of this paper is organised as 
follows: §2 gives background on previous related 
work and local modelling approaches, §3 describes 
the general algorithm for local model construction, 
§3.1 outlines the generalization operators, §3.2 
describes the modelling process, §3.3 presents the 
local analyses tools, and §4 applies SOM-MLR to 
the modelling and interpretation of M.aeruginosa 
for a regulated river systems. Finally, §5 
summarizes the work and addresses future 
research. 

2. RELATED WORK 

This section describes previous local approaches to 
modelling using a SOM.  Although the approach is 
not new, the application of the general concept to 
ecological systems has not been considered. 

 Early work (Walter et al. 1990) focused on 
predicting highly non-linear time sequence data 
using a set of linear regressive models and a 
current state vector derived from a SOM. This 
approach did not take into account the topological 
characteristics of the SOM for generalization, and 
was specifically designed for time series trajectory 
analysis.  A second time series approach was 
described by Principe and Wang where the SOM 
neurons and their local neighbourhood were used 
to construct local linear predictors (Principe and 
Wang 1995).  In this work each model was based 
on a local neighbourhood of neuron vectors, 
however the training data were discarded once the 
SOM vectors were determined. 

Vesanto (1997) used a SOM to partition and 
preserve the training data in a similar manner to 
SOM-MLR.  A linear regression model was then 
constructed for each local training set.  Although 
Vesanto mentions the issue of a minimum local 
data set size to ensure the stability of the 
regression, no further comments are made 
regarding how this might influence the 
generalization of the overall model.  A similar use 
of a SOM for partitioning time series data 
(Lendasse et al. 1998) was used where the average 
of each data item within a cluster was used to 
construct an initial matrix of values.  
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A local SOM approach for selecting relevant input 
variables for non-linear regression is described in 
Piras (1998).  Here a linear correlation coefficient 
is constructed over the local data that has been 
partitioned by the SOM.  This work demonstrated 
that a local modelling approach combined with 
linear regressions can produce interpretations of 
variable interaction that cannot be easily 
distinguished by a global modelling approach.  

To date there is little work on applying local 
modelling approaches to ecological systems.  In 
particular, the use of a SOM as a clustering tool 
that allows local linear models to be constructed 
for ecological visualization and prediction has not 
been considered, and hence this paper presents 
some of the properties of such an approach.   

3. THE SOM-MLR FRAMEWORK 

This section assumes knowledge of the principles 
behind self-organising maps.  A more formal and 
complete description can be found in Hautaniemi 
(2003) or Kohonen (2001).  

Multiple linear regression assumes a continuous 
random dependent variable, y, and n independent 
variables x1,x2,…xn.  The values of the 
independent variables are known quantities and 
hence the model is defined as: 
 

εxβ...xβxββy nn22110 +++++=                      (1) 

where ε is a normally distributed random variable 
with mean zero and unknown standard deviation.  
The estimates for each β and ε is performed using 
a least squares minimization based on a set of data 
(or patterns) pi(x1,x2,…,xn,y), to produce the 
regression model: 
 

nn22110 xβ̂...xβ̂xβ̂β̂ŷ ++++=                       (2) 

The two-dimensional SOM is defined as a lattice 
of points mi(x,y).  Associated with each point or 
neuron mi is an associated set of weights (also 
called a codebook or prototype), wi ∈

1+ℜn  which 
are trained to match a generalised description of 
the pattern data.   Define the function d(a,b) as the 
Euclidean distance between two n-dimensional 
components, a and b.  Hence the distance between 
two neurons, mi, mj, on the lattice is d(mi,mj), and 
the distance between a pattern pi and neuron 
weight wj is d(pi,wj).  Training of the SOM occurs 
by repeatedly presenting the set of patterns, and for 
each pattern p selecting the best matching neuron 
or unit (bmu) mc, defined as the neuron with the 

minimum distance between the presented pattern p 
and the current SOM neuron weights wc: 
 

)),(d(min),d( iic wpmp =                                 (3) 

The best matching neuron (mc) weights, and those 
within the current neighbourhood, are then 
updated, based on the current learning rate.  
During training the learning rate and 
neighbourhood size are gradually reduced to allow 
convergence of the prototype weights.   At the 
completion of training each pattern vector wi 
associated with mi represents a prototype vector of 
the training data.  The topological training of the 
SOM implies that neighboring neurons generally 
having similar weight vectors, and therefore 
represent similar states.  For SOM-MLR, the 
training (pattern) data is now partitioned to the 
SOM, where for each pattern p the best matching 
unit mc is determined, and the pattern stored with 
this neuron.  This set of patterns is referred to as 
Pi.  The final partition set, Ri, used to construct the 
local regression equations, requires a minimum 
partition size for each mi.  The process of 
constructing Ri will now be described.   

3.1. Generalizing SOM-MLR 

The concept of generalization is fundamental to 
producing a model with good prediction behavior 
with previously unseen data.  In the case of SOM-
MLR this involves determining either a global 
minimum regression size, applied to all local 
partitions of the training data, or a local minimum 
regression size, applied independently to each 
SOM neuron.  

At the start of this process, each Ri is set to the 
corresponding Pi for each neuron mi.  Increasing 
the number of patterns in Ri involves adding 
patterns Pj from the neighborhood of mi, where 
each additional partition list is selected based on 
their neighborhood and their neuron distance d(mi, 
mj).  This process is repeated with increasing 
neighborhood distance until the desired minimum 
number of patterns in Ri has been achieved. 

The global minimum regression size may be 
determined in two ways: using a cross-validation 
of the training data to find the optimal regression 
size by minimizing the mean squared error over 
the validation set, and by applying a modified 
Akaike Information criteria (AIC) (Hurvich and 
Simonoff 1998), which measures a tradeoff 
between model complexity and model accuracy.  
In this case the average AIC is calculated over all 
local regression, and this figure is used to represent 
the global measure of model suitability.  Since 
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there are only a finite number of possible 
increments to the minimum regression size an 
exhaustive search of all increments of training size 
is possible.  The cross-validation result, or AIC, 
can be recorded for each increase in minimum 
regression size, and the performance of the best 
resulting model used as the global minimum 
regression size for the model. 

Local generalizing is performed using the AIC 
measure.  Each SOM partition is gradually 
increased using the neighborhood training 
examples, and the minimum AIC measure over all 
possible partition sizes used for each SOM node.  
Hence the minimum regression size may be 
different for each SOM node. 

3.2. The SOM-MLR Prediction Process 

Once the final partitions R have been formed and 
the associated regression equations constructed for 
each Ri, predictive modelling may occur. Given a 
test pattern pi(x1,x2,…,xn), the best matching SOM 
unit mc is determined based on the minimum 
distance between pi and the SOM neurons.  Note 
that this does not include the independent variable 
y in the distance measurement. The regression 
equation associated with mc is then used to predict 
the independent variable y for the given pattern pi. 
Hence for each pattern presented for prediction, 
the SOM is used as the gating mechanism to select 
the local model, as shown in Figure 1.  

3.3. SOM-MLR Sensitivity Analysis 

Ecological modelling aims to produce both robust 
models for prediction and to understand how the 
underlying processes in a system interact.  This 
exploration of how the response of a model can be 
apportioned to different sources of variation and 
how the model depends on the information 
presented to it is generally termed sensitivity 
analysis (Saltelli 2000).  

The local models used with SOM-MLR are linear 
equations of the form of Eqn. (2), and therefore a 
number of simple methods for exploring the 
underlying properties of the modelled system are 
possible.  One approach to interpreting the local 
model contributions is to determine the correlation 
coefficient for each Ri (Piras and Germond 1998), 
and mapping this for each state of the SOM.  This 
has been previously shown to allow changes in the 
contribution of each independent variable to be 
assigned to particular states of the system.  The 
plot of correlation coefficient for each mi is 
ordered based on increasing dependent variable 
prototype value, and therefore allows both the 

positive and negative correlations in the variable 
for different states to be described.   

A common form of sensitivity analysis is to model 
the response of the dependent variable as one 
independent variable is varied (Jeong et al. 2001, 
Scardi and Harding 1999).  Normally the 
remaining independent variables are held constant 
(typically set to the mean value for each variable) 
while the selected variable is altered.  This allows 
a general measure of the response of the dependent 
variable to the selected independent variable, 
however it does not consider the possible 
interactions between independent variables due to 
their mutual correlations.  Since the control of 
correlation within a sample is important if 
meaningful results are to be obtained, a method for 
producing sampling values that go beyond a 
simple mean value is desirable (Helton and Davis 
2000).   This is achieved in SOM-MLR by using 
the prototype vectors associated with each neuron 
as typical values of the independent variables.  
Hence, as a given independent variable is varied 
from its lowest to highest measured value by 
incremental steps, the best matching neuron is 
selected for each step, and the associated 
regression equation used for prediction, with all 
other independent variables taking on the 
prototype values associated with the matching 
neuron.  Although this does not explicitly build a 
model of correlation between variables, the use of 
prototype values for the “fixed” independent 
variables means that the combination of input 
values to each local regression is meaningful.  A 
plot showing the dependent variable response for a 
range of values of the selected independent 
variable can now be used to interpret the 
dependencies between the selected variable and the 
modeled system. 

4. INVESTIGATING BLOOM DYNAMICS 
FOR A RIVER SYSTEM 

This section will demonstrate the use of SOM-
MLR for modelling the dynamics Microcystis 
aeruginosa in the lower Nakdong River, South 
Korea.  The dataset has been previously described 
and modelled by (Jeong et al. 2003) and is 
interesting since the system is externally driven by 
regulation controls and has a complex ecological 
response due to the changes in flow throughout the 
year.  Since the majority of limnological data for 
the lower Nakdong exhibits distinct inter-annual 
variation, and there is a strong seasonal weather 
response, it is expected that a local state-based 
approach should be a useful tool for exploring the 
properties of the system.   In this section the entire 
dataset will be used to construct a model, and 
some sensitivity analysis performed to explore the 
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underlying properties of the system.   
Subsequently in §4.3 a SOM-MLR model will be 
constructed based on training data for 1995-1998 
and the predictive behaviour for 1994 presented.  

4.1. Experimental Setup 

The SOM dimension was determined by the ratio 
of the two largest eigenvalues of the eigenvectors 
of the training data (Kohonen 2001).  Using this 
ratio the dimensions were set based on the 
heuristic that the number of neurons should be 
approximately the square root of the number of 
training examples.  This gave a SOM of 
dimensions 10x21.  The SOM was then linearly 
initialized to allow quicker convergence, although 
(unpublished) experiments showed that the system 
was quite robust to parameter settings.  The 
number of training epochs was set at 1000, with an 
initial learning rate of 0.1.  All data were 
normalized to a mean of zero and standard 
deviation of 1.  The AIC measure was used to 
locally determine the minimum regression size for 
each neuron. The river data were lagged by one 
day between independent and dependent variables, 
so that the inferred model was predicting one-day-
ahead prediction. 

4.2. Modelling the complete dataset 

 

Figure 2.  Model Prediction for M.aeruginosa 
(cell count abundance) 

The resulting model for all years had an r2 of 0.8, 
which showed that the model was not over fitting 
the data. The resulting prediction for M.aeruginosa 
is shown in Figure 2. The main point to note 
regarding the dynamics of the system are that there 
are bloom peaks interspersed with very low values, 
perhaps suggesting that the system moves between 
different states.   

A comparison of this model with a global 
regression highlights some of the advantages of a 
local modelling approach. To enable this 
comparison a second model using SOM-MLR was 
constructed, using a SOM architecture of 2x1 
neurons.  This gave just two possible states to 
represent the system, and therefore approximated a 
global model. This global model had an r2 of 0.36, 
and although this model predicted the timing of the 

events, the magnitude of each bloom was well 
underestimated (data not shown).  As will be 
shown, the global model also had some limitations 
when interpreting the system response. 

The correlation coefficient for the range of 
M.aeruginosa values is shown in Figure 4 for the 
local and global SOM-MLR models.  The global 
model implied that many of the independent 
variables, such as  secci depth, silica, ammonia-N, 
dissolved oxygen, and so on had almost no 
correlation with M.aeruginosa abundance.  
However, the full local SOM-MLR model shows 
that these and other variables have a more complex 
relationship to the dependent variable, and change 
their correlation particularly from low to high 
M.aeruginosa abundance.  For example, secci 
depth showed a positive correlation for low 
abundance, and a negative correlation for high 
abundance.  Similar changes in relationship based 
on different abundance states can be seen for many 
of the variables, highlighting that the interactions 
of the system are more complex than indicated by 
the global model. 

The response curves for increasing values of the 
independent variables are shown in Figure 5, along 
with the global model response curves.  Once 
again the local model shows significantly different 
behavior from the global model, and indicates 
some  general  non-linear  trends, even  though  the 
underlying local models are linear in form.  For 
example, the responses for Cladocera and O.limosa 
suggest high abundance for low values of these 
independent variables, which decay non-linearly as 
their values increase.  The local model responses 
also suggest more complex dynamics over the 
complete range of independent variables than the 
global model, and could be used to suggest 
hypotheses regarding the interactions of the 
measured elements of the system.  

4.3. Prediction Accuracy on unseen data 

 

Figure 3.  1994 Abundance Prediction 

To demonstrate that the SOM-MLR approach 
allows reasonable predictive accuracy on unseen 
data, the previous setup was trained using the years 
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1995-1998, and withholding the 1994 data.  The 
final model prediction for 1994 had an r2 of 0.46, 
which is comparable to the genetic programming 
approach described in (Jeong et al., 2003).  The 
resulting behaviour is shown in Figure 3, where it 
can be seen that the timing of blooms are well 
modelled, although the magnitudes are not always 
correct. 

5. CONCLUSIONS 

This paper introduces the benefits of a local 
modelling approach for ecological data analysis 
and exploration.  The use of a SOM for clustering 
and gating of the local models offers the benefits 
of a SOM for visualization of the dataset, as well 
as a topological neighborhood to control the 
generalization of the local models.  The sensitivity 
analyses presented here show just some of the 
possible approaches that could be used with this 
clustering  framework,  and  demonstrates  that  the  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

use of local versus global models allows more 
information regarding the state-based behavior of 
ecological systems to be presented and analyzed.  
There are a number of important issues to be 
studied with this framework, including how robust 
the system is to changing SOM architectures, the 
use of other information metrics for model 
generalization, extensions to the basic linear 
regression formalism of the models and a formal 
justification for the construction of the regressions 
based on the topological neighborhood of the 
SOM.  Clearly, however, the approach of local 
modelling should become a standard tool for 
complex system modelling and prediction. 
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Figure 4.  Correlation coefficients for local and global (dashed) models.  X axis is for increasing abundance. 

 

 

Figure 5.  Response curves for local and global (dashed) models.  Y axis is M.aeruginosa 
abundance. X axis varies based on the variable under consideration. 
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