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Abstract: The vapour-liquid phase transition exhibits remarkable complexity and requires sophisticated mod-
eling to explain in detail.

The complex structure of a condensing quenched vapour suggests Lagrangian particle methods like smoothed
particle hydrodynamics (SPH), smooth particle applied mechanics (SPAM) and dissipative particle dynamics
(DPD) as natural numerical techniques. Lagrangian particle methods allow for arbitrarily complex flows, do not
suffer from mesh tangling and avoid unstable modes associated with grid methods. Mesoscopic, coarse grained
models of phase transitions are of current interest because of their potential applications to the fabrication of
microstructures.

In smooth particle methods the fluid is represented as a set of particles that carry the properties of the fluid and
interact according to equations of motion that are derived in a clear and consistent way from the continuum
equations and constitutive relations for the system. We see this as an advantage over lattice methods in which
the relationship between the model dynamics and the continuum equations is less clear.

We have developed a high performance smooth particle code for modeling small systems of the order of 1000s
of particles. The code is built flexibly to allow for experimentation with the form of the smooth particle equa-
tions and the various parameters. Lagrangian particle methods do bring their own set of numerical challenges,
most of which have straightforward numerical corrections. Our code incorporates many of these well under-
stood corrections including artificial viscosity and anti-clumping measures. Our technique is closely related to
modern implementations of DPD with a key difference that we do not explicitly model thermal fluctuations.

By solving the equations of motion for a mean-field van der Waals equation of state we are able to produce
droplets, bubbles and planar gas-liquid interfaces under a variety of boundary conditions. Surface tension arises
through the attractive part of the van der Waals equation of state and the van der Waals square gradient term.
As scale decreases the capillary terms, which are driven by density gradients, become more important to the
dynamics of the phase separating fluid.

We do not need to use different particle types or different equations of state to represent the two phases. Instead
the phase separation of the one component fluid arises naturally out of the van der Waals model. No explicit
tracking of the vapour-liquid interface is required.

To produce sensible results we need to ensure the cohesive pressure operates at a longer range than the repulsive
pressure. We do not yet understand if this is required for consistency with mean-field theory, or is needed purely
for numerical stability.

Quenching a supercritical gas in a long periodic box we are able to realise the interconnected domains char-
acteristic of spinodal decomposition, with indications that short time liquid-gas domain growth and long time
hydrodynamic domain coalescence are correctly captured. Phase separating systems equilibrate to domains of
coexisting vapour and liquid at the expected densities for the van der Waals model.

Our method and code shows qualitative ability and quantitative promise. It is ready to be tested against real
experimental data, under more complex boundary conditions and against more complicated phase diagrams
involving more than one component. The smooth particle framework we have used can be naturally extended
to handle concentration gradients, arbitrary boundary conditions, and other equations of state.
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1. CONDENSATION

The van der Waals equation of state provides a simple, elegant model for the coexistence of vapour and liquid. It
is based on the assumption of a long range mean field attraction a between molecules and a hard core excluded
volume b, and gives the pressure p as a function of number density n and temperature T (van Kampen, 1964):

p =
nkbT

1− nb
− an2. (1)

Figure 1: Left: The van der Waals equation of state, with the Maxwell construction tie line. Right: The phase
diagram in the temperature density plane for a quenched one component van der Waals fluid.

The kink in the equation of state below the critical point is called a van der Waals loop. In this region the system
prefers to separate into two phases such that the overall free energy (given by the area under the pressure-volume
curve) is minimised. This phase separation is represented as a constant pressure line on the equation of state
known as the Maxwell construction where areas A and B shown in figure 1 are equal. The binodal line consists
of points created in this manner and bounds the region where a vapour and liquid phase coexist.

Figure 1 right shows the region of two phase coexistence. In the mechanically unstable spinodal region the
derivative ∂p∂ρ is negative. Here the system is subject to spontaneous phase separation for infinitesimal fluctua-
tions. The metastable region between the spinodal and binodal is stable under small fluctuations, but will phase
separate subject to large enough fluctuations. When we quench our smooth particle model of an equilbrated
gas to below the critical temperature into the unstable region we expect to see it phase separate.

We write the equation of state (2) in terms of the mass density ρ by introducing the parameters ā = a/m2,
b̄ = b/m and k̄b = kb/m wherem is the molecular mass and ρ = mn.

p =
ρk̄bT

1− ρb̄
− āρ2 (2)

Following Nugent and Posch (2000) we set ā = 2.0, b̄ = 0.5 and k̄b = 1. In these units the critical temperature
Tc ≈ 1.2.

2. THE VAPOUR-LIQUID INTERFACE

The vapour-liquid interface is modelled as a diffuse region where the density varies smoothly between the
bulk liquid and vapour densities. Following van der Waals (1979) we use a density gradient term involving
the square of the density gradient for the energy required to form and maintain density inhomogeneities. The
contribution of this gradient term to the pressure tensor is given by

C = −M

(
ρ∇2ρ+

1

2
|∇ρ|2

)
1 +M∇ρ∇ρ (3)
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with gradient coefficient M (Anderson et al., 1998) (Onuki, 2007). The effect of this term is to minimise
density gradients by imposing an energy penalty. Felderhof (1970) used the van der Waals square gradient
theory to derive an expression for the profile of an equilibrium planar interface perpendicular to coordinate z in
the vicinity of the critical point:

ρ(z) =
1

2
(ρl + ρg) −

1

2
(ρl − ρg)tanh

(κz
2

)
(4)

with

κ =
(
2kM−1 (ρl − ρg)

2
) 1

2

(5)

where k is another constant and ρl ρg are the bulk densities of the liquid and gas phases. This density profile is
shown in figure 2. The width of the interface increases with M from an infinitely thin interface withM = 0. In
this work we use M = 1 for convenience. For more quantitative work molecular dynamics simulations could
be used to determine the values of M and k for specific fluids. Van der Waals (1979) gives an expression for
the surface tension γ of an equilibrium interfacial profile as

γ = M

∫ (
dρ(z)

dz

)2
dz. (6)

As the critical temperature is approached the density profile becomes flatter and the integral in equation 6, and
thus the surface tension, approaches zero.

Figure 2: The liquid vapour interface in the square gradient model. The width of the interface increases with
M.

3. CONTINUUM MECHANICS

We use the van der Waals equation of state to close the Lagrangian equations of continuum mechanics which
give the time rates of change of density, velocity and specific internal energy u in terms of local field variables:

dρ

dt
= −ρ∇ · v (7)

dv
dt

= −
1

ρ
∇ · P (8)

du

dt
=
1

ρ

(
−∇ · Jq − PT : ∇v

)
(9)

with velocity v. The detailed physics is in the pressure tensor P. The heat flux given by Fourier’s law Jq =
−λ∇T . We have included contributions from the equilibrium isotropic pressure determined by the equation of
state, Newtonian viscosity with shear and bulk coefficients η and ηv and the the density gradient contribution
C, where (∇v)os is the symmetric traceless velocity gradient:
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P =

(
ρk̄bT

1− ρb̄
− āρ2

)
1 − 2η (∇v)os − (ηv∇ · v) 1 + C, (10)

with temperature given by the equilibrium equation of state

T =
u+ aρ

kb
. (11)

4. SMOOTH PARTICLE MODEL OF A VAN DER WAALS SYSTEM

Smoothed particle hydrodynamics (SPH) is a numerical technique for solving partial differential equations
(PDEs) in continuum mechanics, developed by Monaghan and Gingold (1977) for astrophysical modelling. It
is also known as SPAM (Smoothed Particle Applied Mechanics) in its applications to computational statistical
mechanics (Hoover, 2006).

In the smooth particle method field variables are mapped by a set of arbitrarily distributed particles with macro-
scopic attributes including density, mass, velocity and temperature. Particle properties are smoothed over space
by an interpolation kernel and particles move with the fluid’s local velocity. The mathematical basis for the
method is the approximation of an integral for field variable f

f(r) =

∫
f(r′)δ(r − r′)dr′ (12)

with a density dependent weighted kernel summation over particles

ˆf(r) =

N∑
i=1

fi
mi

ρi
W(r − ri, h) (13)

where ρi and mi are the density and mass of particle i. The smoothing kernel W is usually a cubic spline of
Gaussian shape. This weighted summation is used to recover the field variables at any point in space as shown
in figure 3.

Particle equations of motion are derived using this integral approximation of the continuum equations. Because
the particles move with the streaming velocity of the fluid we are able to use the less complicated Lagrangian
formulation of the continuum equations. The partial differential equations (PDEs) of continuum mechanics are
transformed into a set of ordinary differential equations (ODEs) governing the motion of particles:

ρ(ri) =

N∑
j=1

mjW (ri − rj, h) (14)

dvi

dt
=

N∑
j=1

mj

(
Pj

ρ2i
+

Pi

ρ2j

)
· ∇iWij (15)

Figure 3: Left: The ‘Lucy’ smoothing kernel used in this work (Nugent and Posch, 2000). Centre: Particle
positions. Right: Continuum smoothing of the particle plot generated using software described in Price (2007).
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dui

dt
=
1

2

N∑
j=1

mj

(
Pi

ρ2i
+

Pj

ρ2j

)
: vij∇iWij −

N∑
j=1

mj

(
Jqi

ρ2i
+

Jqj

ρ2j

)
· ∇iWij. (16)

Standard, symmetrised smooth particle approximations for the spatial gradients of the velocity and temperature
are used (Hoover, 2006).

Figure 4: Condensation of a 2D smooth particle fluid. Elapsed time is denoted by t. The timestep size is
0.05. Plots on the left show the distribution of density by particle, while plots on the left show the spatially
rendered mass density field. The binodal line is shown in blue. The black horizontal line shows the thermostat
temperature.

5. IMPLEMENTATION

The smooth particle algorithm is essentially the same as algorithms for classical molecular dynamics, with an
additional step to compute the particle density using equation 14. Our flexible single processor Fortran 90
smoothed particle code uses a Verlet neighbour list and a fourth order Runge-Kutta integrator for timestepping
to solve the equations of motion for two dimensional smooth particle systems.

To resolve stability problems when treating attractive forces we apply a longer smoothing length to the attractive
component of the force between smooth particles. A similar technique is used in other particle based methods
when a surface tension is required. Nugent and Posch (2000) used this method to study the formation and
oscillation of liquid droplets. Hoover (2006) used an attractive density gradient force to model surface tension.
Similarly in experiments with DPD, Warren (2003) enforced a density dependent interparticle potential with
a long range attractive and short range repulsive central force. Tartakovsky and Meakin (2005) have used
SPH to model capillary forces in fluid flow through pores by superimposing additional attractive and repulsive
interparticle forces.
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To prevent particle clumping we use a short range repulsive force (Hoover, 2006). To prevent the formation
of ring structures and string like artefacts found by Nugent and Posch (2000) we use an adaptive smoothing
length technique reported by Sigalotti et al. (2006).

Figure 5: Coexisting vapour and liquid in equilibrium at a range of temperatures.

6. SIMULATED CONDENSATION

Figure 4 shows the condensation of a two dimensional system in a long box with periodic boundary conditions.
Initially equilibrated to a homogeneous density above the critical point, the system is quenched as shown in
figure 1 and maintained at the quenched temperature using a scaling thermostat. The mass density field is
rendered using the smooth particle summation (equation 14) for each pixel. The normalised distribution of
particle density is overlayed on the phase diagram to show the close agreement of the final densities with
predictions.

The system begins to condense in the direction of high density fluctuations (always present except for contrived
cases due to the effectively random configuration of particles). Over time the domains phase separate more
decisively with density peaks appearing at the expected densities. The two phase regions coalesce slowly into
larger pockets and the system flows into a new configuration that minimises its surface area. The liquid density
is represented quite well. We have more difficulty resolving the lowest density of the equilibrium vapour phase
due to the fixed masses of the particles. Adaptive particle mass and particle splitting algorithms are being
developed to solve this problem.

Figure 5 shows final equilibrium configurations for quenches at a range of temperatures. As the critical point
is approached the system takes longer to phase separate.

Increasing the gradient term decreases the time to separate, and increases the interfacial width as shown in
figure 6. These preliminary results exhibit the broadening of the interface predicted by theory.
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Figure 6: Vapour-liquid interfaces for different values of the gradient coefficient. Top: M = 1.0, Center:
M = 8.0, Bottom: M = 21.0

7. CONCLUSION

Our smooth particle model obeys the equation of state reasonably well in the coexistence region and generates
a realistic looking phase separating fluid. The interfacial width responds correctly to increases in the gradient
energy coefficient, but greater resolution is needed to analyse the interfacial profile.
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