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Abstract: In 2003, SARS was a serious health concern in Canada.  As of September 3 of that year, the 
Public Health Agency of Canada reported a total of 438 cases: 251 Probable (247 Ontario, 4 British 
Columbia) and 187 Suspect (128 Ontario, 46 British Columbia).  Although the outbreak was short-lived, 
more than forty people died from the disease. 

A substantial database evolved as a consequence of control efforts.  Specimens began to be received and 
tested at the National Microbiology Laboratory (NML) in Winnipeg, Manitoba, on March 17, 2003.  NML’s 
SARS database contains more than 12,000 records and 192 variables, with variables detailing clinical/ 
diagnostic (17), microbiological (143), epidemiological (25), and administrative (7) features.  Clinical 
variables include: diarrhea, difficulty of breathing, severity of illness, systemic status, date of onset of illness, 
case status, case status modification, and case status modification date.  Diagnostic variables include: fever, 
chest X-ray change, cough, shortness of breath, contact with probable case, travel, source of exposure, and 
contact type.  Epidemiological data include: date of birth, age, sex, epidemiology cluster, and employment 
status.  Administrative data include: patient’s last name, first name, temporal data (date of collection of the 
specimen, date of its receipt, and first date of hospitalization of the patient) and spatial data (origin of 
specimen, and identity of the hospital).   

A wide variety of laboratory tests are included in the database: Enzyme-Linked Immunosorbent Assay 
(ELISA, 7 variables), Immunofluorescence Assay (IFA, 7); plaque reduction neutralization test (PRN, 3); 
cytopathogenic test (CPE, 2), and electron microscopy test (EM, 8).  There are tests for Coronavirus (13 
variables), human metapneumovirus (hMPV, 16), circovirus (Circo, 4), porcine circovirus (PCV1, 6), TT-
virus (TTV, 7), TTV-like-mini-virus (TLMV, 7), Hantaanvirus (1), Rhinovirus (3), and Paramyxovirus (3).  
Nested PCR, RT-PCR, and sequencing tests are common among the viruses.  

The NML-SARS database evolved as part of an ongoing effort involving multiple institutions, multiple 
regions, intense time pressures, and the participation of many operational and scientific specialties (e.g., 
clinicians, epidemiologists, microbiologists, administrators).  Although the database arose in response to a 
specific disease in Canada, it can be looked upon as an example of what might typically arise from a public-
health response to an outbreak of an emerging disease.  Hence there is value in analysing the NML-SARS 
database, looking for general characteristics, and highlighting where opportunities for scientific advances 
exist.  This is our objective.  

Putative characteristics of outbreak-response data sets are: ad hoc by definition; evolving database and data 
administration; basic assumptions (e.g., case definition) open to refinement; and insights that are often 
merely suggestive.  Opportunities for scientific advancement include: Exploratory Data Analysis of evolving 
data sets; definition of a relational data model appropriate to outbreak-response data sets; improvement of 
statistical data modelling methodology to estimate empty blocks of cells (resulting as emerging 
understanding directs interest from one area to another); data analysis to refine basic assumptions made 
during control operations; process modelling to explore consequences of unverified insights.   
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1. INTRODUCTION 

SARS was a serious health concern in Canada in 2003.  Specimens began to be received and tested at the 
National Microbiology Laboratory (NML) in Winnipeg, Manitoba, on March 17, 2003.  As of August 5, 
there were a total of 438 cases in Canada: 251 Probable and 187 Suspect.  The outbreak was short-lived but 
more than forty Canadians died from the disease.  

The Canadian SARS operations were co-ordinated by a state-of-the-art facility situated in Winnipeg, 
Manitoba.  The Canadian Science Centre for Human and Animal Health is an agency of the Public Health 
Agency of Canada, and houses the National Microbiology Laboratory (NML). 

2. THE NML-SARS DATABASE 

2.1. Overview  

Laboratory results were linked with clinical, diagnostic, epidemiological, and administrative data from 
different provinces and hospitals to generate a substantial data set.    

2.2. Variables 

There are 192 variables in the database, roughly split into classes as shown in Table 1.  Microbiological (or 
laboratory-based) data constitute most of the variables (about 75%).  

This group can be classified into viral-specific and non-specific 
variables.  In the viral-specific class, there are tests for 
Coronavirus (13 variables), human metapneumovirus (hMPV, 
16), circovirus (Circo, 4), porcine circovirus (PCV1, 6), TT-
virus (TTV, 7), TTV-like-mini-virus (TLMV, 7), Hantaanvirus 
(1), Rhinovirus (3), and Paramyxovirus (3).  For each virus, 
variables describe results from various tests or detail laboratory 
administration.  Nested PCR, RT-PCR, and sequencing tests are 
common, as are administrative variables giving the name of lab 
investigator or name of primer.    

Only 9 of the Microbiological variables containing test data are 
populated with more than 100 rows of data; and only 4 of these 
with more than 1000 rows.  Over time, many pathogens and tests 
were evaluated and discarded as they produced negative 
findings.  This resulted in virtual subsets of data related to 
specific tests and/or organisms. 

In the non-specific laboratory class, the variables are grouped simply by type of test:  Enzyme-Linked 
Immunosorbent Assay (ELISA, 7 variables), Immunofluorescence Assay (IFA, 7); plaque reduction 
neutralization test (PRN, 3); cytopathogenic test (CPE, 2), and electron microscopy test (EM, 8).  

Epidemiological data include variables such as date of birth, age, sex, epidemiology cluster, and employment 
status.  

Clinical variables include signs and symptoms such as diarrhea, difficulty of breathing, and severity of 
illness; and additional related variables such as systemic status, date of onset of illness, case status, case 
status modification, and case status modification date.  Diagnostic variables include: fever, chest X-ray 
change, cough, shortness of breath, contact with probable case, travel, source of exposure, and contact type. 

Administrative data include variables such as: patient’s last name, first name, temporal data (date of 
collection of the specimen, date of its receipt, and first date of hospitalization of the patient) and spatial data 
(origin of specimen, and identity of the hospital). 

2.3. Data Storage  

As a consequence of the emergency, the database had to be set up quickly, using ad hoc staff.  The database 
model had to be defined at a time when there was minimal understanding of the characteristics of this 
emerging disease, and had to be capable of modification as knowledge accumulated.  The software needed to 
be capable of reliably generating simple, routine reports.   

Table 1. Number of Variables by Class 

Class Variables 

Clinical/Diagnostic 
 

17 

Microbiological 143 
 

Epidemiological 25 
 

Administrative 7 
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The NML-SARS data were stored simply as a large flat file, in a “user friendly” relational database 
management system (rdbms).  The data are presented to the database manager by the software as one large 
spreadsheet and to users as Views, set up to serve specific purposes.     

Eighty-five columns (out of a total of 237) in the NML-SARS dbms are “global columns” - containing only 
one value - and used in “summary” and “calculation” columns, which are derived columns used for 
operational reporting.  Derived columns are presented in the same way as data columns. There are also many 
“comment” columns in the database.   

2.4. Database Documentation & Maintenance 

A 4-page table (Glossary of Database Fields) documents the NML-SARS data, with each column described 
by at most a few lines.  The levels of categorical columns are not always defined.  Recourse to relevant 
specialists for complete understanding is necessary. 

The NML-SARS data set and database were generated to serve control operations during the outbreak.  

2.5. Opportunity: Relational Data Model 

It seems to us that outbreak-response data could benefit from being organized by a relational data model.  In 
the flat-file NML-SARS database it is unclear whether the data were organized by patient, by measurement 
on patient, or by laboratory test.  Of the 14,234 records in the database, there was no unique record identifier: 
Patient Number contained 12,693 entries, the NML Number 14,185, and the Unique Specimen Number 
14,227.  

The large and diverse set of columns made the data difficult to extract with confidence.  It proved most 
effective to extract simple subsets of data related to specific questions.  Even verification of data quality 
within the database was difficult.   

The diversity of multiple records per 
patient (in the absence of a relational 
model) was also a major impediment in 
obtaining a data subset appropriate for 
data analysis.  

Fortunately, a relational model for a 
general outbreak-response data set can 
be envisaged.  A Master Table 
providing patient data seems sensible, 
and would include a key column/s and 
pointers to various other tables like 
Patient_Administration, Diagnostic, 
Clinical,  Hospital, Laboratory_Test, 
Geo-referencing, etc.  

As an example of what such a relational 
model might look like, we provide in 
Figure 1 the main part of the laboratory 
component of an outbreak-response 
data set.   

The Viral_specific table is fully specified (for the NML-SAR case) and Non-specific could similarly be 
elaborated.   

3. DATA ANALYSIS  

As the largest percentage of the columns in the database concerns laboratory tests (Table 1), this subset was 
analysed to infer general, statistical properties of outbreak-response data sets. 

3.1.  Much is Open to Refinement 

Laboratory variables that are represented by more than 1000 rows are: ELISA Result 1, IFA Result 1, 
Coronavirus Nested PCR, Coronavirus RT-PCR, and a large number of variables concerned with laboratory-
administration.  Variables represented by more than 100 but less than 1000 rows are:  PRN, Titer PRN, 

Figure 1. Proposed data model for laboratory-based part of an 
outbreak-response data set. 
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hMPV Nested PCR, PCR hMPV, RT-PCR hMPV, Sequence Coronavirus (92), and some variables 
concerned with laboratory-administration.  Emphasis will be placed on these columns.     

Anderson et al. (2005) noted that as SARS was a new 
disease during the data-collection period, the case 
definition should be interpreted with caution.  
Accordingly, each the two measures of the incidence of 
SARS (Severity of Illness, Case Status) were related to 
the variables identified in the WHO case definition, 
vis., fever, chest X-ray change, cough, shortness of 
breath, contact with a probable case, and travel (Riley 
et al., 2003).  (Case Status has values of Control, 
Neither, Probable, Suspect, Under Investigation and 
Severity of Illness has values of Deceased, Respirat, 
blank). 

A binary logistic model was fit to each incidence 
measure.  Case Status was made binomial, as Probable 
and the aggregate of Control, Neither, Suspect, and 
Under Investigation.  The 11 rows in which Severity of 
Illness had the value Respirat related to only one patient 
and were eliminated.  The model fits suggested the 
relative unimportance of cough, shortness of breath, 
and travel (Case Status only).   

Furthermore, as shown in Table 2, Severity of Illness 
provides better discrimination than Case Status. 

3.2. Much is Suggestive, not Verified 

A major question addressed in the control operations was: what is the causative agent of SARS?   

Poutanen et al. (2003) noted, on “the basis of 
preliminary investigations, it appears that this 
syndrome may be due in part to the newly 
described respiratory viral pathogen, human 
metapneumovirus, to a novel coronavirus, or 
both”.  The NML-SARS database was used to 
explore this issue.  

Sample size of the most populated laboratory 
measures is shown in Table 3; all variables are 
categorical and sample sizes are shown by value.  
Sample size for data analysis of pathogen is 
adequate only for Coronavirus and hMPV (not 
including PCR).  Simple cross-tabulations 
suggested a strong relationship between ELISA 
Result 1 and IFA Result 1; a small but consistent 
inverse relationship between each of ELISA Result 
1 and IFA Result 1, and each of Nested PCR and 
of RT-PCR (IFA only) – for both Coronavirus and 
hMPV; an inverse relationship between Nested 
PCR and RT-PCR for both Coronavirus and 
hMPV (but sample size was small); and a direct 
relationship between Nested PCR and Sequence 
for Coronavirus.  

Based upon these correlations, a binary logistic 
model was run (full factorial, forward stepwise 
model, n=14,211 records) to relate Severity of 
Illness to PRN, ELISA Result 1, hMPV Nested 
PCR, Coronavirus Nested PCR.  Good 

 

Table 2. Predictive ability of a binary 
logistic model, using two measures of 
incidence of SARS.  Top table: Case 
Definition; bottom table: Severity of Illness 

 

 Predicted 

 

Observed 

 Other Probable 

Other 71 5 

Probable 11 41 (17 
patients) 

 

 Predicted 

 

Observed 

 Alive Deceased 

Alive 285 6 

Deceased 4 23 (3 
patients) 

Table 3. Test details for the most populated 

Laboratory measurements 

Virus 

 

Test Positive 

Records 

Negative 

Records 

 PRN 63 72 

 ELISA 
Reslt 1 

361 5273 

 IFA Reslt 1 367 5278 

Coronavirus Nested PCR 475 7793 

Coronavirus RT-PCR 36 1045 

Coronavirus Sequence 87 5 

hMPV Nested PCR 18 202 

hMPV RT-PCR 17 468 

hMPV PCR 1 271 

TT-virus PCR 4 3 

TTV-like 

mini-virus 

PCR 4 3 
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discrimination was found for Alive but for Deceased it was only ~50%.  (R2 was only 17%.)  The largest 
coefficients were ELISA Result 1 (decreases probability of death) and PRN (increases it).  The only 
significant coefficient was hMPV Nested PCR (decreases probability of death).  Coronavirus Nested PCR 
entered the model only as an interaction between Coronavirus and hMPV. 

 

When RT-PCR for both Coronavirus and hMPV were added to the model, the fit rose to an 80% correct 
assessment of Deceased. (R2 rose to 24%.)  Notably ELISA Result 1 did not enter the model as factor.  
Coronavirus Nested PCR now entered the model as factor (increases probability of death significantly, 
OR=~4).  RT-PCR Coronavirus and hMPV both decrease probability death, with a larger parameter value for 
hMPV.  

These analyses support the assertion of Poutanen et al. (2003) that both Coronavirus and hMPV may be 
involved in SARS, but the data are inadequate to make a definitive conclusion. 

3.3.  Opportunities 

The fact that the mining of outbreak-response data may be inadequate to provide statistical significance 
suggests modelling opportunities of two sorts.   

3.3.1. Impute Missing Blocks of Data 

There is a need for imputing missing values.  The challenge in outbreak-response data sets is different from 
conventional statistical approaches in that typically blocks of data - rather than individual values - are 
“missing”.   

This happens because events change as the database is being filled; understanding evolves.  The putative 
pathogens change as some are ruled out and new ones begin to be investigated.  The diagnostic 
measurements which clinicians/hospitals supply change over time.  The organizations contributing data 
change over time, and their variables with them.   

These changes are obviously not desirable from the viewpoint of data analysis, as is clear from the previous 
section.  Any progress leading to stronger inferences would be useful.  Serious problems with missing values 
are also characteristic of microarray data sets and new approaches are arising in response (e.g., Wang et al., 
2006) that might be helpful here.      

3.3.2. Model to Infer Consequences of Weak Inferences 

Another opportunity is for process modellers to explore consequences of weak inferences raised from 
analysis of the data.   

Two models of particular relevance to Canada were published by Choi & Pak (2003) and by Gumel et al. 
(2004).  The statistical modelling reported earlier concerns the log odds of an observation being classified as 
Deceased, as a result of the presence/absence of infection by Coronavirus and/or hMPV.  The presence of 
multiple pathogens suggests changes to existing models in any of a number of ways, and such improvements 
could potentially lead to novel findings related to non-trivial transmission patterns.  Taking the model of 
Gumel et al. (2004) as an example, it is clear that any of the transmission coefficient β; rate of development 
of clinical symptoms κ1 & κ2; rate of disease-induced death d1 & d2; and rate of disease-induced recovery 
σ1 & σ2 could be affected by the presence of the two putative pathogens and the nature of their effect.   

Modellers have noted the existence of super-spreading events, those “rare events where, in a particular 
setting, an individual may generate many more than the average number of secondary cases” (Riley et al., 
2003).  These authors speculate that it “may be that the distinction between typical infection events and SSEs 
[“super-spread events”] reflects ... different routes of transmission”, i.e., respiratory exudates and fecal-oral 
contact.  That may be so, but there was an early reference in the literature (Poutanen et al., 2003) and data-
based reasons (analyses reported here, and the recent publication of Lee et al., 2007) for expecting the 
existence of two, possibly antagonistic, pathogens involved in SARS.  Riley et al. (2003) give a start (Rt = 
Rt

XSS + pSSENSSE ), where SSE represents a Super-Spreading Event; XSS is a “normal-spread” Event; Rt is 
the population Reproduction Number at time t; Rt

XSS is that Number for the proportion of the population that 
is a XSS; pSSE is the probability of an SSE; and NSSE is the number of individuals participating in an SSE.   
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It may prove useful to partition the Infectives in terms of the pathogen, within the hosts and their status of co-
infection.  Parameterizing the model may induce a re-visit of the outbreak-response data set in order to 
examine the correlation between co-infection and super-spread events.   

Gumel et al. (2004) deal extensively with an “optimal isolation program” and it would be useful to explore 
the consequences of an assumption of two antagonistic pathogens on their recommendations.  A particular 
issue of great Canadian interest is whether the observed twin peaks of SARS outbreak in several cities were 
truly random events, or a deterministic outcome of the co-existence of two pathogens.   

4. DISCUSSION AND CONCLUSIONS 

A number of characteristics of outbreak-response data sets have been proposed following from an 
investigation of the Canadian NML-SARS database.  This database emerged from a public-health response to 
an unexpected outbreak of a disease with serious implications.  It evolved as part of an effort involving 
multiple institutions, multiple regions, intense time pressures, and involving many operational and scientific 
specialities.  The database had to be set up quickly.   

As the database model had to be defined at a time when there was minimal understanding of the 
characteristics of this emerging disease, it evolved.  Likewise, project and database administration were 
brought together specifically to deal with the emergency.  Hence, aspects of project management, database 
administration, and scientific and technical contributions also evolved over time.  Fundamental decisions and 
guidelines (like case definition) were made as needed, and also evolved over time.  

The resulting data set and database incorporate features that are not normally found in data collected and 
organized for purely scientific purposes.  The database includes many classes of variables (microbiological, 
epidemiological, clinical, administrative), many variables (237), many observations (14,234), many house-
keeping variables, and hence many blocks of missing values.   

In consequence, it was difficult to understand the order in the data and hence to make reliable exports for 
analysis.  This aside, it was still hard to draw reliable inferences.   

But these challenges represent opportunities.  A rational Relational Data Model for outbreak-response data 
sets would be immediately useful.  Exploratory Data Analysis of diverse and sparse data sets needs some 
innovative work, including further work on statistical data modelling to estimate empty cells and (especially) 
blocks of cells.  Statisticians with access to the data can make important contributions in real time simply by 
evaluating and refining the basic assumptions used in the control operations.  Since firm conclusions may be 
hard to come by, so there is an opportunity for modellers to explore consequences of possibly important 
ideas, weak inferences suggested by the data.   

Thus, three types of modelling opportunities are thus presented by outbreak-response data sets.  First, there is 
a need for an appropriate data model for a RDBMS.  Secondly, the very sparse data set that results as 
emerging understanding directs interest from one area to another severely limits the range of statistical 
investigations possible; and this provides the opportunity to estimate blocks of missing values by data 
modelling.  Lastly, process modelling is called for to explore consequences of ideas that are suggested by 
ongoing investigations.   
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